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The effects of nuclear isospin asymmetry on α-decay lifetimes of heavy nuclei are investigated within various
phenomenological models of the nuclear potential for the α particle. We consider the widely used simple
square-well potential and Woods-Saxon potential and modify them by including an isospin asymmetry term. We
then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach
of the Skyrme force model, which naturally introduces the isospin-dependent form of the nuclear potential for the
α particle. The empirical α-decay lifetime formula of Viola and Seaborg [J. Inorg. Nucl. Chem. 28, 741 (1966)] is
also modified to include isospin asymmetry effects. The obtained α-decay half-lives are in good agreement with
the experimental data, and we find that including the nuclear isospin effects somehow improves the theoretical
results for α-decay half-lives. The implications of these results are discussed, and the predictions on the α-decay
lifetimes of superheavy elements are also presented.

DOI: 10.1103/PhysRevC.94.024320

I. INTRODUCTION

The nuclear α decay has been one of the most important
tools to study nuclear forces and nuclear structure [1]. Even
today, its role cannot be overemphasized in the investigation
of nuclear properties and, in particular, in identifying
syntheses of new elements. (See, for example, Refs. [2,3].)
Although many facets of the nuclear force were uncovered
and understood, there still remain a lot of questions to be
explored. One very naive but quite nontrivial question would
be how many nucleons can aggregate in the heaviest nucleus?
Since every nucleus is dynamical and the α decay is one of
the major decay processes of heavy nuclei, the investigation
of α decays of superheavy elements is required to find a clue
to answer this question.

The structures of superheavy elements and their syntheses
have been exciting research topics in both experimental and
theoretical nuclear physics [4]. These topics attract recent
research interests thanks to the construction of new facilities
of rare isotope beams, which will allow the investigation
of very neutron-rich nuclei as well as superheavy elements.
The stability of nuclei can be achieved through the balance
between the attractive nuclear force and the repulsive Coulomb
force. As the number of protons increases, the Coulomb
repulsion increases, thus more neutrons are required to form
a bound state. However, the energy of neutron-rich nuclear
matter is higher than that of symmetric nuclear matter because
of the nuclear symmetry energy contribution to the total
energy. Therefore, the nuclear symmetry energy is important to
understand the structure of heavy, in particular, very neutron-
rich nuclei [5]. Furthermore, unstable heavy nuclei eventually
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decay through spontaneous fission, β decay, nucleon, and
α emissions, so the role of nuclear symmetry energy or the
change in nuclear potential due to nuclear isospin asymmetry
in these decay processes deserves to be studied.

In the standard approach, the α-decay lifetimes are gov-
erned by the effective potential for the nuclear force which
combines the core nucleus and the α cluster. There are
several phenomenological potential models for explaining the
measured data of α-decay lifetimes, which include the simple
α-cluster model with a square-well (SW) potential model [6,7],
cosh-type potential model [8], generalized liquid droplet
model (GLDM) [9,10], and density-dependent M3Y effective
interaction [11– 13]. In the simple cluster model, the α particle
is trapped by the core nucleus in a nuclear plus Coulomb
potential, and the α decay happens as the bound α particle
escapes from the potential barrier by quantum tunneling. The
shape of the effective nuclear potential felt by the α particle
is determined by fitting the parameters of the potential to
the measured α-decay lifetimes. Despite its simplicity, these
models are quite successful to describe α-decay lifetimes even
quantitatively [6,7]. For a more complete description of the
data, one, of course, needs to develop more realistic potential
models for the α particle.

Improvement of simple potential models has been pursued
in several ways. For example, in the simple potential models
illustrated above, the shape of a nucleus is robust and
does not change during the decay process. Therefore, more
realistic treatment on the shape evolution was anticipated and
investigated, e.g., in the GLDM in Refs. [9,10]. On the other
hand, it is also desirable to understand the α potential in nuclear
matter from a microscopic approach. Along this direction, the
authors of Refs. [11– 13] parametrized the α-particle potential
using three Yukawa-type finite-range forces that are modified
by nuclear density. In this approach, it is assumed that the core
nucleus follows the Fermi density profile and the α particle
has the Gaussian density profile.

2469-9985/2016/94(2)/024320(13) 024320-1 ©2016 American Physical Society
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The nuclear α decay of heavy nuclei is investigated based on the nuclear energy density functional, which
leads to the α potential inside the parent nucleus in terms of the proton and neutron density profiles of the
daughter nucleus. We use the Skyrme force model, Gogny force model, and relativistic mean-field model to get
the nucleon density profiles inside heavy nuclei. Once the nucleon density profiles are determined, the parameters
of the nuclear α potential are fitted to the observed α decay half-lives of heavy nuclei. This approach is then
applied to predict unknown α decay half-lives of heavy nuclei. To estimate the Q values of unobserved α decays,
we make use of the liquid droplet model.

DOI: 10.1103/PhysRevC.95.034311

I. INTRODUCTION

The synthesis of unknown heavy nuclei has been spot-
lighted in recent decades with the development of new
facilities for rare isotope accelerators [1– 3]. In particular, the
structure of neutron-rich heavy nuclei is expected to shed
light on our understanding of nuclear structure in isospin
asymmetric nuclear matter and it will give insight on the
structure of neutron stars and the process of nuclear synthesis
during the evolution of stars [4]. Therefore, it can be a test
ground for various issues of nuclear physics such as the
nuclear density functional, strong nuclear interactions, various
decay processes, r-p process, etc., which makes it one of the
most exciting topics in low-energy nuclear physics [5]. The
formation of such heavy nuclei is identified through their
decay processes such as the α decay, β decay, and spontaneous
fission [6]. The competition between these decay processes is
reflected in branching ratios, and, in fact, the heavy nuclei with
the atomic number Z > 105 were found to rarely survive for
a few minutes [7,8].

The study on the nuclear α decay process has a very long
history, as it is one of the major decay processes of nuclei [6,9].
In particular, the formation of a new heavy nuclide would
be mostly identified through its α decay chains [10– 12].
Modern approaches for theoretical understanding of the
nuclear α decay are based on effective nuclear interactions
such as the square-well potential model [13,14], cosh poten-
tial model [15], unified fission model [16], double folding
model [17– 19], and so on.

The most important factor in the α decay process of heavy
nuclei is the accurate information on the Q value for the decay
process, which reflects the structure of heavy nuclei through
binding energy. The importance of the Q value in the α decay
lifetime can easily be found in the Geiger-Nuttall law [20] and
its improved version of Viola, Jr. and Seaborg [6].1
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1For example, in the case of the alpha decay of 212Po → 208Pb +α,

a difference of 0.1 MeV in the Q value of the reaction, where

The next most sensitive factor in the determination of the
α decay width is the nucleon distribution inside the daughter
nucleus, which determines the α potential. Since the α decay
is basically a quantum tunneling effect, the exact positions
of the classical turning points and the profile of the barrier,
i.e., its height and width, are essential parts for the estimation
of the α decay lifetime. Therefore, the information on the
nuclear potential felt by the α cluster inside the parent nucleus
is important to estimate the α decay width. Furthermore, the
Coulomb potential is responsible for the repulsive potential
barrier together with the angular momentum barrier, so the
potential shape due to the proton distribution in the daughter
nucleus has a nontrivial role in the α decay process. The
purpose of the present paper is to go beyond a simple model
approach for the α potential by developing a more realistic α
potential based on nucleon density profiles for estimating α
decay half-lives.

In the present paper, we calculate the α decay half-
lives of heavy nuclei within the Wentzel-Kramers-Brillouin
(WKB) approximation by calculating the nuclear potential felt
by the α cluster using phenomenological nuclear force models.
The nuclear potential form for the α cluster is obtained from
the Skyrme-type interaction as prescribed in Ref. [21], which
requires the proton and neutron distribution as inputs. We then
use the Skyrme SLy4 model [22] and Gogny D1S model [23] as
nonrelativistic models and the relativistic mean-field DD-ME2
model [24] as well. For the Q values of the α decay processes,
we use the experimental data whenever available, and, if not,
we make use of the liquid droplet model (LDM) elucidated in
Ref. [25].

This paper is organized as follows. In Sec. II, we review
the LDM to calculate the binding energy to be used when the
experimental Q value is not known. The Coulomb diffusion
and exchange terms are included as well as the pairing and
shell corrections, which gives a better fitting to existing data.
In the shell corrections, we use the last magic number as a

Qexpt. ≈8.95 MeV, results in about a factor of 1.7 difference in the
calculated half-life of 212Po.
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Recent astronomical observations, nuclear-reaction experiments, and microscopic calculations have placed
new constraints on the nuclear equation of state (EoS) and revealed that most nuclear-structure models fail to
satisfy those constraints upon extrapolation to infinite matter. A reverse procedure for imposing EoS constraints
on nuclear structures has been elusive. Here, we present for the first time a method to generate a microscopic
energy density functional (EDF) for nuclei from a given immutable EoS. The method takes advantage of a natural
ansatz for homogeneous nuclear matter, the Kohn-Sham framework, and the Skyrme formalism. We apply it
to the nuclear EoS of Akmal-Pandharipande-Ravenhall and describe successfully closed-(sub)shell nuclei. In
the process, we provide predictions for the neutron-skin thickness of nuclei based directly on the given EoS.
Crucially, bulk and static nuclear properties are found practically independent of the assumed effective mass
value—a unique result in bridging EDF of finite and homogeneous systems in general.

DOI: 10.1103/PhysRevC.99.064319

I. INTRODUCTION

The nuclear energy density functional (EDF) represents
density functional theory in nuclear physics and provides
a unified framework for both finite self-bound nuclei and
the equation of state (EoS) of infinite nuclear matter. The
founding theorems of density functional theory [1,2] were
formulated originally for an externally bound nondegenerate
unpolarized electron gas in its ground state but were fol-
lowed over the years by numerous generalizations to situa-
tions including degenerate, polarized, and finite systems, and
to excited states, as well as by practical justifications and
refinements in a hierarchy of approximations [3,4]. Attempts
exist to formalize intrinsic EDFs for self-bound systems [5– 7].
Formal justifications aside, the framework is widely used
in nuclear physics [8,9] as exemplified by (although not
restricted to) Skyrme models. There are various approaches
based on the Hartree-Fock approximation with or without ex-
plicit correlations beyond mean field or pairing and extending
to linear-response theory.

Current major goals of nuclear EDF research include:
(1) establishing connections between EoS parameters and
nuclear observables, especially for the purposes of astro-
physical modeling and (2) bridging phenomenological EDF
approaches with ab initio approaches [10,11], which use
precise phenomenological two- and three-nucleon potentials
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[12– 14] or potentials obtained from effective-field theories
(EFTs) [15– 17]. An important express goal is to provide
higher predictive power in the description of exotic nuclei.
A consistent and realistic description of atomic nuclei and
homogeneous nuclear matter is necessary in the modeling of
neutron stars and supernova simulations.

After decades of work and hundreds of EDF models, the
search for a universal functional is ongoing, and stumbling
blocks remain in reaching the above goals. Traditional EDF
models demonstrate spurious correlations among parameters,
in particular, involving the in-medium effective mass [18,19].
It is also commonly said that certain observables “prefer” a
low or high effective mass. (Respective examples are radii or
energies [8].) It turns out that most available models fail to
reproduce simultaneously nuclear observables and reasonably
constrained EoS properties [20,21]. The situation is certainly
unsatisfactory: If an EoS is realistic, then, by definition, it
should be able to reproduce nuclear properties. However,
testing a given EoS candidate directly on nuclear properties
without refitting and refining it has been impossible.

In this paper, we address the question: Given a reasonable,
based on current knowledge, parametrization for homoge-
neous matter, can we apply it to nuclei with no refitting of
the EoS parameters? For the first time, we propose a method
to realize such applications and obtain a positive answer to
the above question. We find that the key lies in the treatment
of the in-medium effective mass. Any parameters which do
not affect and cannot be constrained from the EoS are fitted to
bulk properties of only three nuclei and are found to describe
all considered nuclei successfully. Based solely on the given
EoS, predictions for exotic isotopes and for the neutron-skin
thickness of key nuclei are provided.

2469-9985/2019/99(6)/064319(8) 064319-1 ©2019 American Physical Society
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Background: In the framework of the newly developed generalized energy density functional (EDF) called
KIDS, the nuclear equation of state (EoS) is expressed as an expansion in powers of the Fermi momentum or
the cubic root of the density (ρ1/3). Although an optimal number of converging terms was obtained in specific
cases of fits to empirical data and pseudodata, the degree of convergence remains to be examined not only for
homogeneous matter but also for finite nuclei. Furthermore, even for homogeneous matter, the convergence
should be investigated with widely adopted various EoS properties at saturation.
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16

Purpose: The first goal is to validate the minimal and optimal number of EoS parameters required for the
description of homogeneous nuclear matter over a wide range of densities relevant for astrophysical applications.
The major goal is to examine the validity of the adopted expansion scheme for an accurate description of finite
nuclei.

17

18

19

20

Method: We vary the values of the high-order density derivatives of the nuclear EoS, such as the skewness of
the energy of symmetric nuclear matter and the kurtosis of the symmetry energy, at saturation and examine the
relative importance of each term in ρ1/3 expansion for homogeneous matter. For given sets of EoS parameters
determined in this way, we define equivalent Skyrme-type functionals and examine the convergence in the
description of finite nuclei focusing on the masses and charge radii of closed-shell nuclei.
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Results: The EoS of symmetric nuclear matter is found to be efficiently parameterized with only three parameters
and the symmetry energy (or the energy of pure neutron matter) with four parameters when the EoS is expanded
in the power series of the Fermi momentum. Higher-order EoS parameters do not produce any improvement, in
practice, in the description of nuclear ground-state energies and charge radii, which means that they cannot be
constrained by bulk properties of nuclei.
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Conclusions: The minimal nuclear EDF obtained in the present work is found to reasonably describe the
properties of closed-shell nuclei and the mass-radius relation of neutron stars. Attempts at refining the nuclear
EDF beyond the minimal formula must focus on parameters which are not active (or strongly active) in
unpolarized homogeneous matter, for example, effective tensor terms and time-odd terms.
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I. INTRODUCTION36

In a series of publications [1– 4], we have proposed and37

developed a strategy to model nuclear systems based on a38

converging power expansion combined with energy density39

functional (EDF) theory. Beginning with homogeneous matter40

[1], we formulated the energy per particle, which represents41

the equation of state (EoS), as an expansion in powers of42

the Fermi momentum or equivalently in powers of the cubic43

root of the density, as kF ∝ ρ1/3. This choice is rooted both44

in quantum many-body theory and effective field theory. We45
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confirmed a posteriori the quick convergence of the expansion 46

by fitting the parameters to pseudodata from microscopic 47

calculations. Based on a statistical analysis of the fits, a 48

robust parameter set was chosen as a baseline for further 49

explorations, comprising three terms for isospin-symmetric 50

nuclear matter (SNM) and four for pure neutron matter 51

(PNM). The naturalness of the expansion was confirmed and 52

extrapolations to extreme density regimes were found to be 53

satisfactory [4]. In particular, the extrapolated results agreed 54

with ab initio calculations to the densities low enough to reach 55

the core-crust boundary in the neutron star ρ ∼ 0.001 fm−3, 56

a regime to which the model had not been fitted at all, and 57

reproduced a realistic mass-radius relation of neutron stars, 58

which represents a dense regime. 59

In subsequent works reported in Refs. [2– 4], the KIDS 60

EoS was transposed to a Skyrme functional with extended 61

density-dependent couplings, which we call a KIDS EDF, 62

to study nuclear ground-state properties, thereby relying on 63

2469-9985/2019/00(0)/004300(14) 004300-1 ©2019 American Physical Society
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Hartree-Fock calculations for spherical nuclei using Skyrme's density-dependent effective
nucleon-nucleon interaction are discussed systematically. Skyrme's interaction is described
and the general formula for the mean energy of a spherical nucleus derived. Hartree-Fock
equations are obtained by varying the mean energy with respect to the single-particle wave
functions of occupied states. Relations between the parameters of the Skyrme force and var-
ious general properties of nuclear matter and finite nuclei are analyzed. Calculations have
been made for closed-shell nuclei using two rather different sets of parameters, both of
which give good binding energies and radii for 0 and Pb. Both interactions give good bind-
ing energies and charge radii for all closed-shell nuclei. Calculated electron scattering an-
gular distributions agree qualitatively with experiment, and for one interaction there is good
quantitative agreement. The single-particle energies calculated with the two interactions are
somewhat different owing to a different nonlocality of the Hartree-Fock potentials, but both
interactions give the correct order and density of single-particle levels near the Fermi level.
They differ most. strongly in their predictions for the energies of 1s single-particle states.

I. INTRODUCTION

It now seems clear that the average field in nu-
clei should emerge from an approximation more
or less closely connected to the Hartree-Fock
method. However, the exact nature of the rela-
tion between the observed single-particle proper-
ties of nuclei and the nucleon-nucleon force has
not yet been resolved. Several attempts to clarify
this relation have been made in the past few years
by means of two rather different approaches. The
first one is to use soft potentials and the frame-
work of the usual Goldstone expansion. This point
of view has been adopted in particular by Kerman
and his group, who have solved, for Tabakin's
potential, the Hartree-Fock problem with second-
and third-order corrections. ' ' With such calcu-
lations, however, difficulties are encountered in
explaining nuclear radii and densities. Even
though the rate of convergence of the expansion
does not appear to be satisfactory' the discrepancy
has to be attributed to the improper saturation
properties of the Tabakin potential. The second
approach is appropriate for interactions with a
strong short-range repulsion and the framework
of the Brueckner-Goldstone expansion is used.
Even though it has been reputed to be difficult, a
certain number of complete Brueckner-Hartree-
Fock calculations of finite nuclei, including double

self-consistency, are now available. 4' Among
these the most recent one is the work of Davies
and McCarthy, who have used Reid's soft-core
potential and included also renormalized occupa-
tion probabilities. Here again, however, the fit
to nuclear radii and binding energies turns out to
be rather poor, and the origin of the discrepancy
is not clear. It could be due either to the impor-
tance of higher-order diagrams or to the fact that
Reid's soft-core potential is an inadequate descrip-
tion of the nucleon-nucleon force. An evaluation
of higher-order terms in the expansion —in parti-
cular a calculation of the three-body cluster dia-
gram —would be necessary in order to settle this
question.
The present status of realistic calculations, and

also their complexity, therefore explains the co-
existence of calculations of another type, namely
Hartree-Fock calculations with effective interac-
tions, which leave out completely the problem of
higher-order corrections and, rather, try to re-
produce in lowest order as many nuclear proper-
ties as possible. Although less fundamental, this
approach is extremely useful: It allows one to
calculate in regions where realistic calculations
become impracticable. It also allows one to make
systematic studies with the least amount of numer-
ical work.
Calculations with effective forces can be divided

632 D. VAUTHERIN AND D. M BRINK

Nucleus

4He

Bp Bg B2 B8

16p

4oCa
2

uz
2 64

4

4

4 ill

1?E KE
64 27

TABLE I. Numerical values of the coefficients A and
B to be used in Eq. (36) for helium-4, oxygen-16, and
calcium-40.

TABLE II. Numerical values of the parameters tp
(MeVfm ), t& (MeVfm ), t2 (MeVfm ), t3 (MeVfm ) Qp
{MeV fm~), and xp corresponding to interactions I and II.
The equilibrium oscillator parameter b (in fm) and the
associated total binding energy E (in MeV) of oxygen-16
have also been indicated, together with the Fermi mo-
mentumkF (fm ), the binding energy per particle E/A
(in MeV), the symmetry-energy coefficient a (in MeV),
and the incompressibility& {in MeV) of nuclear matter.

Force tp t2 Xp Wp

force was adjusted to fit the experimental value of
6.15 MeV for the splitting of the 1P levels in oxy-
gen-16. In the second step Hartree-Fock calcula-
tions were carried out for doubly-closed-shell
nuclei, and the nuclear matter and oxygen-16 in-
put values were corrected to obtain a better fit to
oxygen-16 and lead-208, so that the parameters
were adjusted in fact on oxygen and lead. Using
this procedure we have been able to find several
sets of parameters giving a good description of
closed-shell nuclei in Hartree-Fock calculations.
Particularly good fits were obtained with the two
sets of parameters defined in Table II. Both of
these interactions exhibit a strong density depen-
dence. For interaction (I) the contribution of the
density-dependent term in nuclear matter is of the
order of 22 MeV per particle. Comparing this
number with the average kinetic energy per parti-
cle in this case, —,TF = 21 MeV, shows that the
three-body term cannot be considered as a small
correction. We have also indicated in Table II the

I —1057.3 235.9 —100. 14463.5 0.56 120.
II -1169.9 585.6 —27.1 9331.1 0.34 105.

E( P) b( P) E/A kF
—140.
-135.

1.71 -16
1.76 -16

1.32 370 29.3
1.30 342 34.1

corresponding input values of E/A, k~, E("0),
and b("0) together with the calculated values of
the nuclear-matter incompressibility K and the
symmetry-energy coefficient a, . As we might
have expected from Eq. (18) the large values of
t, for both of these interactions are associated
with rather large values of K.

VI. NUMERICAL SOLUTION FOR SPHERICAL
NUCLEI

Eliminating the potential U, the form factor W
of the one-body spin-orbit potential, and the effec-

TABLE III. Root mean square radii (in fm) and total binding energies per particle (in MeV) calculated with interactions
I and II.

r, (exp)
(E/A) (exp)

16p
2.73 a
—7.98 ~

"Ca
3 49b
—8.55 e

48ca
3.48 b
—8.67 e

"Zr
4.27
—8.71'

2P8 pb
5.50 '
—7.87 e

298] ]4

Force I

Force II

Ref. 8

Ref. 7

+m
+n

p
+c
E/A

r
+n

p
y
E/A

Jp
E/A

E/A

2.55
2.53
2.56
2.68
—8.22
2.62
2.61
2.63
2.75
—7.89
2.71
-6.75
2.76
7 073

3.29
3.27
3.31
3.41
—8.64
3.38
3.35
3.40
3.49
—8.41
3.41
—7.49
3.45
—8.32

3.43
3.48
3.36
3.46
—8.93
3.55
3.63
3.45
3.54
—8.39
3.45
—7.48
3.52
—7.87

4.17
4.19
4.14
4.22
—8.81
4.29
4.32
4.24
4.31
—8.43
4.18
—7.85
4.23
—8.07

5.45
5.49
5.38
5.44
—7.89
5.61
5.69
5.49
5.55
—7.54
5.37
—7.53
5.44
7 +31

6.15
6.18
6.09
6.14
—7.08
6.34
6.41
6.22
6.27
—6.74

' I. Sick and J.S. McCarthy, Nucl. Phys. A150, 631 (1970)"R. F. Frosh et al. , Phys. Rev. 174, 1380 (1968) .
L. A. Fajardo, J. R. Ficenec, W. P. Trower, and I. Sick, Phys. Letters 37B, 363 (1971).J. Heisenberg & al., Phys. Rev. Letters 23, 1402 (1969).

~ J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl. Phys. 67, 1 (1965).
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To simplify calculations Skyrme used a short-
range expansion for the two-body interaction. The
matrix elements in momentum space are

(k
~
e „~k') = t, (1 + xj' ) + 2 t, (k' + t' "}+ t,k k '

+ iWo(o, +a, ) k&&k', (2)

where k and k' are relative wave vectors of two
nucleons. In Eq. (2) P, is a spin-exchange opera-
tor, and the 0 are Pauli spin matrices. The rea-
son why this expression corresponds to a short-
range expansion can be seen in the following way.
Consider, for instance, a Gaussian central force
with exchange terms,

(k j &$') =(p~&)'[W+M+(B+H)P, ][1—-'(k'+I ")p']

+ , (uv~v)'[W--M+(B H)P, ]iI.'k -k', (4)

which is identical to Eq. (2) except for the last term.
In a similar way one can show" that this last term
can be generated by a two-body spin-orbit force
VI. z(r»}L ~ S, where in the short-range limit

wo

To see how one deals with such an interaction in
practical calculations it is convenient to write it
in configuration space. It can be expressed as

v» = t, (1+x,P,)5(r, —r, )
+-,'t, [5(r, —r, )k'+k'25(r, —r2)]

+ t,k' ~ 5(r, —r2)k+ iWO(o, +c2) k'x 5(r, —r, )k,

(6)
where k now denotes the operator (V, —V,)/2i act-
ing on the right; whereas, k' is the operator
-(V, —V,)/2i acting on the left. By considering the
matrix elements of expression (6) in a state of
relative motion 4 (r}=H(r)Y, (D) one can see that
the first two terms correspond to S-wave inter-
actions [since the matrix elements are propor-
tional to (+(0) (' and +(0)V'4(0), respectively];
whereas, the last two terms correspond to P-
wave interactions, since the matrix elements are
proportional to

~
V 4(0)~'.

V=e+"»'"~ (W+BP HP, M—P,P, )-.
Only low-momentum matrix elements (k, k' ~2k+)
are important for Hartree-Fock calculations.
Now if the range p in Eq. (3}is small compared
to k~', then one can retain only the first few terms
in the Taylor series for the matrix elements of V
in momentum space, and one is left finally with
an expression of the form

For the three-body force Skyrme also assumed
a zero-range force

In the following we will show that for Hartree-
Fock calculations of even-even nuclei, this force
is equivalent to a two-body density-dependent in-
teraction:

u„=gt, (1+P,)5(r, —r, }p 2 (6)

Such a term provides a simple phenomenological
representation of many-body effects, and de-
scribes the way in which the interaction between
two nucleons is influenced by the presence of
others. Skyrme's interaction can be considered
as a kind of phenomenological G matrix which
already includes the effect of short-range corre-
lations, notably through the density-dependent
term. This is one reason why it would be mean-
ingless to calculate second-order corrections
with Skyrme's force, and a perturbation calcula-
tion would actually diverge because of the zero
range. As mentioned earlier, Skyrme's interac-
tion is an approximate representation of the ef-
fective nucleon force which is only valid for low
relative momenta.
A similar type of interaction has been investi-

gated recently by Moszkowski. '4 His force differs
from the present one by the absence of P-wave
interactions and also by a density dependence
proportional to p'" rather than to p. The p'" den-
sity dependence was suggested by Bethe. " For
most G matrices' ' the convergence of the short-
range expansion (4) is not rapid enough to allow a
restriction to the first two lowest-order terms.
A much more satisfactory derivation of Skyrme's
interaction, based on an expansion for the mixed
density will be presented in a forthcoming publi-
cation. ~'

Ill. HARTREE-FOCK EQUAT1ONS

where x denotes the set r, o, q of space, spin, and
isospin coordinates (q =+ —,

' for a proton, — for a
neutron). The expectation value of the total

For the Skyrme interaction there exists a very
simple way of deriving the Hartree-Fock equations,
which we will now describe. Consider a nucleus
whose ground state is represented by a Slater de-
terminant Q of single-particle states Q, :

�6
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CVJI. Z'he Nuclear Surface 
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[Received March 5, 19561 

ABSTRACT 
The basic ideas of Brueckner's self-consistent nuclear model are applied 

in a simplified, approximate form to the case of a finite nucleus. It is 
ehown that it is possible to reconcile the observed values of surface energy 
and surface thickness, to explain the greater extension of the nuclear 
potential compared with the charge distribution, and also to fit the well- 
depth of the optical model for nucleon scattering. 

9 1. INTRODUCTION 
A DIFFICULTY has recently been pointed out by Swiatecki (1955 b)  in 
reconciling the value of the nuclear surface energy with the measurements 
of surface thickness obtained from electron scattering experiments. This 
problem is reinvestigated here in the light of the probable existence of a 
velocity-dependent mean potential, as suggseted by Brueckner et ul. 
(1 954)$ and by Johnson and Teller (1 955). 

In the self-consistent model of Brueckner, whose ideas are followed here, 
nuclear saturation is achieved by the reduction in the attractive force 
between pairs of nucleons as their relative velocity increases. In  the 
idealized case of indefinitely extended nuclear matter, the effective 
potential between pairs of nucleons is completely described in terms of 
their relative momenta; in the case of a finite system the effective 
potential must depend upon both momenta and coordinates, and as has 
been pointed out by Bethe (1956), the rnea,n central potential should 
then properly be taken as a potential matrix, diagonal neither in co- 
ordinate nor momentum space. 

To provide a simple model for the present discussion it has here been 
assumed that the effective interaction between pairs of nucleons may be 
described by delta-functions of position and differential operators (to 
express momentum dependence) ; the resultant mean potential is then a 
sum of products of functions of position with momentum operators. It'ith 
these assumptions a relatively simple set of self-consistent equations may 
be writt.en down for the individual particle states of the assumed model 
wave-function. 

t Communicated by Dr. B. H. Flowers. 
$ The principal reference for this paper is Brueckner (1954 b). 
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EEFFECTI VENUCLEARPOTENTI AL

T. 11. R. SKYRME
At omi c Ener gy Resear ch Est abl i shment , Har wel l , Di dcot , Ber ks.

Recei ved 18 Oct ober 1958

Abst r act : An empi r i cal anal ysi s i s made of t hemeanef f ect i ve i nt er nucl eon pot ent i al r equi r ed
i n t heshel l - model descr i pt i on of nucl ei , al l owi ng f or t he pr esence of many- body ef f ect s as
suggest ed by cur r ent t heor y. Aconsi st ent descr i pt i on i s f ound i n whi ch t he ef f ect i ve
t wo- body i nt er act i on act s al most ent i r el y i n even st at es, end t he many- body ef f ect s ar e
si mul at ed by a r epul si ve t hr ee- body cont act i nt er act i on. The st r engt h of t he t wo- body
i nt er act i on i s consi st ent wi t h t hat expr essed by t he f r ee scat t er i ng mat r i x of t he t wo-
nucl eon syst em, and t hat of t he t hr ee- body i nt er act i on wi t h t he ' r ear r angement ener gy'
cal cul at ed i n t he many- body t heor y .

1. I nt r oduct i on

I n t he decade t hat has el apsed si nce t he publ i cat i on of Rosenf el d' s st udy
of nucl ear f or ces 1) t her e have been sever al devel opment s of gr eat si gni f i cance
f or t he pr obl emof nucl ear f or ces i n r el at i on t o t he st r uct ur e of nucl ei . The
shel l model 2) of nucl ei has acqui r ed a f i r mempi r i cal st andi ng, based on t he
mul t i pl i ci t y of f act s t hat can be expl ai nedwi t h t heassumpt i on t hat nucl eons
move i n i ndependent or bi t s i nsi de a nucl eus, gener al i sed, i n t he mor e compl ex
cases, t o t r ansmi gr at i on bet ween a r el at i vel y smal l number of or bi t s . The
char act er of t he si ngl e- par t i cl e pot ent i al needed t o def i ne t hese o~bi t s i s
known t o be t hat of a r ounded squar e wel l wi t h a st r ong at t r act i ve spi n-
or bi t coupl i ng; t he occupancy of near l y degener at e st at es i s det er mi ned by
r esi dual i nt er act i ons, whose f or mand st r engt h ar e si mi l ar t o t hose ef f ect i ve
i n t he deut er on.

The det ai l ed nat ur e of t hi s i nt er act i on i s uni mpor t ant f or many r esul t s;
usual l y a si mpl e r adi al shape has been chosen f or t he pot ent i al , gaussi an or
Yukawa, and an exchange char act er has been t aken ei t her t o f i t t he f act s
as wel l as possi bl e i n t he r egi on consi der ed or such as t o descr i be t he l ow-
ener gy pr oper t i es of t he t wo- nucl eon syst em; i t has of t en been assumed t hat
t he i nt er act i on must have t he ' symmet r i cal ' char act er , suggest ed by second-
or der meson t heor y, t o ensur enucl ear sat ur at i on. I t i s nowcl ear t hat such an
i nt er act i on i s ver y di f f er ent f r om t he r eal pot ent i al act i ng bet ween t wo
( f r ee) nucl eons . The f or mof t hi s r eal pot ent i al i s st i l l uncer t ai n, but r ecent
anal yses 3, 4) of nucl eon- nucl eon scat t er i ng i n t er ms of a pot ent i al i ndi cat e
t he pr esence of st r ong non- cent r al f or ces and of a ' r epul si ve cor e' at smal l
di st ances.
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Thi s f or mof pot ent i al i s gi ven i n mor e det ai l i n t he f ol l owi ng sect i on.
I n t he appr oxi mat i on whi ch has been most ext ensi vel y i nvest i gat ed t her e
ar e f our undet er mi ned const ant s i nvol ved i n t he ` mean' pot ent i al ( i . e. t he
aver age i nvol ved i n nucl ei wi t h equal number s of pr ot ons and neut r ons,
each wi t h t hei r spi ns equal l y i n bot h di r ect i ons) . These have been f i xed,
appr oxi mat el y, by consi der i ng t he pr oper t i es of i nf i ni t e nucl ear mat t er
( sect i on 3) , i ncl udi ng sur f ace ef f ect s, and of l i ght nucl ei near cl osed shel l s
usi ng osci l l at or wave- f unct i ons f or t hose of t he si ngl e- par t i cl es ( sect i on 4) ,
wi t h t he r esul t s gi ven i n sect i on 5, whi ch ar e t he same as t hose pr evi ousl y
r epor t ed' ). The spi n- or bi t par t of t he i nt er act i on cannot be adequat el y
descr i bed by t he ext r eme shor t - r ange appr oxi mat i on and wi l l be di scussed
separ at el y i n a f ol l owi ng paper l o) . The r emai ni ng par t s of t he i nt er act i on,
i . e. t he t ensor component s andspi n- dependent par t s of t hecent r al pot ent i al s,
ar e much mor e di f f i cul t t o det er mi ne unambi guousl y. I n pr i nci pl e t hey may
be i nf er r ed f r omt he l evel st r uct ur e of nucl ei mor e di st ant f r omcl osed shel l s
and ear l i er est i mat es - wer e based upon a st udy of t he conf i gur at i on ( s4 PP)
f or nucl ei bet weenHeandO; we nowbel i eve however , t hat even i n t hi s case,
i n t he p- shel l , di st or t i on may i nt r oduce conf i gur at i on i nt er act i on ef f ect s
t hat shoul d mor e nat ur al l y be i ncl uded i n t he model wave- f unct i on t han i n
t he ef f ect i ve pot ent i al l l ) . For some est i mat es made i n t hi s paper t he spi n-
dependence of t he cent r al i nt er act i on has been r epr esent ed by a si ngl e t er m.

We have al so consi der ed br i ef l y some si mpl e gener al i sat i ons of t he f or m
assumed f or t he mean pot ent i al ( sect i ons 6 and 7) ; t hey do not appear t o
al t er t he qual i t at i ve f eat ur es pr evi ousl y f ound. Fi nal l y, i n sect i ons Sand 9,
we compar e t he st r engt h- const ant s of our pot ent i al wi t h ot her avai l abl e
evi dence.

2. Assumed Pot ent i al

To compl et e t he speci f i cat i on of t he pot ent i al gi ven by equat i ons ( 2) t o
( 5) above we must i nt r oduce an expl i ci t f or m f or i ( k' , k) . Apol ynomi al
expansi on i n power s of k andk' has been chosen on account of t he compar a-
t i vel y si mpl e al gebr ai c expr essi ons f or t he mat r i x el ement s ; on t heot her hand
t hi s f or mi s unr eal i st i c f or l ar ge moment umt r ansf er s, so t hat i t i s not sui t abl e
f or t he di scussi on of second- or der ef f ect s, unl ess some moment umcut - of f i s
i nt r oduced. I f t he pol ynomi al i s l i mi t ed t o t er ms quadr at i c i n t he moment a
( anal ogous t o t he ef f ect i ve mass appr oxi mat i on) , t he most gener al f or mi s

t ( k' , k) = t o( l +xoP°' ) +I t : L ( 1 +x, PO' ) ( k 2 +k2)
+ t 2[ 1+x2( p~- - b) Jk' k

I T[ al - kor 2 - k- - !$o1 " a2k2 +conj . ]

 

(6)
- I -

 

U[ ai " k' or 2 " k- - ~~al " Q2k' - k+conj . ]
V[ Z( Q1+472) " k' x k_l , ,
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VARIOUS SKYRME MODELS
PHYSICAL REVIEW C 85, 035201 (2012)

Skyrme interaction and nuclear matter constraints

M. Dutra,* O. Lourenço,* J. S. Sá Martins, and A. Delfino
Instituto de Fı́sica–Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-150 Boa Viagem, Niterói RJ, Brazil

J. R. Stone
Oxford Physics, University of Oxford, Oxford OX1 3PU, United Kingdom and

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

P. D. Stevenson
Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

(Received 16 November 2011; revised manuscript received 27 January 2012; published 5 March 2012)

This paper presents a detailed assessment of the ability of the 240 Skyrme interaction parameter sets in the
literature to satisfy a series of criteria derived from macroscopic properties of nuclear matter in the vicinity of
nuclear saturation density at zero temperature and their density dependence, derived by the liquid-drop model, in
experiments with giant resonances and heavy-ion collisions. The objective is to identify those parametrizations
which best satisfy the current understanding of the physics of nuclear matter over a wide range of applications. Out
of the 240 models, only 16 are shown to satisfy all these constraints. Additional, more microscopic, constraints
on the density dependence of the neutron and proton effective mass β-equilibrium matter, Landau parameters
of symmetric and pure neutron nuclear matter, and observational data on high- and low-mass cold neutron stars
further reduce this number to 5, a very small group of recommended Skyrme parametrizations to be used in
future applications of the Skyrme interaction of nuclear-matter-related observables. Full information on partial
fulfillment of individual constraints by all Skyrme models considered is given. The results are discussed in terms
of the physical interpretation of the Skyrme interaction and the validity of its use in mean-field models. Future
work on application of the Skyrme forces, selected on the basis of variables of nuclear matter, in the Hartree-Fock
calculation of properties of finite nuclei, is outlined.

DOI: 10.1103/PhysRevC.85.035201 PACS number(s): 21.30.Fe, 21.65.Cd, 21.65.Ef, 26.60.Kp

I. INTRODUCTION

Empirical properties of infinite nuclear matter can be
calculated using many different theoretical approaches. The
most microscopic ones start from a realistic two-body free
nucleon-nucleon (NN) interaction with parameters fitted to
NN scattering phase shifts in different partial wave channels
and to properties of the deuteron [1]. By taking these bare NN
interactions as input into a many-body formalism, such as the
relativistic Dirac-Bruckner-Hartree-Fock (DBHF) approxima-
tion and its nonrelativistic counterpart BHF [2,3], variational
methods [4,5], correlated basis function models [6], self-
consistent Green’s function (SCGF) models [7,8], quantum
Monte Carlo techniques [9– 14], and chiral effective field
theory [15,16], an effective NN interaction, which includes the
effect of the medium, is derived and the many-body problem
is approximately solved.

Various many-body approaches typically lead to an over-
prediction of the saturation density ρo of symmetric nuclear
matter (SNM), at which the binding energy per nucleon reaches
its maximum, and of the corresponding maximum binding
energy Eo(ρ = ρo) [17]. There are many ways of estimating
the experimental value of ρo, including different variants

*Present address: Departamento de Fı́sica, Instituto Tecnológico da
Aeronáutica, CTA, São José dos Campos, 12228-900 SP, Brazil.

of the liquid-drop models, optical model of NN scattering,
muonic atoms, and Hartree-Fock (HF) calculation of nuclear
density distributions (see, e.g., [18] and references therein).
The range of results is rather broad but a consensus value is
ρo = 0.17 ± 0.03 fm−3. The empirical value Eo per nucleon
of ∼16 MeV can be extracted from the semiempirical mass
formula or from the extrapolation of binding energies of heavy
nuclei. Theoretical calculation of saturation properties of SNM
depends not only on the choice of the bare NN interaction but
also on the method of treatment of the many-body effects.
For example, if the BHF approximation is used, Eo and ρo are
correlated within a narrow band [17,19]. Two main approaches
have been suggested to improve the theoretical calculation of
saturation properties of SNM, the most frequently used being
the inclusion of three-body (NNN) forces. As the form of
these forces is unknown, different ad hoc parametrizations
have been used, dependent on additional variable parameters
that need to be fitted to account for the delicate balance
between the strong (NNN) attraction and (NN) repulsion at
short distances. Alternatively, DBHF calculations have been
shown to be effective without the need for NNN forces [17,20].
Another possibility is to treat the scalar and vector densities in
the Walecka relativistic mean-field model [21] as equal [22].
However, the systematic deviation of all theoretical predictions
from the expected empirical values of Eo and ρo remains
a problem. An interesting suggestion by Dewulf et al. [7]
implies that treatment of short-range correlations in nuclear
matter in the SCGF model brings the saturation density closer
to the empirical value than do current BHF calculations.

035201-10556-2813/2012/85(3)/035201(36) ©2012 American Physical Society
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ground-state energy of dilute neutron matter at next-to-
leading-order in lattice chiral effective field theory in the
density range 0.02ρo–0.1ρo. Quantum Monte Carlo techniques
have been applied to low-density PNM, providing a constraint
on the EoS up to saturation density [41,42]. To our knowledge,
there has not yet been a detailed study of the applicability of
the Skyrme interaction at these low densities in PNM. Such a
study is of particular interest as it may be one of the best ways
to model the crust of neutron stars.

The upper density limit of validity of the Skyrme interaction
reflects the fact that at higher densities relativistic effects
should be increasingly important. The appearance of heavy
strange baryons and mesons in the matter is ultimately
inevitable. Due to Pauli blocking, the chemical potential of
the neutrons increases rapidly with density. At some point,
it becomes energetically favorable for the system to let the
neutrons undergo a strangeness-changing weak decay, which
replaces them by hyperons, for which the Fermi sea is not yet
filled. From the difference of mass between the neutron and
its strange partners it follows that the critical density, at which
hyperons should appear, is 2ρo–3ρo. Using a nucleon-only
Skyrme interaction beyond this density can be expected to
yield misleading results. This is discussed later in connection
with high-mass neutron star models.

Taking all the above pieces of evidence into account, we
adopt 0.01ρo ! ρ ! 3ρo as the range of validity of the Skyrme
interactions considered in this work.

The paper is organized as follows. A brief description
of the Skyrme interaction, together with definition of the

variables used in this work, is given in Sec. II. Classifica-
tion of the macroscopic constraints and discussion of their
origin and applicability range form the contents of Sec. III.
Section IV presents a comparison of predictions of those
Skyrme parametrizations which satisfy the macroscopic con-
straints with further microscopic and observational constraints.
The results are discussed and summarized in Sec. V and
conclusions are presented in Sec. VI.

II. SKYRME MODELS

Since the original work by Skyrme in the 1950s [26]
and the Vautherin and Brink [27] parametrization of the
original interaction in the early 1970s, considerable effort
has been invested in the application of this density-dependent
effective interaction to both ground-state properties of finite
nuclei and nuclear matter in the framework of the mean-field
Hartree-Fock approximation (see, e.g., [43,44] for recent
reviews). The advantage of the structure of the Skyrme
density functional is that it allows analytical expression of
all variables characterizing infinite nuclear matter [45–47].
Such structure can also be constructed from nonrelativistic
versions of the relativistic point-coupling models [48–50]. In
the following, we introduce the various physical quantities and
give expressions for each in terms of the Skyrme parameters.
The general expression for the energy per particle of infinite
ANM, defined in terms of the energy density E and particle
number density ρ, is given as

E = E
ρ

= 3h̄2

10M

(
3π2

2

)2/3

ρ2/3H5/3 + t0

8
ρ[2(x 0 + 2) − (2x 0 + 1)H2] + 1

48

3∑

i=1

t3iρ
σi+1[2(x 3i + 2) − (2x 3i + 1)H2]

+ 3
40

(
3π2

2

)2/3

ρ5/3(aH5/3 + bH8/3) + 3
40

(
3π2

2

)2/3

ρ5/3+δ

[
t4(x 4 + 2)H5/3 − t4

(
x 4 + 1

2

)
H8/3

]

+ 3
40

(
3π2

2

)2/3

ρ5/3+γ

[
t5(x 5 + 2)H5/3 + t5

(
x 5 + 1

2

)
H8/3

]
, (1)

with
a = t1(x 1 + 2) + t2(x 2 + 2), (2)

b = 1
2 [t2(2x 2 + 1) − t1(2x 1 + 1)], (3)

Hn(y ) = 2n−1[y n + (1 − y )n], (4)

where y = Z/A is the proton fraction. Equation (1) includes
the summation over index i in the third term introduced by
Agrawal et al. [51] and additional terms involving t4, x 4, t5,
and x 5, used by Chamel et al. [52]. The great majority of
the parametrizations referred to in this work do not include
these terms. Parametrizations without (with) these additional

terms are regarded as “standard” (“nonstandard”) in this paper.
We note that there are several other parameter sets which
parametrize the density dependence of the Skyrme functional
in nonstandard ways [53–56], different from those considered
here. These forces have been reported to have problems at
higher density nuclear matter [51] and have not been included
in the present study.

All quantities referred to in this work have been obtained
based on Eq. (1) and are given below.

Equation (1) leads to an in-medium effective nucleon mass
M∗ in ANM of

M∗ = M

{
H5/3 + 1

4
M

h̄2 ρ

[
(a + t4(x 4 + 2)ρδ + t5(x 5 + 2)ργ )H5/3 +

(
b − t4

(
x 4 + 1

2

)
ρδ + t5

(
x 5 + 1

2

)
ργ

)
H8/3

]}−1

, (5)

with M being the free nucleon mass.
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with: 

and 

V(r l , r2 )  = to (1 + xoP~) ~(r)  
1 [p ,28( r  ) + +~t l  ( 1 + xlP~) 8 ( r ) P  2] 

t 
+t2 (1 + x2P,~) P • S ( r ) P  

1 
+~t3 (1 + x3P~) [ p ( R ) ] ~ 6 ( r )  

+iWo0-. [P' × 8 ( r )e ]  

central term 

non-local terms 

density-dependent term 

spin-orbit term. 

(2.1) 

1 m r = rj - r2, R = 2 (r l  + r2) 

1 
P = ~/. ( V l  - -  ' ~ 2 )  , P cc of P acting on the left 

0- = 0-j + 0"2, P,~ = ( 1 + 0"1 " o ' 2 ) / 2 .  

From this standard form (see Eq. (2.1) ), two major modifications have been explored 
introducing other terms which we will refer to as non-standard terms: 

(i) The first one uses a separate density-dependence for neutrons and protons. The 
term proportional to the parameter t3 in Eq. (2.1) becomes: 

1 
+ gt3 (1 +x3P,  r) [pql(rl) +pqz(r2)] . (2.2) 

Recently used [25-27],  this idea has been already checked [24,28] in order to 
have a better behavior for large values of the isospin asymmetry 1 = (N  - Z ) / A .  

(ii) Many authors [29-32] have added a gradient term in the density-dependent term 
with the form: 

1 { P ' 2 [ p q , ( r l ) +  ] cc} + ~t4 (1 + x4Prr) pqz(r2), 13 + . (2.3) 

The density matrix expansion of Negele and Vautherin [33], which can be viewed 
as a justification of the Skyrme functional, allows these two kind of parametrizations. 
However, they often give collapses in the equation of state of symmetric infinite nuclear 
matter. 

Within the standard form (see Eq. (2.1)),  the total binding energy of a nucleus can 
be expressed as the integral of a density functional as follows: 

( q ' l n l ~ )  = / ~ ( r )  d3r , (2.4) 

with: 

"~  ---- E -~" ~'~0 + "t-/3 ~'- "]"/eft "q- "]"/fin -4- 7-~so -4- 'Jt'~sg -~ "~'~Coul , (2.5) 
h 2 where /C = ~7,r is the kinetic-energy term, 7-(0 a zero-range term, ~3 the density- 

dependent term, 7-(elf an effective-mass term, "]-/fin a finite-range term, 7-/so a spin-orbit 

Chananat, Bonche, Haensel, Meyer, Schaeffer, NPA 627, 710 (1997)

�12



MODERN PROBLEMS IN NUCLEAR AND ELEMENTARY PARTICLE PHYSICS

GENERALIZED SK

B. K. AGRAWAL, SHASHI K. DHIMAN, AND RAJ KUMAR PHYSICAL REVIEW C 73, 034319 (2006)

the 90Zr and 208Pb nuclei. Further, we constrain the value of
Skyrme parameters by including in the fit a realistic EOS for
the pure neutron matter. The chi-square minimization, required
to obtain the best fit parameters, is achieved by using the
simulated annealing method (SAM) as recently implemented
[13] to determine SSEF parameters.

The present paper is organized as follows. In Sec. II, we
briefly outline the form of the GSEF and the corresponding
energy density functional adopted in the present work. In
this section, we also briefly mention the strategies used to
evaluate center-of-mass corrections to the binding energy and
charge radii. In Sec. III, we briefly describe a procedure for
minimization of the χ2 function based on the SAM and present
the set of the experimental data along with the constraints used
in the fit to determine the values of the Skyrme parameters. In
the same section, we list the values of the parameter sets for the
GSEF and SSEF. In Sec. IV, we present our results for the three
different fits carried out in this work. We also present results
for the isoscalar giant monopole, dipole, and quadrupole
resonances and some key properties of neutron stars obtained
using the newly generated parameter sets. Finally, in Sec. V,
we summarize our main results.

II. GENERALIZED SKYRME EFFECTIVE FORCE

The GSEF used in Refs. [15,16] can be written as

V (r⃗1, r⃗2) = t0(1 + x0Pσ )δ(r⃗)

+ 1
2
t1(1 + x1Pσ )[δ(r⃗)P⃗ ′2 + P⃗ 2δ(r⃗)]

+ t2(1 + x2Pσ )P⃗ ′ · δ(r⃗)P⃗

+
∑

i

t3iρ
αi (1 + x3iPσ )δ(r⃗)

+ iW0σ⃗ · [P⃗ ′ × δ(r⃗)P⃗ ], (1)

with i = 1, 2, 3, . . . and αi = i/3. In Eq. (1), r⃗ = r⃗1 − r⃗2, P⃗ =
∇⃗1−∇⃗2

2i
, P⃗ ′ is complex conjugate of P⃗ acting on the left, and

σ⃗ = σ⃗1 + σ⃗2, Pσ = 1
2 (1 + σ⃗1 · σ⃗2). The SSEF can be obtained

from Eq. (1) simply by setting t3i = 0 for i ̸= 1 and α1 is
normally taken to be less than unity. For instance, in the SIII
force [23],α1 is unity and for the SLy forces [9] α1 = 1/6 was
used. It may be noted that we have considered the extended
density dependence only for the local term in Eq. (1). However,
on the same analogy, the nonlocal and spin-orbit terms can also
be extended to have density dependence.

The total energy E of the system is given by

E =
∫

H(r)d3r, (2)

where H(r) is the Skyrme energy density functional corre-
sponding to Eq. (1) which under the time-reversal invariance
is given by [2,9],

H = K + Hδ + Hρ + Heff + Hfin + Hso + Hsg + HCoul,
(3)

where K = h̄2

2m
τ is the kinetic energy term, Hδ the zero-range

term, Hρ the density-dependent term, Heff an effective-mass
term, Hfin a finite-range term, Hso a spin-orbit term, Hsg

a term due to tensor coupling with spin and gradient, and
HCoul the contribution to the energy density for protons due
to the Coulomb interaction. For the Skyrme interaction of
Eq. (1), we have

Hδ = 1
4
t0

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (4)

Hρ = 1
4

∑

i

t3iρ
αi

[
(2 + x3i)ρ2 − (2x3i + 1)

(
ρ2

p + ρ2
n

)]
,

(5)
Heff = 1

8
[t1(2 + x1) + t2(2 + x2)]τρ

+ 1
8

[t2(2x2 + 1) − t1(2x1 + 1)](τpρp + τnρn),

(6)
Hfin = 1

32
[3t1(2 + x1) − t2(2 + x2)](∇ρ)2

− 1
32

[3t1(2x1 + 1) + t2(2x2 + 1)][(∇ρp)2

+ (∇ρn)2], (7)

Hso = W0

2
[J · ∇ρ + Jp · ∇ρp + Jn · ∇ρn], (8)

Hsg = − 1
16

(t1x1 + t2x2)J2 + 1
16

(t1 − t2)
[
Jp

2 + Jn
2],

(9)

HCoul(r) = 1
2
e2ρp(r)

∫
ρp(r ′)d3r ′

|r − r′|

− 3
4
e2ρp(r)

(
3ρp(r)

π

)1/3

. (10)

Here, ρ = ρp + ρn, τ = τp + τn, and J = Jp + Jn are the
particle number density, kinetic energy density, and spin
density, respectively with p and n denoting the protons and
neutrons. We used the value of h̄2/2m = 20.734 MeV fm2 in
our calculations. We would like to emphasize that we included
the contributions from the spin-density term as given by
Eq. (9) so that the corresponding contributions could be
considered consistently in evaluating the Landau parameter
G′

0 [24]. Although the contributions from Eq. (9) to the
binding energy and charge radii are not very significant,
they may contribute significantly to the value of the Landau
parameter G′

0.
The single-particle wave functions φi and corresponding

single-particle energies εi are obtained by solving the HF
equations given by

[

−∇⃗ h̄2

2m∗
q(r)

· ∇⃗ + Uq(r) − iW⃗q(r) · (∇⃗ × σ⃗ )

]

φi(r, q)

= εiφi(r, q), (11)

where m∗
q is the effective nucleon mass, and Uq and Wq

are the central and spin-orbit parts of the mean field potentials.
The expressions for the m∗

q and Wq can be found in Ref. [9].
The expression for Uq is given as

Uq(r) = 1
2
t0[(2 + x0)ρ(r) − (1 + 2x0)ρq(r)] + 1

8
[t1(2 + x1)

+ t2(2 + x20)]τ (r) − 1
8

[t1(1 + 2x1) − t2(1 + 2x2)]
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TABLE I. Lower v0 and upper v1 limits, maximum displacement d, and initial values vin for
the Skyrme parameters used to minimize the χ 2 value within the SAM.

Parameter v0 v1 d vin

t0(MeV fm3) −3000.0 −1500.0 50.0 −1603.0
t1(MeV fm5) −500.0 500.0 20.0 515.9
t2(MeV fm5) −500.0 500.0 20.0 84.5
t31(MeV fm3(α1+1)) 1000.0 3000.0 50.0 1333.3
t32 (MeV fm3(α2+1)) −1000 0.0 50.0 0.0
t33 (MeV fm3(α3+1)) −500.0 500.0 20.0 0.0
x0 −4.0 4.0 0.1 −0.02
x1 −4.0 4.0 0.1 −0.5
x2 −4.0 4.0 0.1 −1.713
x31 −4.0 4.0 0.1 0.1381
x32 −4.0 4.0 0.1 0.0
x33 −4.0 4.0 0.1 0.0
α1

1
3

1
3 0 1

3

α2
2
3

2
3 0 2

3
α3 1 1 0 1
W0(MeV·fm5) 100.0 200.0 5.0 125.0
Vw (MeV) −3.0 0.0 0.2 −2.05
Vw′ (MeV) 0.0 2.0 0.1 0.697
λ 400.0 600.0 10.0 485.0
A0 10.0 50.0 1.0 28.0

B. Data used in the fitting procedure

We now summarize our selection of data and correspond-
ing theoretical errors adopted in the fitting procedure. In
Table II, we list our choice of the data along with their
sources [34–42]. It must be noted that in addition to the data on
the binding energy, charge radii, and single-particle energies,
the values of the Skyrme parameters are further constrained
by including in the fit the experimental data for the radii of
valence neutron orbits and breathing mode energies together
with a realistic EOS for pure neutron matter up to the densities
(∼ 0.8 fm−3) relevant to the study of neutron stars. For the
binding energy, we use in our fit the error of 1.0 MeV except for
the 100Sn nucleus. The binding energy for the 100Sn nucleus is

TABLE II. Selected experimental data for the binding energies B,
charge rms radii rch, rms radii of valence neutron orbits rv , single-
particle energies (S-P), breathing mode constrained energies E0, and
EOS for the pure neutron matter used in the fit to determine the
parameters of the Skyrme interaction.

Properties Nuclei Ref.

B 16,24O, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr,
100,132Sn, 208Pb

[34]

rch
16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 208Pb

[35,36]
rv(ν1d5/2) 17O [37]
rv(ν1f7/2) 41Ca [38]
S-P energies 208Pb

[39,40]
Eo

90Zr and 208Pb [41]
EOS Pure neutron matter [42]

determined from systematics and expected to have large errors.
Thus, we assign it a theoretical error of 2.0 MeV. For the charge
rms radii, we use the theoretical error of 0.02 fm except for
the case of 56Ni nucleus. The charge rms radius for the 56Ni
nucleus is obtained from systematics, so we use the theoretical
error of 0.04 fm. For the rms radii of the valence neutron orbits
in 17O and 41Ca nuclei, we use rv(ν1d5/2) = 3.36 fm and
rv(ν1f7/2) = 3.99 fm [37,38], respectively. The theoretical
error taken for the rms radii for the valence neutron orbits
is 0.06 fm. We must point out that the choice of the theoretical
error on the rms radii for the valence neutron orbits is because
of the large uncertainties associated with their extraction from
the experimental measurements. To be consistent with the way
these valence neutron radii are determined, we do not include
the center-of-mass correction to these data. For each of the 22
single-particle (S-P) energies in the 208Pb nucleus, we used the
theoretical error of 1.0 MeV in our fit. The experimental data
for the breathing mode constrained energies E0 included in our
fit are 17.81 and 14.18 MeV for the 90Zr and 208Pb nuclei [41],
respectively, with the theoretical error taken to be 0.5 MeV
for the 90Zr nucleus and 0.3 MeV for the 208Pb nucleus. We
also include in the fit the EOS for the pure neutron matter of a
realistic UV14+UVII model [42]. We use 15 data points for the
EOS corresponding to the densities up to 5ρ0. The theoretical
error on each of these 15 data points is taken to be 2.0 MeV.

C. Parameters for the generalized Skyrme effective force

Following the fitting procedure described in Sec. III A,
together with the list of data given in Table II, we generated
two different parameter sets for the GSEF. These parameter
sets are given in Table III. The parameter set GSkI and GSkII
are obtained as follows: GSkI includes the density-dependent
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TABLE X. Brief compilation of methods used in fitting of the Skyrme interactions consistent with the macroscopic constraints and main
data used in the fit. For full explanation and details, see the original papers.

Force Method Data used for fit

GSkI,GSkII Simulated annealing Ground-state properties of normal and exotic nuclei:
method binding energies, charge radii,

radii for 1d5/2 and 1f7/2 neutron orbits in 17O and 41Ca,
breathing mode energies for 90Zr and 208Pb,
single-particle energies in 208Pb,
EoS of pure neutron matter [209]

KDE0v1 Simulated annealing Ground-state properties of normal and exotic nuclei:
method binding energy, charge radii, and spin-orbit splitting,

radii for 1d5/2 and 1f7/2 neutron orbits in 17O and 41Ca,
breathing mode energies, critical density ρcr,
positive slope of the symmetry energy up to 3ρo,
enhancement factor associated with GDR, Landau parameter G′

o

LNS Brueckner-Hartree-Fock Nucleon effective mass in SNM and ANM,
with 2- and 3-body forces energy per particle in SNM and ANM as function of density and
(homogeneous matter) proton neutron asymmetry;
Hartree-Fock constraint on the Landau parameter Go,
(finite nuclei) surface properties of selected magic and semimagic nuclei,

spin-orbit splitting p1/2-p3/2 in 16O

MSL0 MSL [108] model Nuclear matter properties:
ρo, Eo, Ko, m∗

s,o, m∗
v,o,

J , L, GS, GV [101]; surface symmetry energy,
Landau parameters Go(ρo), G1(ρo), G′

o(ρo), G′
1(ρo)

NRAPR APR and Skyrme EoS Density dependence of effective masses as predicted by APR,
of NM (a comparison) spin-orbit splitting from charge radii and binding energies of 208Pb, 90Zr, 90Ca

Ska25s20 Hartree-Fock Binding energy, charge radii, and single-particle energies
Ska35s20 Friedman-Pandharipande EoS

SKRA Brueckner-Hartree-Fock Nuclear matter properties:
with relativistic corrections ρo, Eo, Ko,
and 3-body forces ground-state properties of finite nuclei

SkT1 Hartree-Fock Nuclear masses and radii
Extended Thomas-Fermi liquid-drop mass formula constraints

SkT2 The same as SkT1 + increase spin-orbit strength
SkT3 The same as SkT1 + change in gradient symmetry term

Skxs20 Hartree-Fock Binding energy of doubly magic and semimagic nuclei, rms charge radii,
single-particle energies, binding energy difference 48Ni– 48Ca,
effective mass constrained to be close to unity up to 10ρo

SQMC650,700 Quark-meson Comparison for the Skyrme (SkM*) and QMC Hamiltonians;
coupling model free parameter: mass of the σ meson: 650 and 700 MeV
Hartree-Fock

SV-sym32 Hartree-Fock Properties of finite nuclei (energies, radii, and surface thickness),
energies of giant resonances,
systematic variations of selected nuclear matter properties

From all the above-listed Skyrme nonstandard forces, only
two, namely, GSkI and GSkII, satisfied the macroscopic
constraints but failed the microscopic ones, namely the value of
the Landau parameter G0. Inclusion of any nonstandard piece
in the energy density functional, Eq. (1), inevitably affects
parameters of the standard part as both contributions have to
be compensated to fit experimental data. Nevertheless, it is
instructive to investigate the nonstandard contribution to the
energy per particle of symmetric matter, obtained from Eq. (1)

and shown in Fig. 14. We see that nonstandard terms may
either increase repulsion by a positive term in the effective
Skyrme force or increase attraction by a negative term. It is
interesting to notice that both GSkI and GSkII forces receive
very similar large negative contribution from the nonstandard
terms apparently needed to compensate repulsion coming from
the standard part of the interaction. However, because of this
delicate balance between the standard and nonstandard terms
it is difficult to find any general trend.
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We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF),
derived from a quark model of hadron structure, to study a broad range of ground state properties of even-
even nuclei across the periodic table in the nonrelativistic Hartree-Fockþ BCS framework. The novelty of
the QMCmodel is that the nuclear medium effects are treated through modification of the internal structure
of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally.
The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When
applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall
agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however,
multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC
EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied,
without adjustment, to both the properties of finite nuclei and nuclear matter.

DOI: 10.1103/PhysRevLett.116.092501

Since the pioneering work of Vautherin and Brink [1],
effective nuclear forces of the Skyrme type have proved to
be a powerful phenomenological tool in the study of many
aspects of nuclear structure (for reviews, see [2–4]). The
Skyrme energy density functional (EDF) for self-consistent
mean-field models of the Hartree-Fock (HF) type is derived
from the Skyrme force using low-momentum expansion.
The functional contains all conceivable bilinear couplings
of densities and currents up to second order in derivatives.
This approach introduces 23 coupling constants (parame-
ters) which are, in principle, density dependent. Taking a
minimalistic approach [4] the number of the constants can
be reduced to ∼10, which have to be fitted to empirical
data, usually nuclear ground state properties. Because of
correlations in experimental data, variable sensitivity of
individual parameters to data and correlations between the
parameters themselves, no single optimal parameter set has
yet been identified. Presently, many sets of the Skyrme
EDF parameters exist, making it difficult to interpret and
reliably predict nuclear properties.
Given the power of the mean-field approach with

the Skyrme EDF, we adopted this approach with a

quark-meson coupling (QMC) EDF. In the QMC model,
developed by Guichon and collaborators [5,6], the
nuclear system is represented as a collection of confined
clusters of valence quarks. Using the MIT bag model
[7], it can be shown that when the quarks in one
nucleon interact self-consistently with the quarks in the
surrounding nucleons by exchanging a σ meson (a
simple representation of the Lorentz scalar-isoscalar
interaction known to dominate the intermediate range
attraction between nucleons), the effective mass of a
nucleon in medium is no longer linear in the scalar
mean field (σ) and is expressed as M"

N ¼ MN−
gσNσ þ ðd=2ÞðgσNσÞ2. By analogy with electromagnetic
polarizabilities, the coefficient d, calculated in terms of
the nucleon internal structure, is known as the “scalar
polarizability” [5]. The appearance of this term in the
nucleon effective mass is sufficient to lead to nuclear
saturation.
To clarify differences between the Skyrme and QMC

EDF’s, we write the QMC EDF adopted in this work
hHð~rÞi ¼ ρMN þðτ=2MNÞþH0þH3þHeff þHfinþHso
using notation and definitions from [8,9], where

H0 þH3 ¼
!
−
3Gρ

32
þ 3Gω

8
−

Gσ

2ðdρGσ þ 1Þ
þ Gσ

8ðdρGσ þ 1Þ3

"
ρ2 þ

!
5Gρ

32
−
Gω

8
þ Gσ

8ðdρGσ þ 1Þ3

"
ðρn − ρpÞ2;

Heff ¼
#!

Gρ

8m2
ρ
−

Gσ

2m2
σ
þ Gω

2m2
ω
þ Gσ

4M2
N

"
ρn þ

!
Gρ

4m2
ρ
þ Gσ

2M2
N

"
ρp

$
τn þ p ↔ n;
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Abstract

A density dependent, effective nucleon–nucleon force of the Skyrme type is derived from the quark–
meson coupling model—a self-consistent, relativistic quark level description of nuclear matter. This new
formulation requires no assumption that the mean scalar field is small and hence constitutes a significant
advance over earlier work. The similarity of the effective interaction to the widely used SkM∗ force encour-
ages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge
distributions of doubly magic nuclei. Finding acceptable results in this conventional arena, we apply the
same effective interaction, within the Hartree–Fock–Bogoliubov approach, to the properties of nuclei far
from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we ap-
ply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application
to the properties of neutron stars.
© 2006 Elsevier B.V. All rights reserved.
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〈
:HIS

so(r⃗ ):
〉
= − 1

4M2

[
Gσ +

(
2
µIS

µN
− 1

)
Gω

]∑

mm′

[(
1 + 1

2
δmm′

)
ρm′ ∇⃗ . J⃗m′

]
, (29)

〈
:HIV

so (r⃗ ):
〉
= − Gρ

4M2

[
2
µIV

µN
− 1

]∑

mm′

[(
mm′ + 1

2
Cmm′

)
ρm′ ∇⃗ . J⃗m

]
, (30)

〈
:Hω(r⃗ ):

〉

= Gω

2

∑

mm′

[(
1 − 1

2
δmm′

)
ρmρm′ + 1

m2
ω

(
ρm∇2ρm′ − 1

4
δmm′

(
ρm∇2ρm − 4ρmτm

))]
,

(31)〈
:Hρ(r⃗ ):

〉

= Gρ

2

∑

mm′

{(
mm′ − 1

2
Cmm′

)
ρmρm′ + 1

m2
ρ

(
mm′ − 1

4
Cmm′

)
ρm∇2ρm′

+ 1
m2

ρ

Cmm′ρmτm′

}
, (32)

where: Cmm′ = δmm′m2 + (δm,m′+1 + δm′,m+1)/2 and Gω = g2
ω/m2

ω , Gρ = g2
ρ/m2

ρ . The isoscalar
and isovector magnetic moments which appear in the spin orbit interaction have the values

µIS = µp + µn = 0.88, µIV = µp − µn = 4.7. (33)

As we have already pointed out, these expressions are the same as in our previous work. We
note that all terms which involve the square of the spin density, J⃗ , have been neglected. This
is common practice and, since it amounts to treating the spin orbit interaction as a first order
perturbation, it is consistent with our derivation of the expression for the effective mass, Eq. (1).

It is convenient to have a more explicit expression for the density functional. Using Eqs. (28)–
(32) one can write, using the same notation as in Ref. [19]:

〈
H(r⃗ )

〉
= ρM + τ

2M
+H0 +H3 +Heff +Hfin +Hso, (34)

where

H0 +H3 = ρ2
[− 3Gρ

32
+ Gσ

8(1 + dρGσ )3 − Gσ

2(1 + dρGσ )
+ 3Gω

8

]
(35)

+ (ρn − ρp)2
[

5Gρ

32
+ Gσ

8(1 + dρGσ )3 − Gω

8

]
, (36)

Heff =
[(

Gρ

8mρ
2 − Gσ

2mσ
2 + Gω

2mω
2 + Gσ

4MN
2

)
ρn +

(
Gρ

4m2
ρ

+ Gσ

2M2
N

)
ρp

]
τn

+ p ↔ n, (37)

Hfin =
[(

3Gρ

32mρ
2 − 3Gσ

8mσ
2 + 3Gω

8mω
2 − Gσ

8MN
2

)
ρn (38)

+
( − 3Gρ

16mρ
2 − Gσ

2mσ
2 + Gω

2mω
2 − Gσ

4MN
2

)
ρp

]
∇2(ρn) + p ↔ n, (39)
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Table 1
The couplings Gσ , Gω , Gρ for a bag radius RB = 0.8 fm and several values of the scalar meson mass, mσ . The last
column is the nuclear incompressibility

mσ (MeV) Gσ (fm2) Gω (fm2) Gρ (fm2) KN (MeV)

600 12.652 9.838 9.67 346
650 12.428 9.308 8.583 346
700 12.254 8.899 7.724 346
750 12.116 8.575 7.048 346

Hso = ∇ · Jn

[(−3Gσ

8MN
2 − 3Gω(−1 + 2µs)

8MN
2 − 3Gρ(−1 + 2µv)

32MN
2

)
ρn (40)

+
( −Gσ

4MN
2 + Gω(1 − 2µs)

4MN
2

)
ρp

]
+ p ↔ n. (41)

We have determined the couplings Gσ , Gω, Gρ by fixing the saturation density and binding
energy of normal nuclear matter to be ρ0 = 0.16 fm3 and EB = −15.85 MeV, as well as the
asymmetry energy of nuclear matter as a4 = 30 MeV. Apart from a small readjustment of the
couplings, we found no significant sensitivity to the bag radius. We therefore display our results
for only one value, RB = 0.8 fm, which is quite realistic [16]. The ω and ρ masses are set at their
experimental values. The last parameter, which is not well fixed by experiment, is the σ mass.
We shall use mσ = 600,650,700,750 MeV. The corresponding results are given in Table 1. We
see that the incompressibility, KN , is a little high with respect to the currently preferred range,
but we point out that this calculation has not yet taken into account the single pion exchange
interaction. We know [11] that the pion Fock term alone reduces KN by as much as 10% and it
is likely that this is amplified by other correlations.

5. Comparison with the Skyrme force

As a means of orientation, we compare the density functional of our model with that corre-
sponding to a typical density-dependent effective interaction. We choose to compare with the
popular Skyrme SkM∗ parametrisation rather than more recent ones, such Sly4 [19], because in
the latter case the formal identification is complicated by the larger number of parameters. The
SkM∗ interaction depends on 6 parameters: t0, t1, t2, t3, x0 and W0 and its energy density [19]
may be written, using the same notation as in the previous section:

H0 +H3 = ρ
1
6 t3(2ρ2 − ρn

2 − ρp
2)

24
+ t0(ρ

2(2 + x0) − (1 + 2x0)(ρn
2 + ρp

2))

4
, (42)

Heff = ρτ (2t1 + 2t2)

8
+ (−t1 + t2)(ρnτn + ρpτp)

8
, (43)

Hfin = −(ρ(6t1 − 2t2)∇2(ρ))

32
+ (3t1 + t2)(ρn∇2(ρn) + ρp∇2(ρp))

32
, (44)

Hso = −(W0(ρ∇ · J + ∇ · Jnρn + ∇ · Jpρp))

2
. (45)

To simplify, we compare Heff, Hfin and Hso with the QMC expressions Eqs. (37), (39), (41), in
the case N = Z. This determines t1, t2 and W0. To find t0, t3 and x0, we consider the term H0 +
H3. As the functional form is not the same, we fit (H0 +H3)QMC with the form which appears
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Table 2
Comparison of the SkM∗ parameters with the QMC predictions for several values of mσ

mσ (MeV) t0 (fm2) t1 (fm4) t2 (fm4) t3 (fm5/2) x 0 W0 (fm4) Deviation

600 − 12.72 2.64 − 1.12 74.25 0.17 0.6 33%
650 − 12.48 2.21 − 0.77 71.73 0.13 0.56 18%
700 − 12.31 1.88 − 0.49 69.8 0.1 0.53 18%
750 − 12.18 1.62 − 0.28 68.28 0.08 0.51 38%
SkM∗ − 13.4 2.08 − 0.68 79 0.09 0.66 0%

in (H0 + H3)SkM in the range ρ ∈ [0 → 0.2 fm− 3]. We first do this in the case N = Z, which
determines t0 and t3 and using these values we do the fit for Z/A = 92/208, which determines
x 0. The results are collected in Table 2 for several values of the σ mass. We find satisfactory
agreement with the SkM∗ parameters in the window mσ = 650–700 MeV. This comparison
suggests that our model may provide an acceptable representation of low energy nuclear physics.

However, this comparison is really rather qualitative. First, we have minimized the isospin
effects by setting N = Z when determining the parameters t1, t2, W0. Second, the values we find
for t0 and t3 depend somewhat on the range of density we use for the fit. Thus a more direct
comparison of our model with actual nuclear data is desirable. This is done in the next section.

6. Hartree–Fock calculations for finite nuclei

As pointed out in the previous section, the QMC and the Skyrme energy functionals have a
similar structure. However, the density and the isospin dependence of some terms, particularly
H3 and Hso, are rather different in the two approaches. Thus, for the Skyrme functionals the
term H3 has a density dependence of the form ρα . Originally this term was interpreted as having
been generated by a three-body contact interaction, which is equivalent to a two-body density-
dependent force in even–even nuclei [12]. In the QMC functional, the density dependence of
H3 is much more complicated. However, a more complicated density dependence also appears
in Skyrme type energy functionals if they are derived from a microscopic calculation yielding
a G-matrix, such as the density-matrix expansion (DME) method of Negele and Vautherin [20].
A comparison between the energy functionals corresponding to DME and to standard Skyrme
forces shows that in fact the strength of the density-dependent term is rather similar in both cases,
in spite of their different density dependence. It is interesting to observe that a density depen-
dence of a fractional type, as appears in QMC, was previously considered in phenomenological
functionals by Fayans and Zawischa [21]. The advantage of fractional expressions in particle
density is that the corresponding energy functional preserves causal behaviour up to very high
densities. This is actually the case for the QMC functional as well.

Another difference between the QMC and standard Skyrme energy functionals arises in the
isospin dependence of the spin–orbit term Hso. In both cases the form factor of the one-body
spin–orbit interaction for a nucleon with the isospin m (n or p) can be written as:

Wm(r) = a∇ρm + b∇ρm̃, (46)

where ρm is the particle density, while m̃ denotes the opposite isospin to m. For the standard
Skyrme forces the ratio s = a/bis equal to 2. This isospin dependence of the one-body spin–
orbit potential is induced by the exchange term (since the Skyrme two-body spin–orbit force is
isospin independent). For the QMC functional used in the calculations below, the ratio s is about
2.78. This strong isospin dependence in both the QMC and Skyrme functionals is in contrast

where the absolute rms ¼ 1.97 MeV for QMC and
6.17 MeV for SV-min (see top panel of Fig. 1). The
underbinding for SV-min is a general problem in SHE for
any of the standard Skyrme parametrizations [21]. The
other three groups of selected nuclei reveal that the QMC
rms deviation is larger then the corresponding SV-min
value by a factor less than 2. This result is encouraging
considering that the QMC EDF has four parameters and
SV-min thirteen.
Next, we examined predictions of the QMC EDF of

quadrupole (β2), hexadecapole (β4), and octupole (β3)
deformation parameters. Since these parameters are not
observables but are extracted from experimental data in a
model dependent way, we also compare QMC and SV-min
results with the finite-range-droplet model (FRDM) of
Moller et al. [20], which is regarded as the state-of-the-
art benchmark for calculating nuclear masses and shapes.
Where available, we use the quadrupole moment and
lifetime of the Iπ ¼ 2þ1 state or a lifetime-related reduced
transition probability BðE2; 0þ1 → 2þ1 Þ. Indirect evidence
for stable quadrupole deformation comes also as system-
atics of excited states (bands) built on the 0þ ground states.
In Fig. 1 (bottom panel) β2 for SHE, as calculated in

QMC, SV-min, and FDRMmodels, are displayed. The only
experimental evidence for deformation of the SHE comes

from the energies of the Iπ ¼ 2þ1 state in 248–256Fm, 254No,
and 256Rf, which all lie in the range 44–48 keV [22,23], and
the ratio R ¼ Eð4þ1 Þ=Eð2þ1 Þ of energies of the Iπ ¼ 2þ1 and
Iπ ¼ 4þ1 excited states. R is between 3.24–3.52, consistent
with a stable axial rotor. The ground state bands in
248;252;256Fm, 254No, and 256Rf show a close similarity
with bands observed in the neighboring U-Pu-Cm-Cf
region associated with β2 ¼ 0.27–0.30 [24], in excellent
agreement with β2 values in Fig. 1. Thus, both the ground
state binding energies and the shapes of SHE predicted by
QMC are in line with other models and the scant exper-
imental evidence.
β2 and β4 calculated as a function of neutron number for

the Gd (Z ¼ 64) isotopes are presented in Fig. 2, again in
comparison with SV-min and FRDM. The predictions of
QMC are almost identical with the outcome of the other
models. The onset and departure from collectivity is in line
with the ratio R, displayed in the bottom panel. The
magnitude of β2 extracted from BðE2; 0þ1 → 2þ1 Þ is known
in 152–160Gd [24] and the negative sign of the spectroscopic
quadrupole moment Qs of the Iπ ¼ 2þ1 state [25] confirms
the prolate shape of 152–160Gd. There is no experimental
information on the value of β4 but the calculation agrees
well with FRDM results.
Figure 3 demonstrates that the QMC EDF reproduces the

coexistence between spherical, oblate, and prolate defor-
mation in line with many other models of A ∼ 100 nuclei
[26–31] without additional terms or change of parameters
and predicts a transition from single-particle-like structure
below N ¼ 60 to collective behavior for higher N. Very
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FIG. 1. Difference between calculated and experimental ground
state binding energies of SHE as obtained with QMC and SV-min
EDFs (top panel). β2 are shown in the bottom panel, which also
includes FRDM [20] predictions.

TABLE I. Results of the fit yielding the parameters of the QMC
EDF (top part). Experimental data selected by Klüpfel et al. [15]
were used. Equivalent results for the Skyrme SV-min force [15]
are added for comparison. rms deviations of calculated ground
state binding energies from experiment for four groups of nuclei,
not used in the fit of parameters, are given at the bottom part of
the table. They include SHE, N ¼ Z nuclei, and N ¼ Z % 2, 4
mirror nuclei, and chains of isotopes and isotones with jN − Zj
from 2 to 60, labeled “other.”No experimental errors were used in
calculation of rms. See text for more explanation.

rms deviations

[%] [absolute]

Data QMC SV-min QMC SV-min

Fit nuclei:
Binding energies 0.36 0.24 2.85 MeV 0.62 MeV
Diffraction radii 1.62 0.91 0.064 fm 0.029 fm
Surface thickness 10.9 2.9 0.080 fm 0.022 fm
rms radii 0.71 0.52 0.025 fm 0.014 fm
Pairing gap (n) 57.6 17.6 0.49 MeV 0.14 MeV
Pairing gap (p) 25.3 15.5 0.052 MeV 0.11 MeV
Spin-orbit splitting (p) 15.8 18.5 0.16 MeV 0.18 MeV
Spin-orbit splitting (n) 20.3 16.3 0.30 MeV 0.20 MeV

Nuclei not included
in the fit:

Superheavy nuclei 0.10 0.32 1.97 MeV 6.17 MeV
N ¼ Z nuclei 2.54 1.44 5.89 MeV 3.47 MeV
Mirror nuclei 3.16 2.83 5.27 MeV 3.37 MeV
Other 0.51 0.30 4.27 MeV 3.19 MeV
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Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear
energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical
correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably
small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently,
precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or
dense matter may lose predictive power.
Purpose: Beginning with the observation that the Fermi momentum kF , i.e., the cubic root of the density, is a
key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion
can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear
structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality
but not overtrained.
Method: For the EDF, we fit systematically polynomial and other functions of ρ1/3 to existing microscopic,
variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior
of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters’
naturalness and the quality of resulting extrapolations.
Results: A statistical analysis confirms that low-order terms such as ρ1/3 and ρ2/3 are the most relevant ones in
the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron
matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we
propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly,
upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to
which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The
coefficients display naturalness.
Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be
mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications
to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different
microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.

DOI: 10.1103/PhysRevC.97.014312

I. INTRODUCTION

Among the most successful and widely used models for
nuclear structure are the Skyrme force [1] and the relativis-
tic mean field (RMF) [2] models, which provide the basis
for a nuclear energy-density functional (EDF) theory. They
have been applied in the description of many known stable
and exotic nuclei and the nuclear equation of state (EoS).
Most traditional RMF and Skyrme force or functional models
are fitted to properties of experimentally accessible nuclei.
Consequently, it has been recognized that they are good at

*ppapakon@ibs.re.kr
†tspark@skku.ac.kr
‡ylim@tamu.edu
§ hch@daegu.ac.kr

reproducing the properties of nuclei in the valley of stability,
but if one approaches to extremes such as neutron or proton
drip lines, or densities much higher or lower than the saturation
density where precise experimental data are not available,
extrapolations must be made with care. New experiments on
exotic nuclei, as well as astronomical observations, help to
constrain the set of reliable functionals. For instance, recent
observations of 2M⊙ neutron stars [3,4] exclude the nuclear
models giving the maximum mass smaller than that value.

To meet the current challenges, new classes of function-
als are being proposed, for example those inspired by the
density-matrix expansion [5,6]. Extensions and revisions are
informed by nuclear-matter constraints [7,8], new insights
from chiral effective field theory (EFT) [9– 11] and resum-
mation techniques [12,13], and by more stringent stability
requirements [14]. New optimization procedures and data sets
have been employed within the UNEDF project [15– 18]. New,

2469-9985/2018/97(1)/014312(10) 014312-1 ©2018 American Physical Society
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where the denominator

sm = (2m − 1)!(2m + 4)(2m + 2)(2m + 1)2/22m+1

increases quickly with increasing m. In this picture, the even
powers of kF arise from the repulsive part only.

The importance of the k3
F and k4

F terms for obtaining the
empirical saturation regime of symmetric matter was shown
explicitly in Ref. [29] within the three-loop approximation
of chiral perturbation theory. In the very particular case of
extremely dilute Fermi systems, the expression for the energy
per particle has been obtained, e.g., in Ref. [28] as a polynomial
expansion in kF , where the expansion coefficients depend on
the scattering lengths and the effective ranges, plus logarithmic
functions, arising from three-fermion forces. That is in fact
an analytical form we will explore in this work, but with the
expansion coefficients treated as free parameters. (In the end
we conclude from our fits that the inclusion of a logarithmic
term is not a necessity.) At this point we must expose our
reasoning for accepting a dilute regime as a starting point for
our investigation.

Notwithstanding the preceding arguments for a polynomial
expansion, saturated matter is arguably not at all dilute:
The effective range of the interactions is of the order of
the interparticle distance, while the bare scattering length is
much longer. On the other hand, arguments can be made for
considering near-saturated matter dilute with respect to certain
physics of relevance. Such would be the case within an effective
theory without pions but only heavier mesons. Since pion is a
pseudoscalar meson, its mean field does not appear in nuclear
matter unless the matter density is high enough to allow pion
condensations [34]. In addition, the expectation value of the
one-pion-exchange potential vanishes in nuclear matter. Thus
pionic contributions to the energy density are through loops
and multipion exchanges, and one may postulate that their
average effect is a modification of the couplings and masses
among nucleons and heavy mesons. Since the Fermi momenta
in the measurable nuclear systems and even in neutron stars
are smaller than the next heavy-meson mass, namely mρ

(approximately 775 MeV, or 4 fm−1), one may treat mρ as
a large scale and envision an effective Lagrangian in powers of
kF /mρ . Of course, neglecting pions, a precise matching with
nature at threshold region is neither possible nor meaningful.
Instead, one would have to fit the Lagrangian coefficients to
data and confirm the accuracy of the approach for describing
dense matter a posteriori. Our approach originates in this idea.
For this reason we will examine the naturalness of our fitted
coefficients with respect to a kF /mρ expansion. Let us add
that in the RMF models nuclear saturation is obtained from
the balance between the attractive force by the exchange of σ
mesons and the repulsive force by ω mesons, while pions are
not explicitly included. The ρ meson is added to reproduce (or
control) the asymmetric nuclear matter properties better than
the conventional σ and ω RMF models. The success of RMF
as well as Skyrme models may imply that the major properties
of dense nuclear matter are controlled by short-range forces.

We now comment on the density-matrix expansion
(DME) [35], which is popular in recent optimizations of
the nuclear EDF. The DME skips some low-order powers
of ρ1/3. This could be because it considers only statistical

correlations in the expression for the two-body density matrix,
namely the exchange term determined by the off-diagonal one-
body density matrix, but it neglects an irreducible two-body
dynamical correlation. The correlation function vanishes when
the wave function is a single Slater determinant (free Fermi
gas) but constitutes a significant correction in the presence of
short-range correlations, which can be treated within a variety
of quantum many-body methods [36]. We are not actually
proving here that the correlation function will generate the
missing terms of ρ1/3, but our observation that such terms do
arise in EFT and Eq. (1) may motivate further investigations.

III. METHODOLOGY

A. Form of the energy-density functional

The present ansatz for the energy per particle, except the
Coulomb energy, in the case of a homogeneous system of
nucleons with proton density ρp and neutron density ρn, reads

E(ρ,δ) = E(ρ,δ)
A

= T (ρ,δ) +
3∑

i=0

ci(δ)ρ1+i/3

+ cln(δ)ρ2 ln[ρ fm3], (2)

where we have introduced the total density ρ = ρn + ρp and
the asymmetry δ = (ρn − ρp)/ρ. The free-Fermi-gas kinetic
energy per particle is given by the standard expression [7,25]

T = Tp + Tn ,

Tp,n = 3
5

h̄2

2mp,n

x5/3
p,n(3π2ρ)2/3 (3)

with xp,n ≡ ρp,n/ρ. We motivated the form of Eq. (2) in Sec. II.
We are interested in determining the most relevant terms in
this expansion and whether any hierarchy can be inferred. At
present we examine up to the i = 3 term, but in general higher-
order powers can be considered and explored as well.

We may rewrite Eq. (2) as

E = T +
3∑

i=0

Ei + Eln, (4)

where the dependence on the density ρ and the asymmetry δ of
various terms should be understood. The E3 and Eln terms are
in effect a single term c′

3ρ
2 ln[ρ/ρx], if we define an unknown

reference density value ρx . For purely practical reasons and
without loss of generality we prefer to work with two separate
terms.

We proceed to specify the asymmetry dependence of the
potential energy, E − T . We stress that the dependence we
adopt does not affect our fits at all. It only enters our final
comparison with the results of chiral EFT in asymmetric
matter, which have large error bands, and the modeling of
the neutron-star mass-radius relation, which is not precisely
determined either. For our comparisons we therefore assume
the standard quadratic dependence, which is generally adopted,
for example, within the generalized liquid drop model [37,38]
and in recent analytical parametrizations of the chiral EFT
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TABLE I. Correspondence of the terms in Eq. (4) to conventional
Skyrme-functional terms and to powers of Fermi momentum.

Eq. (4) Skyrme functional Power of Fermi momentum

T kinetic en. k2
F

E0 t0 k3
F

E1 t3, a = 1/3 k4
F

E2 t1,t2; t ′
3, a′ = 2/3 k5

F

E3 t ′′
3 , a′′ = 1 k6

F

Eln special k6
F ln kF

results [39,40]. Then we can write

ck(δ) = αk + δ2βk; k = i or k = ln. (5)

There certainly exist open issues regarding the asymmetry
dependence of the nuclear EoS [11], but they lie beyond the
scope of the present paper.

The functional can be rewritten in the form of a Skyrme
functional, with the terms assigned as in Table I, which shows
explicitly the powers of the Fermi momentum corresponding
to each term. We note the presence of more than one density-
dependent term in such a corresponding Skyrme functional: a
fractional-power one (E1), a linear one (E3), and optionally a
second fractional-power one (contributing to E2) and a linear-
logarithmic one (Eln), which should be considered together
with the linear one. The presence of more than one density-
dependent term renders this form more flexible than the tradi-
tional Skyrme functionals. A Skyrme-type pseudopotential can
be reverse engineered through the correspondence of Table I
and used in Hartree-Fock calculations, once the partition of
c2 into purely density-dependent and a momentum-dependent
terms is constrained [32,33]. Indeed, generalized Skyrme func-
tionals with more than one density-dependent coupling have
been explored in Refs. [19,21]. The differences in our case are
that the terms are not arbitrarily chosen and that we determine
the parameters in homogeneous matter before applications to
nuclei. We note finally that the present functional accommo-
dates the empirical fractional-power density dependence of the
nuclear symmetry energy, with power a = 0.72 ± 0.19 [41].

If our tentative effective-theoretical arguments in Sec. II
have any merit, the expansion coefficients should display
naturalness with respect to the expansion variable kF /mρ .
Noting that, at zero temperature, ρ = ν

6π2 k
3
F , where ν = 4 for

symmetric nuclear matter (SNM) and ν = 2 for pure neutron
matter (PNM), we write

Ei(ρ,δ) = ci(δ)ρ1+i/3

=
[(

ν

6π2

)1+i/3

ci(δ)m2+i
ρ

]

mρ

(
kF

mρ

)3+i

. (6)

We note that kF /mρ ≃ 1/3 for saturated SNM. We will
examine whether the dimensionless parameters

cdim
i (δ) =

(
ν

6π2

)1+i/3

ci(δ)m2+i
ρ (7)

are of the same order of magnitude.

B. Fitting method

Having defined the form of the functional, we proceed to
determine and analyze the unknown parameters. For nuclear-
structure applications, one may follow the usual procedure of
fitting to nuclear properties as well as saturation properties of
nuclear matter. As already elaborated, our objective is differ-
ent: we are interested in validating and analyzing our ansatz in
homogeneous matter first. Also important is to not fit all five
parameters blindly, but examine which are the most important
ones, whose values do not depend strongly on the fitting pro-
cedure and may retain some physical content. We thus inspect
the fits of all possible combinations of one to five parameters.

The most appropriate set of pseudodata for our purposes
would include both symmetric and asymmetric matter. There-
fore we use the Akmal-Pandharipande-Ravenhall variational
results, which are based on the Argonne V18 and Urbana
potentials and available for both SNM and PNM [42]. This
set of pseudodata will be denoted as APR. For the purpose
of confirming our statistical fit analysis, the fitting has been
repeated with the Friedman-Pandharipande (FP) pseudodata
set [43], within the same density domain as the fit to the
APR set. The FP calculations were based on the Argonne V14
potential. The APR data are considered an improvement over
the FP data, because APR took into account the most accurate
two- and three-nucleon interaction until those days, relativistic
boost interaction, and the phase transition in the high-density
region. Therefore they constitute our main set.

We fit the functional form to the SNM data to obtain the
parameters ci(0) and then to the PNM data to obtain ci(1). We
will test our results against the chiral EFT results of Ref. [39],
which we will denote as DSS, available for δ = 1,0.9,0.8,0.7.
The necessary interpolation to asymmetric matter is possible
via Eq. (5). No fits are performed to the DSS data. We will
also compare with the SLy4 Skyrme functional, which was
partly constrained by microscopic results for homogeneous
matter [44].

For the fits to the APR (or FP) set, and separately for SNM
and PNM, we proceed as follows: We make use of all available
pseudodata points (ρj ,Dj ) for a given asymmetry value δ =
0,1. We perform a least-squares fit by minimizing

χ2(δ) =
∑

j

exp{−βρj /ϱ0}
(
E(ρj ) − Dj

T (ρj )

)2

; β ! 0 (8)

with ϱ0 = 0.16 fm−3. A dependence of the data-points set
{j} and related values on δ is implied. For the fits we use
the multiparameter regression routine of the GNU Scientific
Library [45]. We next proceed to explain the above choice for
the cost function.

The division of the cost function in Eq. (8) with the kinetic
energy allows us to increase the weight of the comparatively
small and disfavored contributions ofE(ρj ) − Dj at lower den-
sities, without introducing arbitrary weight functions. Some
further weighting is necessary nonetheless, owing to the nature
of the data: As pointed out in Ref. [42], the pseudodata show a
discontinuity at some value of density near 0.2 or 0.3 fm−3. The
authors recommend and use a different parametrization for the
low-density phase (LDP) and the high-density phase (HDP).
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tionals with more than one density-dependent coupling have
been explored in Refs. [19,21]. The differences in our case are
that the terms are not arbitrarily chosen and that we determine
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dates the empirical fractional-power density dependence of the
nuclear symmetry energy, with power a = 0.72 ± 0.19 [41].
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have any merit, the expansion coefficients should display
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Noting that, at zero temperature, ρ = ν
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examine whether the dimensionless parameters

cdim
i (δ) =

(
ν

6π2

)1+i/3

ci(δ)m2+i
ρ (7)

are of the same order of magnitude.

B. Fitting method

Having defined the form of the functional, we proceed to
determine and analyze the unknown parameters. For nuclear-
structure applications, one may follow the usual procedure of
fitting to nuclear properties as well as saturation properties of
nuclear matter. As already elaborated, our objective is differ-
ent: we are interested in validating and analyzing our ansatz in
homogeneous matter first. Also important is to not fit all five
parameters blindly, but examine which are the most important
ones, whose values do not depend strongly on the fitting pro-
cedure and may retain some physical content. We thus inspect
the fits of all possible combinations of one to five parameters.

The most appropriate set of pseudodata for our purposes
would include both symmetric and asymmetric matter. There-
fore we use the Akmal-Pandharipande-Ravenhall variational
results, which are based on the Argonne V18 and Urbana
potentials and available for both SNM and PNM [42]. This
set of pseudodata will be denoted as APR. For the purpose
of confirming our statistical fit analysis, the fitting has been
repeated with the Friedman-Pandharipande (FP) pseudodata
set [43], within the same density domain as the fit to the
APR set. The FP calculations were based on the Argonne V14
potential. The APR data are considered an improvement over
the FP data, because APR took into account the most accurate
two- and three-nucleon interaction until those days, relativistic
boost interaction, and the phase transition in the high-density
region. Therefore they constitute our main set.

We fit the functional form to the SNM data to obtain the
parameters ci(0) and then to the PNM data to obtain ci(1). We
will test our results against the chiral EFT results of Ref. [39],
which we will denote as DSS, available for δ = 1,0.9,0.8,0.7.
The necessary interpolation to asymmetric matter is possible
via Eq. (5). No fits are performed to the DSS data. We will
also compare with the SLy4 Skyrme functional, which was
partly constrained by microscopic results for homogeneous
matter [44].

For the fits to the APR (or FP) set, and separately for SNM
and PNM, we proceed as follows: We make use of all available
pseudodata points (ρj ,Dj ) for a given asymmetry value δ =
0,1. We perform a least-squares fit by minimizing

χ2(δ) =
∑

j

exp{−βρj /ϱ0}
(
E(ρj ) − Dj

T (ρj )

)2

; β ! 0 (8)

with ϱ0 = 0.16 fm−3. A dependence of the data-points set
{j} and related values on δ is implied. For the fits we use
the multiparameter regression routine of the GNU Scientific
Library [45]. We next proceed to explain the above choice for
the cost function.

The division of the cost function in Eq. (8) with the kinetic
energy allows us to increase the weight of the comparatively
small and disfavored contributions ofE(ρj ) − Dj at lower den-
sities, without introducing arbitrary weight functions. Some
further weighting is necessary nonetheless, owing to the nature
of the data: As pointed out in Ref. [42], the pseudodata show a
discontinuity at some value of density near 0.2 or 0.3 fm−3. The
authors recommend and use a different parametrization for the
low-density phase (LDP) and the high-density phase (HDP).
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where the denominator

sm = (2m − 1)!(2m + 4)(2m + 2)(2m + 1)2/22m+1

increases quickly with increasing m. In this picture, the even
powers of kF arise from the repulsive part only.

The importance of the k3
F and k4

F terms for obtaining the
empirical saturation regime of symmetric matter was shown
explicitly in Ref. [29] within the three-loop approximation
of chiral perturbation theory. In the very particular case of
extremely dilute Fermi systems, the expression for the energy
per particle has been obtained, e.g., in Ref. [28] as a polynomial
expansion in kF , where the expansion coefficients depend on
the scattering lengths and the effective ranges, plus logarithmic
functions, arising from three-fermion forces. That is in fact
an analytical form we will explore in this work, but with the
expansion coefficients treated as free parameters. (In the end
we conclude from our fits that the inclusion of a logarithmic
term is not a necessity.) At this point we must expose our
reasoning for accepting a dilute regime as a starting point for
our investigation.

Notwithstanding the preceding arguments for a polynomial
expansion, saturated matter is arguably not at all dilute:
The effective range of the interactions is of the order of
the interparticle distance, while the bare scattering length is
much longer. On the other hand, arguments can be made for
considering near-saturated matter dilute with respect to certain
physics of relevance. Such would be the case within an effective
theory without pions but only heavier mesons. Since pion is a
pseudoscalar meson, its mean field does not appear in nuclear
matter unless the matter density is high enough to allow pion
condensations [34]. In addition, the expectation value of the
one-pion-exchange potential vanishes in nuclear matter. Thus
pionic contributions to the energy density are through loops
and multipion exchanges, and one may postulate that their
average effect is a modification of the couplings and masses
among nucleons and heavy mesons. Since the Fermi momenta
in the measurable nuclear systems and even in neutron stars
are smaller than the next heavy-meson mass, namely mρ

(approximately 775 MeV, or 4 fm−1), one may treat mρ as
a large scale and envision an effective Lagrangian in powers of
kF /mρ . Of course, neglecting pions, a precise matching with
nature at threshold region is neither possible nor meaningful.
Instead, one would have to fit the Lagrangian coefficients to
data and confirm the accuracy of the approach for describing
dense matter a posteriori. Our approach originates in this idea.
For this reason we will examine the naturalness of our fitted
coefficients with respect to a kF /mρ expansion. Let us add
that in the RMF models nuclear saturation is obtained from
the balance between the attractive force by the exchange of σ
mesons and the repulsive force by ω mesons, while pions are
not explicitly included. The ρ meson is added to reproduce (or
control) the asymmetric nuclear matter properties better than
the conventional σ and ω RMF models. The success of RMF
as well as Skyrme models may imply that the major properties
of dense nuclear matter are controlled by short-range forces.

We now comment on the density-matrix expansion
(DME) [35], which is popular in recent optimizations of
the nuclear EDF. The DME skips some low-order powers
of ρ1/3. This could be because it considers only statistical

correlations in the expression for the two-body density matrix,
namely the exchange term determined by the off-diagonal one-
body density matrix, but it neglects an irreducible two-body
dynamical correlation. The correlation function vanishes when
the wave function is a single Slater determinant (free Fermi
gas) but constitutes a significant correction in the presence of
short-range correlations, which can be treated within a variety
of quantum many-body methods [36]. We are not actually
proving here that the correlation function will generate the
missing terms of ρ1/3, but our observation that such terms do
arise in EFT and Eq. (1) may motivate further investigations.

III. METHODOLOGY

A. Form of the energy-density functional

The present ansatz for the energy per particle, except the
Coulomb energy, in the case of a homogeneous system of
nucleons with proton density ρp and neutron density ρn, reads

E(ρ,δ) = E(ρ,δ)
A

= T (ρ,δ) +
3∑

i=0

ci(δ)ρ1+i/3

+ cln(δ)ρ2 ln[ρ fm3], (2)

where we have introduced the total density ρ = ρn + ρp and
the asymmetry δ = (ρn − ρp)/ρ. The free-Fermi-gas kinetic
energy per particle is given by the standard expression [7,25]

T = Tp + Tn ,

Tp,n = 3
5

h̄2

2mp,n

x5/3
p,n(3π2ρ)2/3 (3)

with xp,n ≡ ρp,n/ρ. We motivated the form of Eq. (2) in Sec. II.
We are interested in determining the most relevant terms in
this expansion and whether any hierarchy can be inferred. At
present we examine up to the i = 3 term, but in general higher-
order powers can be considered and explored as well.

We may rewrite Eq. (2) as

E = T +
3∑

i=0

Ei + Eln, (4)

where the dependence on the density ρ and the asymmetry δ of
various terms should be understood. The E3 and Eln terms are
in effect a single term c′

3ρ
2 ln[ρ/ρx], if we define an unknown

reference density value ρx . For purely practical reasons and
without loss of generality we prefer to work with two separate
terms.

We proceed to specify the asymmetry dependence of the
potential energy, E − T . We stress that the dependence we
adopt does not affect our fits at all. It only enters our final
comparison with the results of chiral EFT in asymmetric
matter, which have large error bands, and the modeling of
the neutron-star mass-radius relation, which is not precisely
determined either. For our comparisons we therefore assume
the standard quadratic dependence, which is generally adopted,
for example, within the generalized liquid drop model [37,38]
and in recent analytical parametrizations of the chiral EFT
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explicitly in Ref. [29] within the three-loop approximation
of chiral perturbation theory. In the very particular case of
extremely dilute Fermi systems, the expression for the energy
per particle has been obtained, e.g., in Ref. [28] as a polynomial
expansion in kF , where the expansion coefficients depend on
the scattering lengths and the effective ranges, plus logarithmic
functions, arising from three-fermion forces. That is in fact
an analytical form we will explore in this work, but with the
expansion coefficients treated as free parameters. (In the end
we conclude from our fits that the inclusion of a logarithmic
term is not a necessity.) At this point we must expose our
reasoning for accepting a dilute regime as a starting point for
our investigation.

Notwithstanding the preceding arguments for a polynomial
expansion, saturated matter is arguably not at all dilute:
The effective range of the interactions is of the order of
the interparticle distance, while the bare scattering length is
much longer. On the other hand, arguments can be made for
considering near-saturated matter dilute with respect to certain
physics of relevance. Such would be the case within an effective
theory without pions but only heavier mesons. Since pion is a
pseudoscalar meson, its mean field does not appear in nuclear
matter unless the matter density is high enough to allow pion
condensations [34]. In addition, the expectation value of the
one-pion-exchange potential vanishes in nuclear matter. Thus
pionic contributions to the energy density are through loops
and multipion exchanges, and one may postulate that their
average effect is a modification of the couplings and masses
among nucleons and heavy mesons. Since the Fermi momenta
in the measurable nuclear systems and even in neutron stars
are smaller than the next heavy-meson mass, namely mρ

(approximately 775 MeV, or 4 fm−1), one may treat mρ as
a large scale and envision an effective Lagrangian in powers of
kF /mρ . Of course, neglecting pions, a precise matching with
nature at threshold region is neither possible nor meaningful.
Instead, one would have to fit the Lagrangian coefficients to
data and confirm the accuracy of the approach for describing
dense matter a posteriori. Our approach originates in this idea.
For this reason we will examine the naturalness of our fitted
coefficients with respect to a kF /mρ expansion. Let us add
that in the RMF models nuclear saturation is obtained from
the balance between the attractive force by the exchange of σ
mesons and the repulsive force by ω mesons, while pions are
not explicitly included. The ρ meson is added to reproduce (or
control) the asymmetric nuclear matter properties better than
the conventional σ and ω RMF models. The success of RMF
as well as Skyrme models may imply that the major properties
of dense nuclear matter are controlled by short-range forces.

We now comment on the density-matrix expansion
(DME) [35], which is popular in recent optimizations of
the nuclear EDF. The DME skips some low-order powers
of ρ1/3. This could be because it considers only statistical

correlations in the expression for the two-body density matrix,
namely the exchange term determined by the off-diagonal one-
body density matrix, but it neglects an irreducible two-body
dynamical correlation. The correlation function vanishes when
the wave function is a single Slater determinant (free Fermi
gas) but constitutes a significant correction in the presence of
short-range correlations, which can be treated within a variety
of quantum many-body methods [36]. We are not actually
proving here that the correlation function will generate the
missing terms of ρ1/3, but our observation that such terms do
arise in EFT and Eq. (1) may motivate further investigations.

III. METHODOLOGY

A. Form of the energy-density functional

The present ansatz for the energy per particle, except the
Coulomb energy, in the case of a homogeneous system of
nucleons with proton density ρp and neutron density ρn, reads

E(ρ,δ) = E(ρ,δ)
A

= T (ρ,δ) +
3∑
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+ cln(δ)ρ2 ln[ρ fm3], (2)

where we have introduced the total density ρ = ρn + ρp and
the asymmetry δ = (ρn − ρp)/ρ. The free-Fermi-gas kinetic
energy per particle is given by the standard expression [7,25]
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with xp,n ≡ ρp,n/ρ. We motivated the form of Eq. (2) in Sec. II.
We are interested in determining the most relevant terms in
this expansion and whether any hierarchy can be inferred. At
present we examine up to the i = 3 term, but in general higher-
order powers can be considered and explored as well.

We may rewrite Eq. (2) as

E = T +
3∑
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Ei + Eln, (4)

where the dependence on the density ρ and the asymmetry δ of
various terms should be understood. The E3 and Eln terms are
in effect a single term c′

3ρ
2 ln[ρ/ρx], if we define an unknown

reference density value ρx . For purely practical reasons and
without loss of generality we prefer to work with two separate
terms.

We proceed to specify the asymmetry dependence of the
potential energy, E − T . We stress that the dependence we
adopt does not affect our fits at all. It only enters our final
comparison with the results of chiral EFT in asymmetric
matter, which have large error bands, and the modeling of
the neutron-star mass-radius relation, which is not precisely
determined either. For our comparisons we therefore assume
the standard quadratic dependence, which is generally adopted,
for example, within the generalized liquid drop model [37,38]
and in recent analytical parametrizations of the chiral EFT
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Properties of dense nucleon matter and the structure of neutron stars are studied using variational chain
summation methods and the new Argonne v18 two-nucleon interaction, which provides an excellent fit to all of
the nucleon-nucleon scattering data in the Nijmegen database. The neutron star gravitational mass limit ob-
tained with this interaction is 1.67M( . Boost corrections to the two-nucleon interaction, which give the
leading relativistic effect of order (v/c)2, as well as three-nucleon interactions, are also included in the nuclear
Hamiltonian. Their successive addition increases the mass limit to 1.80 and 2.20 M( . Hamiltonians including
a three-nucleon interaction predict a transition in neutron star matter to a phase with neutral pion condensation
at a baryon number density of ;0.2 fm23. Neutron stars predicted by these Hamiltonians have a layer with a
thickness on the order of tens of meters, over which the density changes rapidly from that of the normal to the
condensed phase. The material in this thin layer is a mixture of the two phases. We also investigate the
possibility of dense nucleon matter having an admixture of quark matter, described using the bag model
equation of state. Neutron stars of 1.4M( do not appear to have quark matter admixtures in their cores.
However, the heaviest stars are predicted to have cores consisting of a quark and nucleon matter mixture.
These admixtures reduce the maximum mass of neutron stars from 2.20 to 2.02 ~1.91! M( for bag constant
B5200 (122) MeV/fm3. Stars with pure quark matter in their cores are found to be unstable. We also
consider the possibility that matter is maximally incompressible above an assumed density, and show that
realistic models of nuclear forces limit the maximum mass of neutron stars to be below 2.5M( . The effects of
the phase transitions on the composition of neutron star matter and its adiabatic index G are discussed.
@S0556-2813~98!04509-9#

PACS number~s!: 21.65.1f, 26.60.1c, 97.60.Jd

I. INTRODUCTION

The significant influence of nuclear forces on neutron star
structure is by now firmly established by a large body of
theoretical and observational evidence @1#. In the absence of
these forces, the maximum possible mass of neutron stars
composed of noninteracting neutrons is ;0.7 solar masses
(M() @2#. Since most observed neutron star masses are
above 1.3M( @3#, they must be supported against gravita-
tional collapse by pressure originating from nuclear forces.
In the present work, we study neutron star structure using
one of the most realistic models of nuclear forces currently
available. A brief outline of previous calculations leading to
this work is presented below.
Shortly after the discovery of pulsars, calculations of the

equation of state ~EOS! of neutron star matter with realistic
models of the two nucleon interaction ~NNI!, obtained by
fitting the nucleon-nucleon ~NN! scattering data then avail-
able, were carried out using the lowest order constrained
variational method @4,5#. The results demonstrated that
nuclear forces increase the mass limit of stable neutron stars
beyond 1.4M( .
By the late 1970s it had become clear that the NNI alone

could not account for the properties of nuclear matter or
few-body nuclei. Variational @6# and Brueckner calculations
@7#, including higher order cluster contributions, established

that nuclear matter with realistic NNI saturates at too high a
density. In addition, these interactions were known to un-
derbind 3H. Ignoring the latter problem, plausible density
dependent terms were added to the Urbana v14 ~U14! model
of NNI @8,9# to reproduce the observed equilibrium proper-
ties of nuclear matter. The resulting density dependent ~U14-
DDI! model of nuclear forces predicted stable neutron stars
having masses up to 1.8M( @10,11#.
Since nucleons are made up of quarks and have internal

degrees of freedom, we can expect interactions among three
~and perhaps four or more! nucleons, in addition to the NNI.
The Urbana three nucleon interaction ~TNI! models contain
only two terms, with strengths fixed by the saturation density
of nuclear matter and the binding energy of 3H. Wiringa,
Fiks, and Fabrocini ~WFF! @12# used the U14 and the subse-
quent Argonne v14 ~A14! @13# models of NNI, together with
the Urbana VII ~UVII! model of TNI, to study neutron star
structure and obtained mass limits of 2.19M( and 2.13M(

with the U141UVII and A141UVII, respectively. They also
found that pure neutron matter ~PNM! undergoes a transition
to a phase having spin-isospin order, attributed to neutral
pion condensation, at a density of ;0.2 fm23 with the A14
1UVII, but not with the U141UVII. Neither of these mod-
els results in a phase transition in symmetric nuclear matter
~SNM!, which is composed of equal numbers of neutrons
and protons.
In the early 1990s the Nijmegen group @14# examined

carefully all NN scattering data at energies below 350 MeV
published between 1955 and 1992. They extracted 1787
proton-proton ~pp! and 2514 proton-neutron ~np! ‘‘reliable’’
data, and demonstrated that these data determine all NN
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(ii) In the majority of cases, if we replace the k = 1
term with the k = 3 term we get noticeably higher
χ2

n values. This result is in concordance with the
preference for Skyrme functionals with a fractional-
power, rather than linear, density dependence.

(iii) If we use only two parameters, the sets of two low-
order parameters produce better fits than the sets of
two higher-order parameters. For example for β = 1
one may arrange the sets from the best to worst as
follows: For SNM, k = (0,1), (0,2), (0,3), (1,2), (1,3),
(2,3), (3,ln).1 For PNM the order is the same except
that k = (0,2) is better than (0,1).

(iv) In fact for smaller β the k = 3 term in PNM seems
more efficient. The inclusion of a linear dependence in
Skyrme functionals might be recommended especially
for dense-matter applications. We note that the discon-
tinuity of the data may contaminate the systematics of
the low-β fits.

(v) For three parameters, we found that the smallest χ2
n

are generally obtained without the logarithmic term.

Let us evaluate further the necessity for higher-order terms.
For this we consider fitting the k = 0,1,2 terms along with one
more term whose form may be ρ2 (k = 3), ρ2 ln[ρ fm3] (log-
arithmic term), ρ7/3 (next-order term to k = 3), ρ8/3 (approx-
imate symmetry-energy dependence within Dirac-Brueckner-
Hartree-Fock [50]), or ρ1/6 (popular in Skyrme functionals). (A
systematic inclusion and examination of higher-order terms,
such as ρ7/3, ρ8/3, is deferred to future work.) The results
in the last rows (last block) of Table II demonstrate that the
quality of the fit is almost unaffected by the choice of fourth
term. An interesting exception is that the popular ρ1/6 term
generally gives a worse fit. The most precise fit is of course
provided by five terms. However, the resulting values for the
coefficients ci are found radically different from those obtained
with four parameters or fewer. From the above we can infer
that two (SNM) or three (PNM) terms are essential, that the
role of a fourth high-order term is simply to refine the fits,
and last but not least, that a fifth term cannot be constrained
by the pseudodata, i.e., it may lead to overfitting, which is not
desired.

The above conclusions are supported by an analysis of
the Hessian spectrum, which is briefly discussed in the Sup-
plemental Material [48]. In that analysis one again observes
the different behavior of SNM and PNM. For SNM three
parameters seem to be sufficient, but for PNM the parameters
are generally stiffer, and the same trend is observed in both
APR and FP parametrizations. It will be interesting to examine
the PNM thoroughly with more terms and statistical analyses,
and on richer sets of pseudodata. This will be the subject of
future work. Because of the above observations, and to avoid
overfitting, a fifth term (high-order or logarithmic) is omitted
in what follows. For our initial applications the present fits are
already of good quality.

1We do not discuss sets that include the k = ln term without the
k = 3 term, because they imply an arbitrary reference density ρx =
1 fm−3.
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FIG. 1. Representative results (β = 1/2) of fits with two, three,
or four parameters, as indicated, along with the APR pseudodata, the
DSS results from chiral EFT and the SLy4 functional. Shown is the
potential energy per particle divided by the density as a function of
ρ1/3, in SNM and PNM.

In Fig. 1, representative results of fits for the EoS are shown,
along with the APR pseudodata, the DSS results from chiral
EFT, and the SLy4 functional. The almost-linear trend with
respect to ρ1/3, especially for SNM, is evident. The effect of
including higher-order terms appears indeed minimal in SNM.
In the case of PNM, the fit with four parameters not only
reproduces well the pseudodata (APR), but also the results
of chiral EFT (DSS), to which it has not been fitted, and
at low density, where no pseudodata exist. This result is not
trivial [13], as the comparison with traditional functionals
shows, for example SLy4 in Fig. 1.

B. Resulting functionals, naturalness, and application

Having verified the relevance and quality of the low-order
fits and having set the number of desired parameters to four,
we now proceed to determine specific parametrizations, to use
as starting points to applications.

In what follows we choose as our main set of results the
four-parameter low-order form, with k = 0,1,2,3. Table III
shows the resulting values of ck(0) and ck(1) for β = 0,0.5,1.
The values obtained for the properties of nuclear matter at
saturation density are also shown. For the fitted parameters,
the saturation properties are reasonable, but not precisely equal
to the known or adopted values, which is not surprising: The
pseudodata near saturation are few and the set includes a kink
at higher densities. However, it is straightforward to make
adjustments to the SNM parameters so as to obtain any desired
set of values of SNM properties. In fact, one can do away
with the pseudodata of SNM and adjust the parameters ci(0) to
chosen SNM properties by solving simple algebraic equations.
If this procedure produces similar parameters as the fitting,
for the low-order terms, the present expansion ansatz will
be validated further. For the purpose of demonstration, we
presently explore two options, as follows.
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FIG. 2. Results of various fits are shown, for the energy per
particle in SNM, PNM, and asymmetric matter, along with the APR
pseudodata, the APR parametrization of the low-density phase (LDP),
the DSS results from chiral EFT and the SLy4 functional. The fits of
the terms c0,c1,c2,c3 with β = 0,1/2,1 are included, as well as the
parametrization with SNM parameters adapted to the saturation point,
labeled “ad-1” in Table III. Results with the “ad-2” set would be almost
indistinguishable on the figure.

parameters from the β = 1 fit also produces results within the
desired constraints. The results demonstrate that our approach
has produced reasonable behavior for dense matter (to the
extent that such is expected without explicit inclusion of new
degrees of freedom) and stable performance, regardless of the
details of the fit. At this point, in Fig. 3 we have not explored
the capabilities of the functionals in the case of clusterized
matter in the crust, given that only homogeneous matter has
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FIG. 3. Mass and radius relation of neutron stars for the models
of Table III. The two horizontal bands represent the minimum of
maximum mass of neutron stars [3,4]. The central region shows the
allowed area of mass and radius of neutron stars analyzed from x-
ray burst data [49]. The corresponding values for the central baryon
density and the maximum mass (ϱc,M) in units of (fm−3,M⊙) are
(1.135, 2.20) (β = 0), (1.140, 2.18) (β = 1/2), (1.165, 2.10) (β = 1),
(1.135, 2.14) (β = 1/2, adapted to the saturation point of SNM).

been constrained so far. (For the crust, we interpolate to the
SLy4 EoS.) However, small deviations in the description of
the crust are not expected to affect strongly the mass and
radius of the neutron stars, within the current observational
constraints. Again an important observation is the robustness
of the results with respect to the choice of β value, i.e., the
details of the fit. Thus we can trust that our approach offers a
solid parametrization for further applications. In particular, we
consider the ad-2 parametrization in Table III a good starting
point for further work, because of its realistic SNM properties,
and because, unlike ad-1, it does not assume any value for the
effective mass.

We conclude that the power expansion of the nuclear EDF
in Fermi momentum can provide an excellent description of
symmetric and asymmetric nuclear matter in a large range of
densities. In the future it is hoped that realistic, converged
results will be derived within EFT, with which to compare
our results, or which will allow a thorough new study of PNM.

V. SUMMARY AND PROSPECTS

We propose and explore a nuclear EDF written as a power
expansion of the Fermi momentum. As such it is no less general
than any available functional in analytical form. Although it
can be viewed as an extended Skyrme EDF, the proposed form
is not arbitrary and can be extended further to higher powers
systematically.

Examining up to cubic terms, with the help of fits to micro-
scopic calculations and a statistical analysis, we have verified
the importance and robustness of low-order powers, especially
in SNM and selected a working functional form. As a starting
point for further applications and especially in finite nuclei we
consider the ad-2 set of Table III because of its realistic SNM
properties and because of the freedom it allows in determining
the effective mass. The resulting functional reproduces the
known or adopted properties of saturated nuclear matter, dense
matter, and neutron stars (pending an extension to clusterized
matter), as well as microscopic calculations for dilute matter,
to which it was not fitted.

The present paper opens up different directions for further
studies, some of which are currently underway,

(i) The proposed EDF can be recast in the form of a
traditional Skyrme functional with gradient terms, for
a variety of applications in finite nuclei. Our approach
is to consider the obtained parameters ci already fixed
in homogeneous matter and proceed to determine only
the free parameters, which cannot be constrained from
unpolarized homogeneous matter. Minimally, these
parameters are the portion of nonlocal vs. density-
dependent terms (the sum being fixed for each power of
kF ) and the spin-orbit force. The portion of momentum
dependence in c2 is related to the parameters t1,t2.
They can both be determined, at least to a first ap-
proximation, from the ground-state energies and radii
of closed-shell nuclei, as done in Refs. [32,33] with
very promising results.

(ii) In the future, one can consider also pseudodata from
ab initio calculations of polarized matter.
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TABLE III. Coupling constants in SNM [ck(0)] and PNM [ck(1)] in units MeV fm3+k obtained from fits with the indicated β values to the
APR pseudodata and corresponding bulk-matter properties: saturation density ϱ0 in fm−3; energy per particle at saturation E0, incompressibility
K∞, symmetry energy J , and slope parameter L in MeV. The values for the functional that was adapted to SNM saturation properties are shown
in the last block (“ad”, see text). For all the sets, J and L are not input values but obtained results.

β Matter c0 c1 c2 c3 ϱ0 E0 K∞
J L

SNM −863.36 1945.05 −2060.20 1129.96 0.178 −15.4 215
0

PNM −483.96 1433.54 −2119.68 1385.22 34.2 55.9

SNM −753.98 1389.20 −1171.03 678.87 0.177 −15.8 2341
2 PNM −451.91 1254.32 −1812.62 1221.33 34.4 56.0

SNM −613.13 620.22 154.72 −46.05 0.171 −16.1 247
1

PNM −408.56 991.76 −1323.81 937.96 34.0 54.9

SNM −648.72 676.25 200.92 −98.73 0.160 −16.0 240
ad-1

PNM −451.91 1254.32 −1812.62 1221.33 32.8 47.9

SNM −664.52 763.55 40.13 0.00 0.160 −16.0 240
ad-2

PNM −411.13 1007.78 −1354.64 956.47 33.5 50.5

The first option is to adjust the SNM parameters to a satura-
tion density ϱ0 = 0.16 fm−3, binding energy per nucleon E0 =
−16.0 MeV, incompressibility K∞ = 240 MeV, and nucleon
effective mass m∗/m = 0.7. The effective mass in this case is
calculated by assuming that the c2 term is entirely of the form
ρT , which is of course a nonbinding and arbitrary choice for
the sole purpose of the present demonstration: The portion of c2
term coming from nonlocal terms (t1,t2) cannot be determined
from data on unpolarized homogeneous matter.2 The resulting
coefficients for SNM are shown in the two rows labeled “ad-1”
of Table III. They do not deviate much from the fitted values. In
fact, their similarity to the values obtained with β = 1 shows
that the variable β properly puts more weight on the lower-
density data than the high-density regime. For the PNM we
presently chose the same coefficients as the fit with β = 1/2,
so as to retain some weight on the high-density regime.

The second option is to simply set c3(0) = 0 and determine
the other three parameters from the above values for ϱ0,E0,K∞.
This time we make no assumption for the effective mass,
which remains unconstrained. Note that c3(0), being a sloppy
parameter, changes sign when β is varied. The value of c3(0) =
−0.00 (to that precision) is in fact obtained for a fit with
the acceptable weight function β = 0.97273. The resulting
parameters, as well as the PNM parameters corresponding
to β = 0.97273, are also listed in Table III, labeled “ad-2”.
The agreement of ci with i = 0, 1 for all the last three sets of
parameters corroborates the robustness of our approach.

We should stress that, for all sets, the J and L values are not
input values, but obtained. The values are within the currently
proposed constraints [7,51].

The lowest-order coefficients c0,1 do not vary drastically
with β. We have found that the values are also similar
to those obtained with just the two-parameter k = 0,1 fits,
i.e., they are rather robust, as expected. Furthermore, it is
easily verified that, for the obtained parameters, we have the

2Explorations in finite nuclei are in progress [32,33].

hierarchy

|E0| > |E1| > |E2| > |E3| (11)

within the density regime up to about 1 fm−3 for SNM [33]
and up to about 0.05 fm−3 for PNM, beyond which point we
have |E1| > |E0|. Thus our physical reasoning holds up very
well in SNM, while PNM deserves further investigation in the
future.

Nonetheless, the dimensionless parameters, which we de-
fined in Eq. (7), do display naturalness. For SNM we obtain,
for the ad-2 set:

cdim
0 = −3.6, cdim

1 = 6.6, cdim
2 = 0.6

and for PNM

cdim
0 = −1.1, cdim

1 = 3.4, cdim
2 = −5.9, cdim

3 = 5.3.

In Fig. 2, the results of various fits for the EoS are shown,
along with the APR pseudodata, the APR parametrization of
the low-density phase (LDP), the DSS results from chiral
EFT and the SLy4 functional. In particular, Fig. 2(a) shows
the energy per particle in SNM and PNM for the first four
parametrizations from Table III. The last one, ad-2, is omitted
because it gives almost indistinguishable results from ad-1.

The discontinuity of the pseudodata around ρ = 0.3 fm−3,
which necessitated the weighted fits, is evident. The fitted
functionals describe well not only the pseudodata, but also
the DSS results, which are not used in the fitting. Figure 2(b)
shows clearly the excellent description of the DSS results for
all four values of asymmetry. An important observation is that
our fits with different β yield very similar results, i.e., they
are not particularly sensitive to the details of the fit. Although
not shown, in order to not overload the figure, the same trend
would be visible in Fig. 2(b).

The mass-radius relation for neutron stars obtained with
the parametrizations of Table III is shown in Fig. 3. The cor-
responding values for the maximum mass and interior density
is provided in the caption. All parametrizations predict values
consistent with current constraints from observations [3,4]. We
have verified that the SNM-adapted set along with the PNM
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TABLE III. Coupling constants in SNM [ck(0)] and PNM [ck(1)] in units MeV fm3+k obtained from fits with the indicated β values to the
APR pseudodata and corresponding bulk-matter properties: saturation density ϱ0 in fm−3; energy per particle at saturation E0, incompressibility
K∞, symmetry energy J , and slope parameter L in MeV. The values for the functional that was adapted to SNM saturation properties are shown
in the last block (“ad”, see text). For all the sets, J and L are not input values but obtained results.

β Matter c0 c1 c2 c3 ϱ0 E0 K∞
J L

SNM −863.36 1945.05 −2060.20 1129.96 0.178 −15.4 215
0

PNM −483.96 1433.54 −2119.68 1385.22 34.2 55.9

SNM −753.98 1389.20 −1171.03 678.87 0.177 −15.8 2341
2 PNM −451.91 1254.32 −1812.62 1221.33 34.4 56.0

SNM −613.13 620.22 154.72 −46.05 0.171 −16.1 247
1

PNM −408.56 991.76 −1323.81 937.96 34.0 54.9

SNM −648.72 676.25 200.92 −98.73 0.160 −16.0 240
ad-1

PNM −451.91 1254.32 −1812.62 1221.33 32.8 47.9

SNM −664.52 763.55 40.13 0.00 0.160 −16.0 240
ad-2

PNM −411.13 1007.78 −1354.64 956.47 33.5 50.5

The first option is to adjust the SNM parameters to a satura-
tion density ϱ0 = 0.16 fm−3, binding energy per nucleon E0 =
−16.0 MeV, incompressibility K∞ = 240 MeV, and nucleon
effective mass m∗/m = 0.7. The effective mass in this case is
calculated by assuming that the c2 term is entirely of the form
ρT , which is of course a nonbinding and arbitrary choice for
the sole purpose of the present demonstration: The portion of c2
term coming from nonlocal terms (t1,t2) cannot be determined
from data on unpolarized homogeneous matter.2 The resulting
coefficients for SNM are shown in the two rows labeled “ad-1”
of Table III. They do not deviate much from the fitted values. In
fact, their similarity to the values obtained with β = 1 shows
that the variable β properly puts more weight on the lower-
density data than the high-density regime. For the PNM we
presently chose the same coefficients as the fit with β = 1/2,
so as to retain some weight on the high-density regime.

The second option is to simply set c3(0) = 0 and determine
the other three parameters from the above values for ϱ0,E0,K∞.
This time we make no assumption for the effective mass,
which remains unconstrained. Note that c3(0), being a sloppy
parameter, changes sign when β is varied. The value of c3(0) =
−0.00 (to that precision) is in fact obtained for a fit with
the acceptable weight function β = 0.97273. The resulting
parameters, as well as the PNM parameters corresponding
to β = 0.97273, are also listed in Table III, labeled “ad-2”.
The agreement of ci with i = 0, 1 for all the last three sets of
parameters corroborates the robustness of our approach.

We should stress that, for all sets, the J and L values are not
input values, but obtained. The values are within the currently
proposed constraints [7,51].

The lowest-order coefficients c0,1 do not vary drastically
with β. We have found that the values are also similar
to those obtained with just the two-parameter k = 0,1 fits,
i.e., they are rather robust, as expected. Furthermore, it is
easily verified that, for the obtained parameters, we have the

2Explorations in finite nuclei are in progress [32,33].

hierarchy

|E0| > |E1| > |E2| > |E3| (11)

within the density regime up to about 1 fm−3 for SNM [33]
and up to about 0.05 fm−3 for PNM, beyond which point we
have |E1| > |E0|. Thus our physical reasoning holds up very
well in SNM, while PNM deserves further investigation in the
future.

Nonetheless, the dimensionless parameters, which we de-
fined in Eq. (7), do display naturalness. For SNM we obtain,
for the ad-2 set:

cdim
0 = −3.6, cdim

1 = 6.6, cdim
2 = 0.6

and for PNM

cdim
0 = −1.1, cdim

1 = 3.4, cdim
2 = −5.9, cdim

3 = 5.3.

In Fig. 2, the results of various fits for the EoS are shown,
along with the APR pseudodata, the APR parametrization of
the low-density phase (LDP), the DSS results from chiral
EFT and the SLy4 functional. In particular, Fig. 2(a) shows
the energy per particle in SNM and PNM for the first four
parametrizations from Table III. The last one, ad-2, is omitted
because it gives almost indistinguishable results from ad-1.

The discontinuity of the pseudodata around ρ = 0.3 fm−3,
which necessitated the weighted fits, is evident. The fitted
functionals describe well not only the pseudodata, but also
the DSS results, which are not used in the fitting. Figure 2(b)
shows clearly the excellent description of the DSS results for
all four values of asymmetry. An important observation is that
our fits with different β yield very similar results, i.e., they
are not particularly sensitive to the details of the fit. Although
not shown, in order to not overload the figure, the same trend
would be visible in Fig. 2(b).

The mass-radius relation for neutron stars obtained with
the parametrizations of Table III is shown in Fig. 3. The cor-
responding values for the maximum mass and interior density
is provided in the caption. All parametrizations predict values
consistent with current constraints from observations [3,4]. We
have verified that the SNM-adapted set along with the PNM
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Our method and its first applications to nuclei will be pre-
sented below. In Sec. II, we present for completeness the EoS
ansatz and selected parametrization. In Sec. III, we describe
how a Skyrme model for nuclear structure calculations can be
directly engineered from it and present corresponding results
for finite nuclei. We summarize in Sec. IV.

II. HOMOGENEOUS MATTER

As elaborated and justified in Ref. [22], the energy per par-
ticle in homogeneous infinite nuclear matter is parametrized in
terms of the Fermi momentum kF or the cubic root of density,

E (ρ, δ) = T (ρ, δ) +
3∑

n=0

cn(δ)ρ1+an , an = n/3, (1)

where ρ = ρn + ρp is the baryon density with ρn and ρp being
the neutron and proton densities, respectively, and asymmetry
is defined as δ ≡ (ρn − ρp)/ρ. The kinetic-energy part T is
written as

T (ρ, δ) = 3
5

[
h̄2

2mp

(
1 − δ

2

)5/3

+ h̄2

2mn

(
1 + δ

2

)5/3
]

× (3π2ρ)2/3, (2)

where mp (mn) is the proton (neutron) mass. The ansatz (1)
and related strategy are henceforth dubbed KIDS (Korea:
IBS-Daegu-SKKU) after the locale or institute of the origi-
nal developers [22–24]. The statistical analyses of Ref. [22]
showed that three terms suffice for isospin-symmetric nuclear
matter (SNM) (it is worth noting that the same is concluded
in Ref. [25] based on nuclear data) in a converging hierarchy
and that four terms suffice for pure neutron matter (PNM) in
a broad regime of densities. A larger number of parameters is
undesirable as it might lead to overfitting.

A set of SNM parameters ci(0) was determined by using
established properties at saturation: the saturation density
ρ0 = 0.16 fm−3, the energy per particle at saturation E0 =
−16 MeV, and the compression modulus K0 = 240 MeV.
This information can uniquely fix three unknowns c0–2(0).
(Because it gives a marginal contribution, one can set c3(0) =
0 [22–24]. If necessary, one can use this free parameter to also
fix the skewness parameter Q0.)

The four PNM parameters ci(1) at present have been fitted
to the Akmal-Pandharipande-Ravenhall (APR) EoS [13] in
the density range of 0.02–0.96 fm−3. We note that, although
all points available in the APR EoS were used in the fit, a
properly chosen cost function ensured that the lower-density
regime carried more weight in the fit. Thus was generated the
set of parameters called “KIDS-ad2” in Ref. [22], which has
c0(0) = −664.52, c1(0) = 763.55, c2(0) = 40.13, c3(0) =
0.0, c0(1) = −411.13, c1(1)=1007.78, c2(1)= − 1354.64,
c3(1) = 956.47, where all cn(δ) values are given in units
MeV fmn+3. The resulting rounded values of the symmetry
energy and its slope, curvature, and skewness at saturation are
(J, L, Ksym, Qsym ) = (33, 50,−160, 590) MeV.

Focusing on high densities, in Ref. [22], the efficiency
of the scheme was demonstrated in the regime of neutron

FIG. 1. Nuclear symmetry energy. The KIDS-ad2 equation of
state employed in this paper is compared with other available models
which have been fitted to nuclear data under various protocols.

stars, whereas the convergence of the expansion was ex-
plored Ref. [24]. The nuclear symmetry energy is calculated
as shown in Fig. 1. The results show that the symmetry
energy may not be soft or stiff but may have a nontrivial
density dependence. Interestingly, a similar behavior is seen in
Refs. [26,27] originating from skyrmion–half-skyrmion phase
transition. Equation (1) is rich enough to accommodate such
behavior.

Very relevant for nuclei, on the other hand, is the behavior
at low densities. We test the validity of extrapolation below
the APR pseudodata region ρ < 0.02 fm−3. The results for
the PNM energy are shown in Fig. 2 where they are compared
with EoSs obtained from ab initio methods (QMC AV4 [14]
and EFT [16]), from a resummation formula YGLO [28]
(fitted to ab initio pseudodata in ρ < 0.005 fm−3 [14] and
to the PNM EoS of Ref. [13] at ρ > 0.02 fm−3), and from
representative Skyrme models [20]. The KIDS model is found
to reproduce the low-density curvature best with respect to
EFT, to which it has not been fitted.

Having shown that the above EoS has a wide range of
applicability in density, we apply it to investigate nuclei
without altering its given parameter values. For the purpose
of testing further this “proof of principle,” we use additionally
a similarly obtained EoS but with a compression modulus of
K0 = 220 MeV.

III. FINITE NUCLEI

For the application to nuclei, we rely on the Kohn-Sham
framework. In particular, we reverse engineer a Skyrme-type
force [20] for Hartree-Fock calculations, which can then be
undertaken with a straightforward extension of a standard
numerical code [29]. Minimally, in order to reproduce the EoS
of Eq. (1), we adopt the form of generalized Skyrme force
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FIG. 2. Energy of pure neutron matter EPNM divided by the
free-gas value EFG as a function of |akN |, where a(= −18.9 fm)
is the neutron-neutron scattering length in free space, and kN is
the neutron Fermi momentum. Corresponding density values are
indicated on the upper abscissa. The KIDS-ad2 equation of state (full
line) is compared with the results of chiral EFT (gray band), a QMC
calculation (points), the EFT-inspired model YGLO(Akmal) (black
dashed line) and other available models fitted to nuclear data under
various protocols.

given as

vi j = (t0 + y0Pσ )δ(ri j ) + 1
2

(t1 + y1Pσ )[δ(ri j )k2 + H.c.]

+ (t2 + y2Pσ )k′ · δ(ri j )k + iW0k′ × δ(ri j )k · (σ i + σ j )

+ 1
6

3∑

n=1

(t3n+ y3nPσ )ρanδ(ri j ), an = n/3, (3)

where k = (∇i − ∇ j )/(2i) and k′ = −(∇′
i − ∇′

j )/(2i), ri j is
the relative coordinate, and Pσ is the spin-exchange operator.
The strength of the spin-orbit coupling, which is absent in the
EoS of Eq. (1), is introduced by the W0 term. It should be noted
that the above “force” is an auxiliary entity with no direct
relation to a true Hamiltonian. (It is rather used as a stepping
stone to the equivalent independent-particle external potential
V and resulting Kohn-Sham orbitals.) Indeed, it is fitted rather
than derived. More to the point, unless the values of an in
the density dependence are integers, it cannot consistently be
interpreted as a multibody interaction [30].

The Skyrme force of Eq. (3) resembles other generalized
Skyrme models with multiple density-dependent couplings
t3n [31–33]. However, our strategy for determining not only
the precise form [22], but also the strength of the Skyrme
parameters is completely different. In particular, we keep the
given EoS unchanged. In addition, we can retain the flexibility
to assume arbitrary values for the nucleon effective mass if
desired.

By comparing Eq. (1) and the EDF corresponding to the
above Skyrme force [8,20], relations among Skyrme and

KIDS parameters can be straightforwardly obtained as

t0 = 8
3

c0(0), y0 = 8
3

c0(0) − 4c0(1),

t3n = 16cn(0), y3n = 16cn(0) − 24cn(1) (n ̸= 2),
(4)

t32 = 16c2(0) − 3
5

(
3
2
π2

)2/3

θs,

y32 = 16c2(0) − 24c2(1) + 3
5

(3π2)2/3
(

3θµ − θs

22/3

)
,

with

θs ≡ 3t1 + 5t2 + 4y2, θµ ≡ t1 + 3t2 − y1 + 3y2. (5)

This reveals that: (1) most Skyrme parameters (t0, y0, t31,
y31, t33, y33) are uniquely determined from the KIDS EoS
parameters with n ̸= 2, but (2) the above EDF for nuclei
provides two sources for the c2(δ)ρ5/3 term (n= 2): One from
the density-dependent term in Eq. (3) (Skyrme parameters
t32, y32), and the other from the momentum-dependent terms
in Eq. (3) (parameters t1, t2, y1, y2). The latter parameters
determine the isoscalar and isovector effective masses as [34]

µ−1
s ≡ (m∗

IS/m)−1 = 1 + m

8h̄2 ρθs, (6)

µ−1
v ≡ (m∗

IV/m)−1 = 1 + m

4h̄2 ρ(θs − θµ), (7)

where we have used, for simplicity, the average nucleon
mass m.

The unknowns to be determined for nuclei, besides W0, are
then the momentum-dependent proportions in c2(0) and c2(1)
and, correspondingly, the precise values of t1,2 and y1,2. Our
procedure is to

(1) fit the momentum-dependent terms to the energy and
charge radius of 40Ca (details specified below) with W0
initialized to null,

(2) determine W0 from the energies and radii of the nuclei
48Ca and 208Pb,

(3) iterate, i.e., examine 40Ca with the new value of W0 and
again determine W0 anew, and so on.

It turns out that iteration is largely unnecessary because the
bulk properties of the spin-saturated nucleus 40Ca are insensi-
tive to W0.

The momentum-dependent part (steps 1 and 3 above)
can be determined in different ways. A simplistic proce-
dure we explored before [23,24] is to set y1 = y2 = 0 and
encode the momentum dependence in a single parameter
k, corresponding to the portion of c2(δ) assigned to the
momentum-dependence part. The value of k is then deter-
mined from the properties of 40Ca. For KIDS-ad2, one obtains
k = 0.111, corresponding to (µs = 0.99, µv = 0.82), and
W0 = 108.35 MeV fm5. This method provides rather limited
flexibility.

A preferable way is to retain the freedom in y1,2. We now
have four parameters to be explored instead of two. This
freedom allows us to explore different values for the effective
masses (µs, µv) at saturation density and is central to the
present paper. According to Eqs. (4)–(7), the values for the
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Skyrme-type effective interaction [4] in the form of234

vi j = (t0 + y0Pσ )δ(ri − r j )

+ 1
2

(t1 + y1Pσ )[δ(ri − r j )k2 + k′2δ(ri − r j )]

+ (t2 + y2Pσ )k′ · δ(ri − r j )k

+ 1
6

N−1∑

n=1

(t3n+ y3nPσ )ρn/3δ(ri − r j )

+ iW0 k′ × δ(ri − r j ) k · (σ i + σ j ), (14)

where k = (∇i − ∇ j )/(2i), k′ = −(∇′
i − ∇′

j )/(2i), and Pσ is235

the spin-exchange operator. Here, W0 denotes the strength236

of the effective spin-orbit coupling, which is not active in237

homogeneous matter. It, therefore, must be determined from238

nuclear data. This is similar in form to a generalized Skyrme239

model proposed in Refs. [9–11], but the protocol for determin-240

ing the Skyrme potential parameters is quite different. In the241

so-called generalized Skyrme potential model, the parameters242

are determined by some properties of specific nuclei. In our243

case, however, we will begin with an unchanged EoS and use244

very few nuclear data for remaining undetermined parameters.245

We also retain the freedom to have, e.g., t33 = 0 but y33 ̸= 0.246

The corresponding EDF in terms of the local densities as well247

as gradient and kinetic terms can be obtained from a standard248

calculation as249

E = h̄2

2m
τ + 3

8
t0ρ − 1

8
(t0 + 2y0)ρδ2 + 1

16

N−1∑

n=1

t3nρ
1+n/3

− 1
48

N−1∑

n=1

(t3n+ 2y3n)ρ1+n/3δ2 + 1
64

(9t1 − 5t2 − 4y2)

× (∇ρ)2

ρ
− 1

64
(3t1 + 6y1 + t2 + 2y2)

(∇ρδ)2

ρ

+ 1
8

(2t1 + y1 + 2t2 + y2)τ − 1
8

(t1 + 2y1 − t2 − 2y2)

×
∑

q

ρqτq

ρ
+ 1

2
W0

(
J · ∇ρ

ρ
+

∑

q

Jq · ∇ρq

ρ

)

, (15)

where τ denotes the kinetic energy density and J the current250

density. The sum over qmeans the summation over isospin,251

i.e., q= (n, p). Matching the KIDS EDF in Eq. (2) and the252

Skyrme functional in Eq. (15) leads to the following relations:253

t0 = 8
3

c0(0), y0 = 8
3

c0(0) − 4c0(1),

t3n = 16cn(0) , y3n = 16cn(0) − 24cn(1), (n ̸= 2),

t32 = 16c2(0) − 3
5

(
3
2
π2

)2/3

θs

≡ 16c2(0)(1 − ζ ),

y32 = 16c2(0) − 24c2(1) + 3
5

(3π2)2/3
(

3θµ − θs

22/3

)

≡ [16c2(0) − 24c2(1)](1 − ζ ′), (16)

which defines ζ and ζ ′ with 254

θs ≡ 3t1 + 5t2 + 4y2 = 5
3

(
3π2

2

)−2/3

16c2(0)ζ ,

θµ ≡ t1 + 3t2 − y1 + 3y2

= θs

3 · 22/3
− 5

9
(3π2)−2/3[16c2(0) − 24c2(1)]ζ ′. (17)

The matching reveals that there are two sources for the ρ5/3
255

term in the EoS which corresponds to n= 2 in Eq. (14): one 256

from the density-dependent terms in Eq. (14) with the Skyrme 257

parameters t32, y32, and the other from the momentum- 258

dependent terms in Eq. (14) with the Skyrme parameters t1, 259

t2, y1, y2. The partition is encoded in the unknown parameters 260

ζ and ζ ′ in Eqs. (16) and (17). Also undetermined at this point 261

is the effective spin-orbit coupling strength W0. 262

Following the simple procedure of Ref. [3], in the present 263

work, we set y1 = y2 = 0 and assume ζ = ζ ′, which leaves 264

only two parameters, i.e., ζ and W0, to be determined by 265

nuclear data. In this case, the isoscalar and isovector effec- 266

tive mass parameters, µs ≡ m∗/m and µv ≡ m∗
v/m, where m 267

denotes the nucleon mass in free space, are not independent 268

but are determined via ζ according to their relations to θs and 269

θµ as [12] 270

µ−1
s ≡ (m∗/m)−1 = 1 + mρ

8h̄2 θs,

µ−1
v ≡ (m∗

v/m)−1 = 1 + mρ

4h̄2 (θs − θµ). (18)

A refined method taking full advantage of the momentum- 271

dependent terms was developed and applied in Ref. [4]. The 272

refinement was found inconsequential for bulk and static 273

nuclear properties. Therefore, the above simplified procedure 274

with y1 = y2 = 0 suffices for our present purpose. We now 275

return to the issue of the expansion and examine whether 276

three SNM terms and four PNM terms, a total of seven EoS 277

parameters, are sufficient to achieve convergence of results in 278

the case of nuclei as well as in homogeneous matter. 279

TABLE I. Fitted values of parameters αi in units of MeV fm3+i.
Model S3b with N = 3 the EoS parameters are fixed assuming α3 =
0 with ρ0 = 0.16 fm−3, E0 = −16.0 MeV, and K0 = 240.0 MeV
with βi of KIDS-ad2. Models S4a, S4b, and S4c correspond to
Q0 = −360, −390, and −420 MeV, respectively. For S3b, we obtain
Q0 = −372.65 MeV. The EoS of PNM is fixed by the baseline
parameters shown at the bottom, which corresponds to KIDS-ad2.

Model N α0 α1 α2 α3

S3b 3 −664.52 763.55 40.13 0
S4a 4 −677.69 836.34 −93.95 82.33
S4b 4 −646.44 663.65 224.15 −112.99
S4c 4 −615.19 490.96 542.24 −308.30
PNM N α0 + β0 α1 + β1 α2 + β2 α3 + β3

KIDS-ad2 4 −411.13 1007.78 −1354.64 956.47
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where the denominator

sm = (2m − 1)!(2m + 4)(2m + 2)(2m + 1)2/22m+1

increases quickly with increasing m. In this picture, the even
powers of kF arise from the repulsive part only.

The importance of the k3
F and k4

F terms for obtaining the
empirical saturation regime of symmetric matter was shown
explicitly in Ref. [29] within the three-loop approximation
of chiral perturbation theory. In the very particular case of
extremely dilute Fermi systems, the expression for the energy
per particle has been obtained, e.g., in Ref. [28] as a polynomial
expansion in kF , where the expansion coefficients depend on
the scattering lengths and the effective ranges, plus logarithmic
functions, arising from three-fermion forces. That is in fact
an analytical form we will explore in this work, but with the
expansion coefficients treated as free parameters. (In the end
we conclude from our fits that the inclusion of a logarithmic
term is not a necessity.) At this point we must expose our
reasoning for accepting a dilute regime as a starting point for
our investigation.

Notwithstanding the preceding arguments for a polynomial
expansion, saturated matter is arguably not at all dilute:
The effective range of the interactions is of the order of
the interparticle distance, while the bare scattering length is
much longer. On the other hand, arguments can be made for
considering near-saturated matter dilute with respect to certain
physics of relevance. Such would be the case within an effective
theory without pions but only heavier mesons. Since pion is a
pseudoscalar meson, its mean field does not appear in nuclear
matter unless the matter density is high enough to allow pion
condensations [34]. In addition, the expectation value of the
one-pion-exchange potential vanishes in nuclear matter. Thus
pionic contributions to the energy density are through loops
and multipion exchanges, and one may postulate that their
average effect is a modification of the couplings and masses
among nucleons and heavy mesons. Since the Fermi momenta
in the measurable nuclear systems and even in neutron stars
are smaller than the next heavy-meson mass, namely mρ

(approximately 775 MeV, or 4 fm−1), one may treat mρ as
a large scale and envision an effective Lagrangian in powers of
kF /mρ . Of course, neglecting pions, a precise matching with
nature at threshold region is neither possible nor meaningful.
Instead, one would have to fit the Lagrangian coefficients to
data and confirm the accuracy of the approach for describing
dense matter a posteriori. Our approach originates in this idea.
For this reason we will examine the naturalness of our fitted
coefficients with respect to a kF /mρ expansion. Let us add
that in the RMF models nuclear saturation is obtained from
the balance between the attractive force by the exchange of σ
mesons and the repulsive force by ω mesons, while pions are
not explicitly included. The ρ meson is added to reproduce (or
control) the asymmetric nuclear matter properties better than
the conventional σ and ω RMF models. The success of RMF
as well as Skyrme models may imply that the major properties
of dense nuclear matter are controlled by short-range forces.

We now comment on the density-matrix expansion
(DME) [35], which is popular in recent optimizations of
the nuclear EDF. The DME skips some low-order powers
of ρ1/3. This could be because it considers only statistical

correlations in the expression for the two-body density matrix,
namely the exchange term determined by the off-diagonal one-
body density matrix, but it neglects an irreducible two-body
dynamical correlation. The correlation function vanishes when
the wave function is a single Slater determinant (free Fermi
gas) but constitutes a significant correction in the presence of
short-range correlations, which can be treated within a variety
of quantum many-body methods [36]. We are not actually
proving here that the correlation function will generate the
missing terms of ρ1/3, but our observation that such terms do
arise in EFT and Eq. (1) may motivate further investigations.

III. METHODOLOGY

A. Form of the energy-density functional

The present ansatz for the energy per particle, except the
Coulomb energy, in the case of a homogeneous system of
nucleons with proton density ρp and neutron density ρn, reads

E(ρ,δ) = E(ρ,δ)
A

= T (ρ,δ) +
3∑

i=0

ci(δ)ρ1+i/3

+ cln(δ)ρ2 ln[ρ fm3], (2)

where we have introduced the total density ρ = ρn + ρp and
the asymmetry δ = (ρn − ρp)/ρ. The free-Fermi-gas kinetic
energy per particle is given by the standard expression [7,25]

T = Tp + Tn ,

Tp,n = 3
5

h̄2

2mp,n

x5/3
p,n(3π2ρ)2/3 (3)

with xp,n ≡ ρp,n/ρ. We motivated the form of Eq. (2) in Sec. II.
We are interested in determining the most relevant terms in
this expansion and whether any hierarchy can be inferred. At
present we examine up to the i = 3 term, but in general higher-
order powers can be considered and explored as well.

We may rewrite Eq. (2) as

E = T +
3∑

i=0

Ei + Eln, (4)

where the dependence on the density ρ and the asymmetry δ of
various terms should be understood. The E3 and Eln terms are
in effect a single term c′

3ρ
2 ln[ρ/ρx], if we define an unknown

reference density value ρx . For purely practical reasons and
without loss of generality we prefer to work with two separate
terms.

We proceed to specify the asymmetry dependence of the
potential energy, E − T . We stress that the dependence we
adopt does not affect our fits at all. It only enters our final
comparison with the results of chiral EFT in asymmetric
matter, which have large error bands, and the modeling of
the neutron-star mass-radius relation, which is not precisely
determined either. For our comparisons we therefore assume
the standard quadratic dependence, which is generally adopted,
for example, within the generalized liquid drop model [37,38]
and in recent analytical parametrizations of the chiral EFT
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TABLE I. Correspondence of the terms in Eq. (4) to conventional
Skyrme-functional terms and to powers of Fermi momentum.

Eq. (4) Skyrme functional Power of Fermi momentum

T kinetic en. k2
F

E0 t0 k3
F

E1 t3, a = 1/3 k4
F

E2 t1,t2; t ′
3, a′ = 2/3 k5

F

E3 t ′′
3 , a′′ = 1 k6

F

Eln special k6
F ln kF

results [39,40]. Then we can write

ck(δ) = αk + δ2βk; k = i or k = ln. (5)

There certainly exist open issues regarding the asymmetry
dependence of the nuclear EoS [11], but they lie beyond the
scope of the present paper.

The functional can be rewritten in the form of a Skyrme
functional, with the terms assigned as in Table I, which shows
explicitly the powers of the Fermi momentum corresponding
to each term. We note the presence of more than one density-
dependent term in such a corresponding Skyrme functional: a
fractional-power one (E1), a linear one (E3), and optionally a
second fractional-power one (contributing to E2) and a linear-
logarithmic one (Eln), which should be considered together
with the linear one. The presence of more than one density-
dependent term renders this form more flexible than the tradi-
tional Skyrme functionals. A Skyrme-type pseudopotential can
be reverse engineered through the correspondence of Table I
and used in Hartree-Fock calculations, once the partition of
c2 into purely density-dependent and a momentum-dependent
terms is constrained [32,33]. Indeed, generalized Skyrme func-
tionals with more than one density-dependent coupling have
been explored in Refs. [19,21]. The differences in our case are
that the terms are not arbitrarily chosen and that we determine
the parameters in homogeneous matter before applications to
nuclei. We note finally that the present functional accommo-
dates the empirical fractional-power density dependence of the
nuclear symmetry energy, with power a = 0.72 ± 0.19 [41].

If our tentative effective-theoretical arguments in Sec. II
have any merit, the expansion coefficients should display
naturalness with respect to the expansion variable kF /mρ .
Noting that, at zero temperature, ρ = ν

6π2 k
3
F , where ν = 4 for

symmetric nuclear matter (SNM) and ν = 2 for pure neutron
matter (PNM), we write

Ei(ρ,δ) = ci(δ)ρ1+i/3

=
[(

ν

6π2

)1+i/3

ci(δ)m2+i
ρ

]

mρ

(
kF

mρ

)3+i

. (6)

We note that kF /mρ ≃ 1/3 for saturated SNM. We will
examine whether the dimensionless parameters

cdim
i (δ) =

(
ν

6π2

)1+i/3

ci(δ)m2+i
ρ (7)

are of the same order of magnitude.

B. Fitting method

Having defined the form of the functional, we proceed to
determine and analyze the unknown parameters. For nuclear-
structure applications, one may follow the usual procedure of
fitting to nuclear properties as well as saturation properties of
nuclear matter. As already elaborated, our objective is differ-
ent: we are interested in validating and analyzing our ansatz in
homogeneous matter first. Also important is to not fit all five
parameters blindly, but examine which are the most important
ones, whose values do not depend strongly on the fitting pro-
cedure and may retain some physical content. We thus inspect
the fits of all possible combinations of one to five parameters.

The most appropriate set of pseudodata for our purposes
would include both symmetric and asymmetric matter. There-
fore we use the Akmal-Pandharipande-Ravenhall variational
results, which are based on the Argonne V18 and Urbana
potentials and available for both SNM and PNM [42]. This
set of pseudodata will be denoted as APR. For the purpose
of confirming our statistical fit analysis, the fitting has been
repeated with the Friedman-Pandharipande (FP) pseudodata
set [43], within the same density domain as the fit to the
APR set. The FP calculations were based on the Argonne V14
potential. The APR data are considered an improvement over
the FP data, because APR took into account the most accurate
two- and three-nucleon interaction until those days, relativistic
boost interaction, and the phase transition in the high-density
region. Therefore they constitute our main set.

We fit the functional form to the SNM data to obtain the
parameters ci(0) and then to the PNM data to obtain ci(1). We
will test our results against the chiral EFT results of Ref. [39],
which we will denote as DSS, available for δ = 1,0.9,0.8,0.7.
The necessary interpolation to asymmetric matter is possible
via Eq. (5). No fits are performed to the DSS data. We will
also compare with the SLy4 Skyrme functional, which was
partly constrained by microscopic results for homogeneous
matter [44].

For the fits to the APR (or FP) set, and separately for SNM
and PNM, we proceed as follows: We make use of all available
pseudodata points (ρj ,Dj ) for a given asymmetry value δ =
0,1. We perform a least-squares fit by minimizing

χ2(δ) =
∑

j

exp{−βρj /ϱ0}
(
E(ρj ) − Dj

T (ρj )

)2

; β ! 0 (8)

with ϱ0 = 0.16 fm−3. A dependence of the data-points set
{j} and related values on δ is implied. For the fits we use
the multiparameter regression routine of the GNU Scientific
Library [45]. We next proceed to explain the above choice for
the cost function.

The division of the cost function in Eq. (8) with the kinetic
energy allows us to increase the weight of the comparatively
small and disfavored contributions ofE(ρj ) − Dj at lower den-
sities, without introducing arbitrary weight functions. Some
further weighting is necessary nonetheless, owing to the nature
of the data: As pointed out in Ref. [42], the pseudodata show a
discontinuity at some value of density near 0.2 or 0.3 fm−3. The
authors recommend and use a different parametrization for the
low-density phase (LDP) and the high-density phase (HDP).
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Skyrme-type effective interaction [4] in the form of234

vi j = (t0 + y0Pσ )δ(ri − r j )

+ 1
2

(t1 + y1Pσ )[δ(ri − r j )k2 + k′2δ(ri − r j )]

+ (t2 + y2Pσ )k′ · δ(ri − r j )k

+ 1
6

N−1∑

n=1

(t3n+ y3nPσ )ρn/3δ(ri − r j )

+ iW0 k′ × δ(ri − r j ) k · (σ i + σ j ), (14)

where k = (∇i − ∇ j )/(2i), k′ = −(∇′
i − ∇′

j )/(2i), and Pσ is235

the spin-exchange operator. Here, W0 denotes the strength236

of the effective spin-orbit coupling, which is not active in237

homogeneous matter. It, therefore, must be determined from238

nuclear data. This is similar in form to a generalized Skyrme239

model proposed in Refs. [9–11], but the protocol for determin-240

ing the Skyrme potential parameters is quite different. In the241

so-called generalized Skyrme potential model, the parameters242

are determined by some properties of specific nuclei. In our243

case, however, we will begin with an unchanged EoS and use244

very few nuclear data for remaining undetermined parameters.245

We also retain the freedom to have, e.g., t33 = 0 but y33 ̸= 0.246

The corresponding EDF in terms of the local densities as well247

as gradient and kinetic terms can be obtained from a standard248

calculation as249

E = h̄2

2m
τ + 3

8
t0ρ − 1

8
(t0 + 2y0)ρδ2 + 1

16

N−1∑

n=1

t3nρ
1+n/3

− 1
48

N−1∑

n=1

(t3n+ 2y3n)ρ1+n/3δ2 + 1
64

(9t1 − 5t2 − 4y2)

× (∇ρ)2
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The matching reveals that there are two sources for the ρ5/3
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term in the EoS which corresponds to n= 2 in Eq. (14): one 256

from the density-dependent terms in Eq. (14) with the Skyrme 257

parameters t32, y32, and the other from the momentum- 258

dependent terms in Eq. (14) with the Skyrme parameters t1, 259

t2, y1, y2. The partition is encoded in the unknown parameters 260

ζ and ζ ′ in Eqs. (16) and (17). Also undetermined at this point 261

is the effective spin-orbit coupling strength W0. 262

Following the simple procedure of Ref. [3], in the present 263

work, we set y1 = y2 = 0 and assume ζ = ζ ′, which leaves 264

only two parameters, i.e., ζ and W0, to be determined by 265

nuclear data. In this case, the isoscalar and isovector effec- 266

tive mass parameters, µs ≡ m∗/m and µv ≡ m∗
v/m, where m 267

denotes the nucleon mass in free space, are not independent 268

but are determined via ζ according to their relations to θs and 269

θµ as [12] 270
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A refined method taking full advantage of the momentum- 271

dependent terms was developed and applied in Ref. [4]. The 272

refinement was found inconsequential for bulk and static 273

nuclear properties. Therefore, the above simplified procedure 274

with y1 = y2 = 0 suffices for our present purpose. We now 275

return to the issue of the expansion and examine whether 276

three SNM terms and four PNM terms, a total of seven EoS 277

parameters, are sufficient to achieve convergence of results in 278

the case of nuclei as well as in homogeneous matter. 279
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Model S3b with N = 3 the EoS parameters are fixed assuming α3 =
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Q0 = −360, −390, and −420 MeV, respectively. For S3b, we obtain
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Model N α0 α1 α2 α3

S3b 3 −664.52 763.55 40.13 0
S4a 4 −677.69 836.34 −93.95 82.33
S4b 4 −646.44 663.65 224.15 −112.99
S4c 4 −615.19 490.96 542.24 −308.30
PNM N α0 + β0 α1 + β1 α2 + β2 α3 + β3

KIDS-ad2 4 −411.13 1007.78 −1354.64 956.47

004300-4

Unified phenomenological model  
for nuclear matter and nucleus?

�22



MODERN PROBLEMS IN NUCLEAR AND ELEMENTARY PARTICLE PHYSICS

EXTENSION TO NUCLEAR PROPERTIES

CC10659 PRC July 6, 2019 5:12

GIL, KIM, HYUN, PAPAKONSTANTINOU, AND OH PHYSICAL REVIEW C 00, 004300 (2019)

Skyrme-type effective interaction [4] in the form of234

vi j = (t0 + y0Pσ )δ(ri − r j )

+ 1
2

(t1 + y1Pσ )[δ(ri − r j )k2 + k′2δ(ri − r j )]

+ (t2 + y2Pσ )k′ · δ(ri − r j )k

+ 1
6

N−1∑

n=1

(t3n+ y3nPσ )ρn/3δ(ri − r j )

+ iW0 k′ × δ(ri − r j ) k · (σ i + σ j ), (14)

where k = (∇i − ∇ j )/(2i), k′ = −(∇′
i − ∇′

j )/(2i), and Pσ is235

the spin-exchange operator. Here, W0 denotes the strength236

of the effective spin-orbit coupling, which is not active in237

homogeneous matter. It, therefore, must be determined from238

nuclear data. This is similar in form to a generalized Skyrme239

model proposed in Refs. [9–11], but the protocol for determin-240

ing the Skyrme potential parameters is quite different. In the241

so-called generalized Skyrme potential model, the parameters242

are determined by some properties of specific nuclei. In our243

case, however, we will begin with an unchanged EoS and use244

very few nuclear data for remaining undetermined parameters.245

We also retain the freedom to have, e.g., t33 = 0 but y33 ̸= 0.246

The corresponding EDF in terms of the local densities as well247

as gradient and kinetic terms can be obtained from a standard248

calculation as249

E = h̄2

2m
τ + 3

8
t0ρ − 1

8
(t0 + 2y0)ρδ2 + 1

16

N−1∑

n=1

t3nρ
1+n/3

− 1
48

N−1∑

n=1

(t3n+ 2y3n)ρ1+n/3δ2 + 1
64

(9t1 − 5t2 − 4y2)

× (∇ρ)2

ρ
− 1

64
(3t1 + 6y1 + t2 + 2y2)

(∇ρδ)2

ρ

+ 1
8

(2t1 + y1 + 2t2 + y2)τ − 1
8

(t1 + 2y1 − t2 − 2y2)

×
∑

q

ρqτq

ρ
+ 1

2
W0

(
J · ∇ρ

ρ
+

∑

q

Jq · ∇ρq

ρ

)

, (15)

where τ denotes the kinetic energy density and J the current250

density. The sum over qmeans the summation over isospin,251

i.e., q= (n, p). Matching the KIDS EDF in Eq. (2) and the252

Skyrme functional in Eq. (15) leads to the following relations:253

t0 = 8
3

c0(0), y0 = 8
3

c0(0) − 4c0(1),

t3n = 16cn(0) , y3n = 16cn(0) − 24cn(1), (n ̸= 2),

t32 = 16c2(0) − 3
5

(
3
2
π2

)2/3

θs

≡ 16c2(0)(1 − ζ ),

y32 = 16c2(0) − 24c2(1) + 3
5

(3π2)2/3
(

3θµ − θs

22/3

)

≡ [16c2(0) − 24c2(1)](1 − ζ ′), (16)

which defines ζ and ζ ′ with 254

θs ≡ 3t1 + 5t2 + 4y2 = 5
3

(
3π2

2

)−2/3

16c2(0)ζ ,

θµ ≡ t1 + 3t2 − y1 + 3y2

= θs

3 · 22/3
− 5

9
(3π2)−2/3[16c2(0) − 24c2(1)]ζ ′. (17)

The matching reveals that there are two sources for the ρ5/3
255

term in the EoS which corresponds to n= 2 in Eq. (14): one 256

from the density-dependent terms in Eq. (14) with the Skyrme 257

parameters t32, y32, and the other from the momentum- 258

dependent terms in Eq. (14) with the Skyrme parameters t1, 259

t2, y1, y2. The partition is encoded in the unknown parameters 260

ζ and ζ ′ in Eqs. (16) and (17). Also undetermined at this point 261

is the effective spin-orbit coupling strength W0. 262

Following the simple procedure of Ref. [3], in the present 263

work, we set y1 = y2 = 0 and assume ζ = ζ ′, which leaves 264

only two parameters, i.e., ζ and W0, to be determined by 265

nuclear data. In this case, the isoscalar and isovector effec- 266

tive mass parameters, µs ≡ m∗/m and µv ≡ m∗
v/m, where m 267

denotes the nucleon mass in free space, are not independent 268

but are determined via ζ according to their relations to θs and 269

θµ as [12] 270

µ−1
s ≡ (m∗/m)−1 = 1 + mρ

8h̄2 θs,

µ−1
v ≡ (m∗

v/m)−1 = 1 + mρ

4h̄2 (θs − θµ). (18)

A refined method taking full advantage of the momentum- 271

dependent terms was developed and applied in Ref. [4]. The 272
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return to the issue of the expansion and examine whether 276
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FIG. 2. Energy of pure neutron matter EPNM divided by the
free-gas value EFG as a function of |akN |, where a(= −18.9 fm)
is the neutron-neutron scattering length in free space, and kN is
the neutron Fermi momentum. Corresponding density values are
indicated on the upper abscissa. The KIDS-ad2 equation of state (full
line) is compared with the results of chiral EFT (gray band), a QMC
calculation (points), the EFT-inspired model YGLO(Akmal) (black
dashed line) and other available models fitted to nuclear data under
various protocols.

given as

vi j = (t0 + y0Pσ )δ(ri j ) + 1
2

(t1 + y1Pσ )[δ(ri j )k2 + H.c.]

+ (t2 + y2Pσ )k′ · δ(ri j )k + iW0k′ × δ(ri j )k · (σ i + σ j )

+ 1
6

3∑

n=1

(t3n+ y3nPσ )ρanδ(ri j ), an = n/3, (3)

where k = (∇i − ∇ j )/(2i) and k′ = −(∇′
i − ∇′

j )/(2i), ri j is
the relative coordinate, and Pσ is the spin-exchange operator.
The strength of the spin-orbit coupling, which is absent in the
EoS of Eq. (1), is introduced by the W0 term. It should be noted
that the above “force” is an auxiliary entity with no direct
relation to a true Hamiltonian. (It is rather used as a stepping
stone to the equivalent independent-particle external potential
V and resulting Kohn-Sham orbitals.) Indeed, it is fitted rather
than derived. More to the point, unless the values of an in
the density dependence are integers, it cannot consistently be
interpreted as a multibody interaction [30].

The Skyrme force of Eq. (3) resembles other generalized
Skyrme models with multiple density-dependent couplings
t3n [31–33]. However, our strategy for determining not only
the precise form [22], but also the strength of the Skyrme
parameters is completely different. In particular, we keep the
given EoS unchanged. In addition, we can retain the flexibility
to assume arbitrary values for the nucleon effective mass if
desired.

By comparing Eq. (1) and the EDF corresponding to the
above Skyrme force [8,20], relations among Skyrme and

KIDS parameters can be straightforwardly obtained as

t0 = 8
3

c0(0), y0 = 8
3

c0(0) − 4c0(1),

t3n = 16cn(0), y3n = 16cn(0) − 24cn(1) (n ̸= 2),
(4)

t32 = 16c2(0) − 3
5

(
3
2
π2

)2/3

θs,

y32 = 16c2(0) − 24c2(1) + 3
5

(3π2)2/3
(

3θµ − θs

22/3

)
,

with

θs ≡ 3t1 + 5t2 + 4y2, θµ ≡ t1 + 3t2 − y1 + 3y2. (5)

This reveals that: (1) most Skyrme parameters (t0, y0, t31,
y31, t33, y33) are uniquely determined from the KIDS EoS
parameters with n ̸= 2, but (2) the above EDF for nuclei
provides two sources for the c2(δ)ρ5/3 term (n= 2): One from
the density-dependent term in Eq. (3) (Skyrme parameters
t32, y32), and the other from the momentum-dependent terms
in Eq. (3) (parameters t1, t2, y1, y2). The latter parameters
determine the isoscalar and isovector effective masses as [34]

µ−1
s ≡ (m∗

IS/m)−1 = 1 + m

8h̄2 ρθs, (6)

µ−1
v ≡ (m∗

IV/m)−1 = 1 + m

4h̄2 ρ(θs − θµ), (7)

where we have used, for simplicity, the average nucleon
mass m.

The unknowns to be determined for nuclei, besides W0, are
then the momentum-dependent proportions in c2(0) and c2(1)
and, correspondingly, the precise values of t1,2 and y1,2. Our
procedure is to

(1) fit the momentum-dependent terms to the energy and
charge radius of 40Ca (details specified below) with W0
initialized to null,

(2) determine W0 from the energies and radii of the nuclei
48Ca and 208Pb,

(3) iterate, i.e., examine 40Ca with the new value of W0 and
again determine W0 anew, and so on.

It turns out that iteration is largely unnecessary because the
bulk properties of the spin-saturated nucleus 40Ca are insensi-
tive to W0.

The momentum-dependent part (steps 1 and 3 above)
can be determined in different ways. A simplistic proce-
dure we explored before [23,24] is to set y1 = y2 = 0 and
encode the momentum dependence in a single parameter
k, corresponding to the portion of c2(δ) assigned to the
momentum-dependence part. The value of k is then deter-
mined from the properties of 40Ca. For KIDS-ad2, one obtains
k = 0.111, corresponding to (µs = 0.99, µv = 0.82), and
W0 = 108.35 MeV fm5. This method provides rather limited
flexibility.

A preferable way is to retain the freedom in y1,2. We now
have four parameters to be explored instead of two. This
freedom allows us to explore different values for the effective
masses (µs, µv) at saturation density and is central to the
present paper. According to Eqs. (4)–(7), the values for the
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FIG. 2. Energy of pure neutron matter EPNM divided by the
free-gas value EFG as a function of |akN |, where a(= −18.9 fm)
is the neutron-neutron scattering length in free space, and kN is
the neutron Fermi momentum. Corresponding density values are
indicated on the upper abscissa. The KIDS-ad2 equation of state (full
line) is compared with the results of chiral EFT (gray band), a QMC
calculation (points), the EFT-inspired model YGLO(Akmal) (black
dashed line) and other available models fitted to nuclear data under
various protocols.
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(

3θµ − θs

22/3

)
,

with

θs ≡ 3t1 + 5t2 + 4y2, θµ ≡ t1 + 3t2 − y1 + 3y2. (5)

This reveals that: (1) most Skyrme parameters (t0, y0, t31,
y31, t33, y33) are uniquely determined from the KIDS EoS
parameters with n ̸= 2, but (2) the above EDF for nuclei
provides two sources for the c2(δ)ρ5/3 term (n= 2): One from
the density-dependent term in Eq. (3) (Skyrme parameters
t32, y32), and the other from the momentum-dependent terms
in Eq. (3) (parameters t1, t2, y1, y2). The latter parameters
determine the isoscalar and isovector effective masses as [34]

µ−1
s ≡ (m∗

IS/m)−1 = 1 + m

8h̄2 ρθs, (6)

µ−1
v ≡ (m∗

IV/m)−1 = 1 + m

4h̄2 ρ(θs − θµ), (7)

where we have used, for simplicity, the average nucleon
mass m.

The unknowns to be determined for nuclei, besides W0, are
then the momentum-dependent proportions in c2(0) and c2(1)
and, correspondingly, the precise values of t1,2 and y1,2. Our
procedure is to

(1) fit the momentum-dependent terms to the energy and
charge radius of 40Ca (details specified below) with W0
initialized to null,

(2) determine W0 from the energies and radii of the nuclei
48Ca and 208Pb,

(3) iterate, i.e., examine 40Ca with the new value of W0 and
again determine W0 anew, and so on.

It turns out that iteration is largely unnecessary because the
bulk properties of the spin-saturated nucleus 40Ca are insensi-
tive to W0.

The momentum-dependent part (steps 1 and 3 above)
can be determined in different ways. A simplistic proce-
dure we explored before [23,24] is to set y1 = y2 = 0 and
encode the momentum dependence in a single parameter
k, corresponding to the portion of c2(δ) assigned to the
momentum-dependence part. The value of k is then deter-
mined from the properties of 40Ca. For KIDS-ad2, one obtains
k = 0.111, corresponding to (µs = 0.99, µv = 0.82), and
W0 = 108.35 MeV fm5. This method provides rather limited
flexibility.

A preferable way is to retain the freedom in y1,2. We now
have four parameters to be explored instead of two. This
freedom allows us to explore different values for the effective
masses (µs, µv) at saturation density and is central to the
present paper. According to Eqs. (4)–(7), the values for the
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TABLE I. The Skyrme-type parameters, deviations of the calculated energies, and charge radii defined by Eq. (8), and the predictions for
60Ca, for the models indicated on the leftmost column. The corresponding powers of the density-dependent couplings (a1, a2, a3) are as in
Eq. (1) except for SLy4 where there is only one density-dependent term with a1 = 1/6. The errors DE and DR in the cases of GSkI and SLy4
are calculated based only on the values reported in the respective original publications [32,37].

Model, or: 60Ca:
K0 t0 t1 t2 t31 t32 t33 W0 DE (%) E

A (MeV)
(µs, µv) y0 y1 y2 y31 y32 y33 DR (%) Rc (fm)

KIDS0 −1772.04 275.72 −161.50 12216.73 571.07 0 108.35 0.32 7.6561
−127.52 0 0 −11969.99 29485.49 −22955 0.56 3.6465

240 MeV −1772.04 270.52 −355.95 12216.73 642.12 0 97.61 0.38 7.6993
(1.0, 0.82) −127.52 156.90 242.04 −11969.99 29224.07 −22955 0.56 3.6416
240 MeV −1772.04 448.99 −279.45 12216.73 −2572.65 0 135.24 0.26 7.6464
(0.7,0.82) −127.52 −345.72 234.74 −11969.99 41318.69 −22955 0.52 3.6420
240 MeV −1772.04 315.97 −527.58 12216.73 −191.34 0 107.58 0.38 7.6933
(0.9,1.00) −127.52 −56.87 480.10 −11969.99 36289.12 −22955 0.57 3.6370
220 MeV −1938.71 281.04 −479.05 15900.76 −2750.91 0 88.96 0.52 7.7701
(1.0,0.82) −294.19 236.07 388.03 −8285.96 25831.04 −22955 0.94 3.6524
220 MeV −1938.71 466.23 −439.68 15900.76 −5965.68 0 133.36 0.44 7.6807
(0.7,0.82) −294.19 −247.10 422.10 −8285.96 37925.67 −22955 0.82 3.6663
GSkI [32] −1855.45 397.23 264.63 13858.00 −2694.06 −319.87 169.57 0.16 7.6294

−219.02 −698.59 −478.13 1747.29 3200.69 146.94 0.50 3.6640
SLy4 [37] −2488.91 486.82 −546.39 13777.00 122.69 0.33 7.7030

−2075.75 −167.37 546.39 18654.06 0.91 3.6734

effective masses together with the already-fixed EoS coeffi-
cients c2(0), c2(1) determine the parameters t32, y32. This is
different from the traditional Skyrme force model that has a
priori t32 = y32 = 0, making the whole c2 term momentum
dependent, not necessarily a physical assumption. We are
now left with only two unknowns in each case, namely, two
linear combinations of t1, t2, y1, y2. In the Skyrme functional,
those correspond conveniently to the isoscalar and isovector
gradient coupling coefficients Cρ "ρ

0 and Cρ "ρ
1 , which are

inactive in and unconstrained by homogeneous matter, but the
fit to nuclei can determine them. In practice, the parameter
space can be handily constrained by demanding: (1) that
Cρ "ρ

1 be lower than 50 MeV fm5 (a handy and loose enough
rule of thumb [35]) and (2) that polarized neutron matter
remain stable at high densities [36]. From the acceptable
combinations, we choose the one that gives the best results
for 40Ca. Finally, for each parameter set [i.e., essentially, for
each pair of (µs, µv) and best fit to 40Ca] we determine W0 by
fitting to the energies and radii of 48Ca and 208Pb.

In the following applications, we employ primarily the
KIDS-ad2 parametrization, which is based on the APR EoS
and was already presented above, and we explore the momen-
tum dependence. Skyrme parmeters for different values of the
effective masses are derived as already described for:

(1) The KIDS-ad2 EoS for SNM and PNM, and for µs =
0.7, 0.8, 0.9, 1.0 (with µv = 0.82) or for µv = 1.0
(with µs = 0.9).

(2) For verification purposes, the same EoS parameters as
KIDS-ad2 except that the SNM compression modu-
lus is K0 = 220 MeV; thus c0(0) = −727.02, c1(0) =

993.80, c2(0) = −171.93, c3(0) = 0.0, where cn val-
ues are in units of MeV fmn+3.

For comparison, we apply also the Skyrme parameter set
with y1 = y2 = 0 and k = 0.111 [23,24], henceforth labeled
KIDS0:

(1) KIDS0: The same EoS as KIDS-ad2 but with y1 =
y2 = 0, µs = 0.99, µv = 0.82, W0 = 108.35 MeV.

Resulting Skyrme-type parameters for representative cases are
collected in Table I.

Results from Hartree-Fock calculations for the input nuclei
40,48Ca, 208Pb, and for other (semi-)magic nuclei are shown
in Fig. 3 along with the available data. Here, all results for
16O, 28O, 60Ca, 90Zr, 132Sn, and 218U are predictions. We
compute a mean absolute deviation of the calculated observ-
able O (O = E/A or Rc) with respect to data defined as

DO = 1
Nnucl

Nnucl∑

i=1

∣∣∣∣∣
Oexpt

i − Ocal
i

Oexpt
i

∣∣∣∣∣, (8)

where the sum runs over nuclei considered here for which data
exist. Results are shown in Table I.

We observe that in the scale of the graphs the results
for the bulk properties are practically indistinguishable and,
apart from 16O, in excellent agreement with available data
and on a par with other models as the values of DE and DR
indicate. From these results, we draw two conclusions: (1) A
good-quality Skyrme model can easily be reverse engineered
from a good-quality EoS without refitting the latter, whereas
(2) bulk and static quantities are practically independent from
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FIG. 3. Results for binding energy per nucleon E/A, charge
radius Rc, and neutron-skin thickness !rnp. All results for
16O, 28O, 60Ca, 90Zr, 132Sn, and 218U and all neutron-skin results
are predictions. Data of energy per particle and charge radius are
taken from the National Nuclear Data Center and Ref. [38], whereas
neutron-skin data from Refs. [39– 41].

the effective mass. The second conclusion is a most unusual,
although intuitively unsurprising result, which would not have
been revealed had we ascribed the ρ5/3 term fully to the ki-
netic energy from the outset. Note that, in that case, for KIDS-
ad2, we would have obtained µs = 0.92 and µv = 0.33.

The insensitivity to the effective-mass assumptions is also
examined in Table I for the exotic nucleus 60Ca which was
recently discovered [42]. Some dependence is perceived in the
much finer cases of the neutron-skin thickness, in particular,
of 208Pb, 218U, and 90Zr, possibly attributable to structural
details that should be examined further in subsequent stud-
ies. We also observed a tendency that the K0 = 240 MeV
parametrizations perform better than those with K0 =
220 MeV. Systematic studies will be reported elsewhere.

The effective-mass values can, of course, affect dynamical
properties, such as removal and capture energies (single-
particle spectrum) and nuclear collective motion. Figure 4
compares presently obtained single-particle energies with data
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FIG. 4. Energies of occupied proton levels of 208Pb from various
models compared with empirical removal energies [44]. The KIDS
results for K0 = 240 MeV, µv = 0.82, and varying µs are on the left
of the experimental levels. The number under each model name is
the deviation D of Eq. (9), in percentage points, for the levels shown
underneath.

and other model calculations, UNEDF2 [43], GSkI [32], and
SLy4 [37]. In UNEDF2 and GSkI, the single-particle energy
levels of 208Pb are used in the fitting, so they are expected to
give better results. For a quantitative comparison, we consider
a mean absolute deviation,

D ≡ 1
N

N∑

i=1

∣∣∣∣∣
E expt

i − E cal
i

E expt
i

∣∣∣∣∣, (9)

with the sum executed on all states shown in Fig. 4. This
value is given in units of percentage points under the name
of each model in Fig. 4. The accuracy of KIDS models with
high effective mass is similar to those of GSkI and UNEDF2
models. Strictly speaking, the energy of only the highest
occupied state of a many-body system can be considered as an
observable [4,45]. The comparison is nonetheless interesting,
in confirming that higher values of µs may be needed to
reproduce the single-particle spectrum of 208Pb.

Since the effective-mass value influences the level density,
it is relevant when one considers an effective pairing force
(unless perhaps consistency issues are properly addressed
[46]). The latter is active in open-shell nuclei. The issue
goes beyond the scope of the present paper, but two remarks
are in order at present. First, if closed-shell nuclei are well
described by KIDS, then an effective pairing treatment with
KIDS functionals can be at least as accurate as with other
functionals in use. Second, the flexibility KIDS retains in the
values of the effective mass will lead to more flexibility when
examining pairing. As an illustration of the above, in Fig. 5,
we show the energy per particle in Ca and Sn isotopes without
pairing calculated with the KIDS-ad2 parametrization for
different values of the effective mass and with two represen-
tative Skyrme functionals along with data. The trends along
isotopic chains are the same for all functionals. In addition, a
residual effect of the effective mass is seen in some open-shell
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value is given in units of percentage points under the name
of each model in Fig. 4. The accuracy of KIDS models with
high effective mass is similar to those of GSkI and UNEDF2
models. Strictly speaking, the energy of only the highest
occupied state of a many-body system can be considered as an
observable [4,45]. The comparison is nonetheless interesting,
in confirming that higher values of µs may be needed to
reproduce the single-particle spectrum of 208Pb.

Since the effective-mass value influences the level density,
it is relevant when one considers an effective pairing force
(unless perhaps consistency issues are properly addressed
[46]). The latter is active in open-shell nuclei. The issue
goes beyond the scope of the present paper, but two remarks
are in order at present. First, if closed-shell nuclei are well
described by KIDS, then an effective pairing treatment with
KIDS functionals can be at least as accurate as with other
functionals in use. Second, the flexibility KIDS retains in the
values of the effective mass will lead to more flexibility when
examining pairing. As an illustration of the above, in Fig. 5,
we show the energy per particle in Ca and Sn isotopes without
pairing calculated with the KIDS-ad2 parametrization for
different values of the effective mass and with two represen-
tative Skyrme functionals along with data. The trends along
isotopic chains are the same for all functionals. In addition, a
residual effect of the effective mass is seen in some open-shell
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FIG. 5. Energy per particle of (a) Ca and (b) Sn isotopes with-
out considering pairing correlations. The KIDS results for K0 =
240 MeV, µv = 0.82, and varying µs are shown along with those
from representative Skyrme functionals (SLy4, GSkI) and experi-
mental data.

isotopes. A study of pairing with KIDS in a Hartree-Fock-
Bogolyubov framework will be reported elsewhere.

IV. SUMMARY

We presented and validated a unique method for extracting
a generalized Skyrme-type EDF for nuclei from a given
immutable EoS. The scheme utilizes a natural and versatile
ansatz for the EoS of SNM and PNM which is “agnostic”
with respect to effective masses. We have shown that: (1) A
predictive Skyrme model can easily be reverse engineered
from a realistic EoS (one that respects generally accepted
constraints around the saturation point) without refitting the
latter (a need for refitting signifying an unrealistic EoS by
definition), and that (2) bulk and static quantities are prac-
tically independent of effective masses. To our knowledge,
these are unique results unifying the description of finite
and homogeneous systems. Future applications abound: Our
method will allow us to vary independently and at will
all relevant EoS parameters (e.g., compression modulus or
symmetry-energy parameters) around a baseline set of values
(here, those of KIDS-ad2) and the effective mass and to
examine their effects on predictions for nuclear observables
with special focus on exotic nuclei to be explored in new rare-
isotope facilities [47]. An exploration of symmetry-energy
parameters is underway [48,49]. Explorations of giant res-
onances and related issues regarding the role of the EoS
parameters and effective mass [50] are also in progress [51]. It
remains feasible and a future goal to constrain the momentum
and spin dependence based on microscopic calculations of the
effective mass or polarized matter and the spin-orbit coupling
from, e.g., relativistic approaches.
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the Kohn-Sham scheme [5,6]. With the baseline EoS from64

Ref. [1] and only six input data, namely, the ground-state65

energies and charge radii of three nuclei, it was possible66

to obtain a successful description of the bulk properties of67

closed-(sub)shell nuclei over a wide range of atomic number,68

say from 16O to 218U [2– 4].1 Furthermore, the results were69

found to be practically independent of the assumption on the70

in-medium effective mass [4], which means that the latter71

cannot be efficiently constrained by the bulk static proper-72

ties of nuclei. The corresponding parameters then remain to73

be determined via dynamic properties of nuclei. The above74

results showed that with a well-defined nuclear EoS Ansatz,75

the convenient Skyrme formalism, and simple rules for fitting,76

it would be possible to find a unified and phenomenological77

nuclear model describing nuclear matter and nuclei with the78

same parameter set, i.e., the same EoS.79

Before developing more sophisticated models to describe80

various types of nuclei along this approach, we address the81

convergence issue in the description of closed-(sub)shell nu-82

clei at the present stage. Throughout the previous publica-83

tions [1– 4] we have shown that the expansion of the EoS84

as a power series of the Fermi momentum exhibits excellent85

convergence well above the saturation density [2]. However,86

careful analyses lead to the observation that the degree of87

convergence depends on isospin and, as a result, higher-order88

contributions are more important in PNM than in SNM. In89

fact, in Ref. [1], it is shown that, while three terms are90

sufficient for describing SNM in a fast-converging hierarchy,91

at least four terms are needed to have such behavior for PNM.92

The origin of this difference is certainly of theoretical interest93

and requires sophisticated investigations on nuclear dynamics.94

Although we will not address here the issue on its fundamental95

origins, it would be important and meaningful to examine96

the convergence in the description of finite nuclei. This is97

the major motivation of the present article and the purpose98

of the this work is to examine the convergence of the power99

series expansion in the Fermi momentum for the description100

of finite nuclei.101

The nuclear EoS is often represented in terms of param-102

eters defined at the saturation point such as the saturation103

density ρ0, the binding energy per particle at saturation E0, the104

symmetry energy at saturation J , the slope parameter L, and105

the compression modulus K0. These parameters were used to106

constrain the nuclear EoS in our previous publications [1– 4].107

However, the role of the parameters that are related to higher108

derivatives of the EoS with respect to density remains to be109

explored. These “EoS parameters” can be readily expressed110

analytically in terms of the KIDS expansion coefficients. The111

question of how many KIDS parameters are needed for an112

efficient description of nuclear systems can be rephrased as113

how many high-order derivatives of the SNM energy and of114

the symmetry energy are needed. In other words, we also need115

to examine how many EoS parameters are necessary for an116

efficient and well-converged description of PNM and nuclear117

ground states. Furthermore, since higher-order terms in the118

1Because only closed-(sub)shell nuclei were considered, we do not
include pairing interactions in the present work.

power series expansion control the behavior of the nuclear 119

EoS at higher densities, higher-order EoS parameters such as 120

the skewness and kurtosis would help in constraining the EoS 121

at higher densities and examining the convergence of the EoS. 122

Motivated by the above issues, in the present work we 123

address the following questions. In Refs. [1– 4], we success- 124

fully parameterized the EoS of SNM and PNM by three and 125

four EoS parameters in the considered range of densities. 126

Then it is natural to seek how far the constructed EoS can 127

be applied as a function of density. This is related to the role 128

of higher-order EoS parameters and we explore the sensitivity 129

of our EoS to higher-order EoS parameters. Once their role is 130

identified for homogeneous nuclear matter, we investigate the 131

role of higher-order EoS parameters in the description of finite 132

nuclei. To this end, we obtain results for various values of the 133

skewness of the SNM EoS and the kurtosis of the symmetry 134

energy at the saturation point to confirm that such higher-order 135

terms hardly play any role. The corollary is that the skewness 136

of the SNM EoS and the symmetry-energy kurtosis cannot be 137

practically constrained by the static properties of nuclei such 138

as masses and radii. 139

This paper is organized as follows. In Sec. II, we briefly 140

review the formalism of the KIDS EDF and the corresponding 141

Skyrme potentials will be developed. Section III is devoted 142

to the exploration of the uncertainty in the fourth-order term 143

in SNM and the role of the skewness of the SNM EoS is 144

examined. The mass-radius relations of neutron stars are also 145

computed within the models of the present approach. Then, in 146

Sec. IV, we increase the number of terms in the asymmetric 147

part of EDF to investigate the convergence behavior of the 148

model with respect to the kurtosis of the nuclear symmetry 149

energy. In Sec. V, we discuss the results in the context of 150

current efforts to extend the nuclear EDF, in particular, in the 151

form of extended Skyrme functionals with rich momentum 152

dependence and tensor forces. Finally, we summarize and 153

conclude in Sec. VI. 154

II. KIDS EDF: EQUATION OF STATE AND 155

CORRESPONDING SKYRME FUNCTIONALS 156

A. KIDS equation of state 157

In the KIDS model for nuclear EDF, the energy per particle 158

in homogeneous nuclear matter is expanded in powers of the 159

Fermi momentum kF or equivalently the cubic root of the 160

baryon density ρ. Thus, the nuclear EDF in this approach is 161

written as 162

E (ρ, δ) = T (ρ, δ) +
N−1∑

i=0

ci(δ)ρ1+i/3, (1)

where T is the free Fermi-gas kinetic energy and the potential 163

energy is expanded up to N terms, namely, up to the order 164

of ρ (N+2)/3 starting from the ρ term. The isospin asymmetry 165

δ is defined as δ = (ρn − ρp)/ρ, where ρn and ρp are neu- 166

tron and proton densities, respectively, which give the total 167

nucleon density ρ = ρn + ρp. Model parameters ci(δ) could 168

be expanded in even powers of isospin asymmetry δ. For the 169

purpose of the present work, we adopt the usual quadratic 170

approximation for the isospin-asymmetry dependence of ci(δ) 171
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by writing172

ci(δ) = αi + βiδ
2, (2)

which leads to αi = ci(0) and βi = ci(1) − ci(0).173

The expansion parameters ci(δ) can be constrained once174

the empirical properties of nuclear matter, i.e., EoS param-175

eters, are known. Phenomenologically, these parameters are176

defined at nuclear saturation density by the series expansion of177

the SNM energy E (ρ, 0) and nuclear symmetry energy, which178

can be defined and expressed as179

S (ρ) = 1
2

∂2

∂δ2
E (ρ, δ)

∣∣∣∣
δ=0

= Tsym(ρ) +
N−1∑

i=0

βiρ
1+i/3, (3)

where the contribution from the free kinetic energy reads180

Tsym(ρ) = h̄2

6 m

(
3π2

2

)2/3

ρ2/3. (4)

Then EoS parameters of interest are defined through [7]181

E (ρ, 0) = E0 + 1
2 K0x2 + 1

6 Q0x3 + O(x4),

S (ρ) = J + Lx + 1
2 Ksymx2 + 1

6 Qsymx3 + 1
24 Rsymx4

+ O(x5), (5)

where x = (ρ − ρ0)/(3ρ0).182

Therefore, the SNM energy is characterized by the sat-183

uration density ρ0, the energy per particle at saturation E0,184

the compression modulus K0, and the skewness coefficient Q0185

defined as186

K0 ≡ 9ρ2
0

d 2

dρ2

E (ρ, 0)
ρ

∣∣∣∣
ρ=ρ0

,

Q0 ≡ 27ρ3
0

d 3

dρ3
E (ρ, 0)

∣∣∣∣
ρ=ρ0

. (6)

However, the nuclear symmetry energy is customarily charac-187

terized at the saturation point by its value J = S (ρ0), the slope188

L, and the curvature Ksym defined as189

L ≡ 3ρ0
d

dρ
S (ρ)

∣∣∣∣
ρ=ρ0

,

Ksym ≡ 9ρ2
0

d 2

dρ2

S (ρ)
ρ

∣∣∣∣
ρ=ρ0

. (7)

In addition, we consider the skewness Qsym and the kurtosis190

Rsym, defined via the third and fourth derivatives, respectively,191

as192

Qsym ≡ 27ρ3
0

d 3

dρ3
S (ρ)

∣∣∣∣
ρ=ρ0

,

Rsym ≡ 81ρ4
0

d 4

dρ4
S (ρ)

∣∣∣∣
ρ=ρ0

. (8)

These EoS parameters will be discussed in the parametrization193

of the KIDS model.194

All the above quantities are readily obtained analytically 195

with the help of expressions of Eqs. (1)–(3). Explicitly, we 196

have 197

K0 = −2T (ρ0, 0) +
N−1∑

i=0

i(i + 3)αiρ
1+i/3
0 , (9)

Q0 = +8T (ρ0, 0) +
N−1∑

i=0

i(i + 3)(i − 3)αiρ
1+i/3
0 , (10)

Ksym = −2Tsym(ρ0) +
N−1∑

i=0

i(i + 3)βiρ
1+i/3
0 , (11)

Qsym = +8Tsym(ρ0) +
N−1∑

i=0

i(i + 3)(i − 3)βiρ
1+i/3
0 , (12)

Rsym = −56Tsym(ρ0) +
N−1∑

i=0

i(i + 3)(i − 3)(i − 6)βiρ
1+i/3
0 .

(13)

These relations connect the values of the EoS parameter to 198

our model parameters αi and βi. Once the values of EoS 199

parameters are known, our approach allows us to find the 200

nuclear EoS to the desired order in density. However, most 201

of the above EoS parameters are not known to a satisfactory 202

accuracy and ranges of their values are to be explored. 203

In Ref. [1], we determined the baseline KIDS parameter 204

set labeled “KIDS-ad2” in the following way. We began by 205

fitting many possible combinations (of varying order N) of 206

KIDS parameters αi and βi to the Akmal-Pandharipande- 207

Ravenhall (APR) EoS [8]. Having concluded that the three 208

lowest-order terms are sufficient for the description of SNM, 209

we set α3 = 0, and determined α0,1,2 by widely adopted 210

empirical properties at saturation, namely, ρ0 = 0.16 fm−3, 211

E0 = −16 MeV, and K0 = 240 MeV. (These values are also 212

consistent with the APR EoS.) This model is then found 213

to give the skewness coefficient Q0 ≈ −373 MeV. The co- 214

efficients ci(1), or equivalently βi, were also fitted to the 215

APR EoS for PNM. In this case, we found that at least four 216

terms had to be retained in the KIDS EDF to reproduce the 217

APR EoS for PNM. The resulting EDF gives J = 32.8 MeV, 218

L = 49.3 MeV, Ksym = −156 MeV, Qsym = 583 MeV, and 219

Rsym = −2470 MeV. 220

The KIDS-ad2 EoS determined in this way was sub- 221

sequently transposed into a zero-range, density-dependent 222

effective interaction for nuclei and applied successfully to 223

Hartree-Fock calculations of nuclear ground states of closed- 224

shell nuclei [3,4], providing satisfactory results, on a par 225

with generalized Skyrme-type functionals. The question to be 226

addressed at the present work is to examine whether superior 227

results can be obtained with higher-order terms. 228

B. Corresponding Skyrme functionals 229

In this subsection, we review a simple procedure for ap- 230

plying a given KIDS EoS to the description of finite nuclei, 231

which will be employed in the present work. The Fermi 232

momentum expansion of EDF in Eq. (1) leads to a convenient 233
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All the above quantities are readily obtained analytically 195
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These relations connect the values of the EoS parameter to 198

our model parameters αi and βi. Once the values of EoS 199

parameters are known, our approach allows us to find the 200

nuclear EoS to the desired order in density. However, most 201

of the above EoS parameters are not known to a satisfactory 202

accuracy and ranges of their values are to be explored. 203

In Ref. [1], we determined the baseline KIDS parameter 204

set labeled “KIDS-ad2” in the following way. We began by 205

fitting many possible combinations (of varying order N) of 206

KIDS parameters αi and βi to the Akmal-Pandharipande- 207

Ravenhall (APR) EoS [8]. Having concluded that the three 208

lowest-order terms are sufficient for the description of SNM, 209

we set α3 = 0, and determined α0,1,2 by widely adopted 210

empirical properties at saturation, namely, ρ0 = 0.16 fm−3, 211

E0 = −16 MeV, and K0 = 240 MeV. (These values are also 212

consistent with the APR EoS.) This model is then found 213

to give the skewness coefficient Q0 ≈ −373 MeV. The co- 214

efficients ci(1), or equivalently βi, were also fitted to the 215

APR EoS for PNM. In this case, we found that at least four 216

terms had to be retained in the KIDS EDF to reproduce the 217

APR EoS for PNM. The resulting EDF gives J = 32.8 MeV, 218

L = 49.3 MeV, Ksym = −156 MeV, Qsym = 583 MeV, and 219

Rsym = −2470 MeV. 220

The KIDS-ad2 EoS determined in this way was sub- 221

sequently transposed into a zero-range, density-dependent 222

effective interaction for nuclei and applied successfully to 223

Hartree-Fock calculations of nuclear ground states of closed- 224

shell nuclei [3,4], providing satisfactory results, on a par 225

with generalized Skyrme-type functionals. The question to be 226

addressed at the present work is to examine whether superior 227

results can be obtained with higher-order terms. 228

B. Corresponding Skyrme functionals 229

In this subsection, we review a simple procedure for ap- 230

plying a given KIDS EoS to the description of finite nuclei, 231

which will be employed in the present work. The Fermi 232

momentum expansion of EDF in Eq. (1) leads to a convenient 233
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Therefore, the SNM energy is characterized by the sat-183

uration density ρ0, the energy per particle at saturation E0,184

the compression modulus K0, and the skewness coefficient Q0185

defined as186

K0 ≡ 9ρ2
0

d 2

dρ2

E (ρ, 0)
ρ

∣∣∣∣
ρ=ρ0

,

Q0 ≡ 27ρ3
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d 3

dρ3
E (ρ, 0)

∣∣∣∣
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. (6)

However, the nuclear symmetry energy is customarily charac-187

terized at the saturation point by its value J = S (ρ0), the slope188

L, and the curvature Ksym defined as189

L ≡ 3ρ0
d
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S (ρ)
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ρ=ρ0

,

Ksym ≡ 9ρ2
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. (7)

In addition, we consider the skewness Qsym and the kurtosis190

Rsym, defined via the third and fourth derivatives, respectively,191

as192
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dρ3
S (ρ)

∣∣∣∣
ρ=ρ0

,

Rsym ≡ 81ρ4
0

d 4
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S (ρ)
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ρ=ρ0

. (8)

These EoS parameters will be discussed in the parametrization193

of the KIDS model.194

All the above quantities are readily obtained analytically 195

with the help of expressions of Eqs. (1)–(3). Explicitly, we 196

have 197

K0 = −2T (ρ0, 0) +
N−1∑

i=0

i(i + 3)αiρ
1+i/3
0 , (9)

Q0 = +8T (ρ0, 0) +
N−1∑

i=0

i(i + 3)(i − 3)αiρ
1+i/3
0 , (10)

Ksym = −2Tsym(ρ0) +
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i(i + 3)βiρ
1+i/3
0 , (11)

Qsym = +8Tsym(ρ0) +
N−1∑

i=0

i(i + 3)(i − 3)βiρ
1+i/3
0 , (12)

Rsym = −56Tsym(ρ0) +
N−1∑

i=0

i(i + 3)(i − 3)(i − 6)βiρ
1+i/3
0 .

(13)

These relations connect the values of the EoS parameter to 198

our model parameters αi and βi. Once the values of EoS 199

parameters are known, our approach allows us to find the 200

nuclear EoS to the desired order in density. However, most 201

of the above EoS parameters are not known to a satisfactory 202

accuracy and ranges of their values are to be explored. 203

In Ref. [1], we determined the baseline KIDS parameter 204

set labeled “KIDS-ad2” in the following way. We began by 205

fitting many possible combinations (of varying order N) of 206

KIDS parameters αi and βi to the Akmal-Pandharipande- 207

Ravenhall (APR) EoS [8]. Having concluded that the three 208

lowest-order terms are sufficient for the description of SNM, 209

we set α3 = 0, and determined α0,1,2 by widely adopted 210

empirical properties at saturation, namely, ρ0 = 0.16 fm−3, 211

E0 = −16 MeV, and K0 = 240 MeV. (These values are also 212

consistent with the APR EoS.) This model is then found 213

to give the skewness coefficient Q0 ≈ −373 MeV. The co- 214

efficients ci(1), or equivalently βi, were also fitted to the 215

APR EoS for PNM. In this case, we found that at least four 216

terms had to be retained in the KIDS EDF to reproduce the 217

APR EoS for PNM. The resulting EDF gives J = 32.8 MeV, 218

L = 49.3 MeV, Ksym = −156 MeV, Qsym = 583 MeV, and 219

Rsym = −2470 MeV. 220

The KIDS-ad2 EoS determined in this way was sub- 221

sequently transposed into a zero-range, density-dependent 222

effective interaction for nuclei and applied successfully to 223

Hartree-Fock calculations of nuclear ground states of closed- 224

shell nuclei [3,4], providing satisfactory results, on a par 225

with generalized Skyrme-type functionals. The question to be 226

addressed at the present work is to examine whether superior 227

results can be obtained with higher-order terms. 228

B. Corresponding Skyrme functionals 229

In this subsection, we review a simple procedure for ap- 230

plying a given KIDS EoS to the description of finite nuclei, 231

which will be employed in the present work. The Fermi 232

momentum expansion of EDF in Eq. (1) leads to a convenient 233
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∣∣∣∣
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of the above EoS parameters are not known to a satisfactory 202

accuracy and ranges of their values are to be explored. 203
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set labeled “KIDS-ad2” in the following way. We began by 205
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KIDS parameters αi and βi to the Akmal-Pandharipande- 207
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lowest-order terms are sufficient for the description of SNM, 209
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empirical properties at saturation, namely, ρ0 = 0.16 fm−3, 211

E0 = −16 MeV, and K0 = 240 MeV. (These values are also 212

consistent with the APR EoS.) This model is then found 213

to give the skewness coefficient Q0 ≈ −373 MeV. The co- 214

efficients ci(1), or equivalently βi, were also fitted to the 215

APR EoS for PNM. In this case, we found that at least four 216

terms had to be retained in the KIDS EDF to reproduce the 217

APR EoS for PNM. The resulting EDF gives J = 32.8 MeV, 218
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sequently transposed into a zero-range, density-dependent 222
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Hartree-Fock calculations of nuclear ground states of closed- 224
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effective interaction for nuclei and applied successfully to 223

Hartree-Fock calculations of nuclear ground states of closed- 224
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with generalized Skyrme-type functionals. The question to be 226
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Skyrme-type effective interaction [4] in the form of234

vi j = (t0 + y0Pσ )δ(ri − r j )

+ 1
2

(t1 + y1Pσ )[δ(ri − r j )k2 + k′2δ(ri − r j )]

+ (t2 + y2Pσ )k′ · δ(ri − r j )k

+ 1
6

N−1∑

n=1

(t3n+ y3nPσ )ρn/3δ(ri − r j )

+ iW0 k′ × δ(ri − r j ) k · (σ i + σ j ), (14)

where k = (∇i − ∇ j )/(2i), k′ = −(∇′
i − ∇′

j )/(2i), and Pσ is235

the spin-exchange operator. Here, W0 denotes the strength236

of the effective spin-orbit coupling, which is not active in237

homogeneous matter. It, therefore, must be determined from238

nuclear data. This is similar in form to a generalized Skyrme239

model proposed in Refs. [9–11], but the protocol for determin-240

ing the Skyrme potential parameters is quite different. In the241

so-called generalized Skyrme potential model, the parameters242

are determined by some properties of specific nuclei. In our243

case, however, we will begin with an unchanged EoS and use244

very few nuclear data for remaining undetermined parameters.245

We also retain the freedom to have, e.g., t33 = 0 but y33 ̸= 0.246

The corresponding EDF in terms of the local densities as well247

as gradient and kinetic terms can be obtained from a standard248

calculation as249

E = h̄2

2m
τ + 3

8
t0ρ − 1

8
(t0 + 2y0)ρδ2 + 1

16

N−1∑

n=1

t3nρ
1+n/3

− 1
48

N−1∑

n=1

(t3n+ 2y3n)ρ1+n/3δ2 + 1
64

(9t1 − 5t2 − 4y2)

× (∇ρ)2

ρ
− 1

64
(3t1 + 6y1 + t2 + 2y2)

(∇ρδ)2

ρ

+ 1
8

(2t1 + y1 + 2t2 + y2)τ − 1
8

(t1 + 2y1 − t2 − 2y2)

×
∑

q

ρqτq

ρ
+ 1

2
W0

(
J · ∇ρ

ρ
+

∑

q

Jq · ∇ρq

ρ

)

, (15)

where τ denotes the kinetic energy density and J the current250

density. The sum over qmeans the summation over isospin,251

i.e., q= (n, p). Matching the KIDS EDF in Eq. (2) and the252

Skyrme functional in Eq. (15) leads to the following relations:253

t0 = 8
3

c0(0), y0 = 8
3

c0(0) − 4c0(1),

t3n = 16cn(0) , y3n = 16cn(0) − 24cn(1), (n ̸= 2),

t32 = 16c2(0) − 3
5

(
3
2
π2

)2/3

θs

≡ 16c2(0)(1 − ζ ),

y32 = 16c2(0) − 24c2(1) + 3
5

(3π2)2/3
(

3θµ − θs

22/3

)

≡ [16c2(0) − 24c2(1)](1 − ζ ′), (16)

which defines ζ and ζ ′ with 254

θs ≡ 3t1 + 5t2 + 4y2 = 5
3

(
3π2

2

)−2/3

16c2(0)ζ ,

θµ ≡ t1 + 3t2 − y1 + 3y2

= θs

3 · 22/3
− 5

9
(3π2)−2/3[16c2(0) − 24c2(1)]ζ ′. (17)

The matching reveals that there are two sources for the ρ5/3
255

term in the EoS which corresponds to n= 2 in Eq. (14): one 256

from the density-dependent terms in Eq. (14) with the Skyrme 257

parameters t32, y32, and the other from the momentum- 258

dependent terms in Eq. (14) with the Skyrme parameters t1, 259

t2, y1, y2. The partition is encoded in the unknown parameters 260

ζ and ζ ′ in Eqs. (16) and (17). Also undetermined at this point 261

is the effective spin-orbit coupling strength W0. 262

Following the simple procedure of Ref. [3], in the present 263

work, we set y1 = y2 = 0 and assume ζ = ζ ′, which leaves 264

only two parameters, i.e., ζ and W0, to be determined by 265

nuclear data. In this case, the isoscalar and isovector effec- 266

tive mass parameters, µs ≡ m∗/m and µv ≡ m∗
v/m, where m 267

denotes the nucleon mass in free space, are not independent 268

but are determined via ζ according to their relations to θs and 269

θµ as [12] 270

µ−1
s ≡ (m∗/m)−1 = 1 + mρ

8h̄2 θs,

µ−1
v ≡ (m∗

v/m)−1 = 1 + mρ

4h̄2 (θs − θµ). (18)

A refined method taking full advantage of the momentum- 271

dependent terms was developed and applied in Ref. [4]. The 272

refinement was found inconsequential for bulk and static 273

nuclear properties. Therefore, the above simplified procedure 274

with y1 = y2 = 0 suffices for our present purpose. We now 275

return to the issue of the expansion and examine whether 276

three SNM terms and four PNM terms, a total of seven EoS 277

parameters, are sufficient to achieve convergence of results in 278

the case of nuclei as well as in homogeneous matter. 279

TABLE I. Fitted values of parameters αi in units of MeV fm3+i.
Model S3b with N = 3 the EoS parameters are fixed assuming α3 =
0 with ρ0 = 0.16 fm−3, E0 = −16.0 MeV, and K0 = 240.0 MeV
with βi of KIDS-ad2. Models S4a, S4b, and S4c correspond to
Q0 = −360, −390, and −420 MeV, respectively. For S3b, we obtain
Q0 = −372.65 MeV. The EoS of PNM is fixed by the baseline
parameters shown at the bottom, which corresponds to KIDS-ad2.

Model N α0 α1 α2 α3

S3b 3 −664.52 763.55 40.13 0
S4a 4 −677.69 836.34 −93.95 82.33
S4b 4 −646.44 663.65 224.15 −112.99
S4c 4 −615.19 490.96 542.24 −308.30
PNM N α0 + β0 α1 + β1 α2 + β2 α3 + β3

KIDS-ad2 4 −411.13 1007.78 −1354.64 956.47
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FIG. 1. Relative magnitude of each interaction potential for symmetric matter for model (a) S3b, (b) S4a, (c) S4b, and (d) S4c.

III. EXPANSION IN SYMMETRIC PART280

Equipped with the formalism as discussed above, we now281

consider the issue of convergence in the description of nuclear282

properties. The question we address at this stage is how many283

terms are required for convergence of the expansion in Eq. (1);284

put in another way, at which order further EoS parameters,285

such as curvature or compressibility, and skewness, become286

inconsequential for nuclear applications and thus cannot be287

constrained by nuclear data. Specifically, we want to know288

whether higher accuracy can be achieved with more than three289

terms in SNM and more than four terms in PNM (or the290

symmetry energy) in practical applications. A negative answer291

would be of great importance since it would mean that the292

use of more terms can only lead to overfitting and risk loss of293

predictive power. The case of SNM will be investigated in this294

section and the next section is devoted to the case of PNM.295

We proceed to examine whether variations in the value296

of Q0 affect strongly the nuclear EoS and the quality of the297

FIG. 2. Symmetry energy obtained with the parameter sets for
symmetric nuclear matter from Table I. The EoS of pure neutron
matter is fixed to the baseline set KIDS-ad2.

description of nuclear structure. The empirically determined 298

range of Q0 value is between −1200 MeV and −200 MeV 299

[13], which shows a huge uncertainty. An analysis of nuclear 300

models provides a narrower range −425.6 ∼ −362.5 MeV 301

[7], which still represents an uncertainty of the order of 302

15%. Taking this range as a reference, we choose three 303

values of skewness coefficient, −360 MeV, −390 MeV, and 304

−420 MeV. The four parameters α0,1,2,3 are now determined 305

by solving a 4 × 4 system of equations where the coefficients 306

are determined by the assumed values of ρ0, E0, K0, Q0. 307

In the following, the sets of parameters resulting from 308

Q0 = −360, −390, and −420 MeV are labeled as S4a, S4b, 309

and S4c, respectively, with the number 4 referring to the num- 310

ber of expansion terms. Presented in Table I are the obtained 311

values of the parameters αi. In this process, ci(1) = αi + βi in 312

Eq. (2) are fixed to the KIDS-ad2 values of Ref. [1], which 313

parametrize the APR EoS for pure neutron matter. The N = 3 314

case, model S3b is obtained with setting α3 = 0 but with 315

α3 + β3 = 956.47.2 It can be found that the ranges of α0 and 316

α1 are rather stable but those of higher-order α2,3 are sensitive 317

to the input data. Even the signs of the higher-order parame- 318

ters are not robust. This uncertainty is expected because the 319

input data are provided at nuclear saturation density and the 320

higher-order coefficients are influenced by higher- and lower- 321

density regions. However, the resulting physical quantities of 322

our interests are not so sensitive as will be shown below. 323

Figure 1 shows the relative magnitude of each interaction 324

term εi = ci(0)ρ1+i/3 = αiρ
1+i/3, namely, |εi|/

∑
i |εi|. The 325

converging behavior |ε0| > |ε1| > |ε2| > |ε3| is satisfied well 326

up to densities around 3ρ0 regardless of N or Q0 values. At 327

higher densities, where high-order terms are more active, the 328

effects of varying Q0 values become clearer as expected. The 329

dominance of the lowest-order term ε0 persists in all cases. 330

2For consistency, the model with N = 3 should be determined with
N = 3 parametrization for PNM. In fact, this model is equivalent to
model P3 described in the next section. The final results for S3b and
P3 are similar, but, in this section, we work with S3b to vary the SNM
parameters only.
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TABLE III. Fitted parameters of Skyrme functional parameters.
Here, we set y1 = y2 = 0 and ζ is dimensionless.

Parameter S3b S4a S4b S4c

t0 (MeV fm3) −1772.04 −1807.17 −1723.84 −1640.50
y0 (MeV fm3) −127.52 −162.65 −79.32 4.02
t1 (MeV fm5) 275.72 262.17 288.94 303.28
t2 (MeV fm5) −161.50 −167.94 −154.90 −146.98
t31 (104 MeV fm4) 1.222 1.338 1.062 0.7855
y31 (104 MeV fm4) −1.197 −1.081 −1.357 −1.633
t32 (MeV fm5) 571.0 −1310.7 3252.4 8043.0
y32 (104 MeV fm5) 2.949 2.704 3.274 3.818
t33 (MeV fm6) – 1317.2 −1807.8 −4932.8
y33 (104 MeV fm6) −2.296 −2.164 −2.476 −2.789
ζ 0.1106 0.1281 0.0931 0.0729
W0 (MeV fm5) 108.35 106.79 109.88 111.55

values can be allowed to vary, if desired, with no deterioration379

of the quality of the results on the considered nuclear data.380

For example, if we set µs = 0.7 and µv = 0.82, then mean381

deviations from experiment of E/A and Rc are 0.26 and 0.44382

in percent, respectively [4]. For the models S3b, S4a, S4b,383

and S4c, mean deviations of E/A are 0.33, 0.34, 0.32, and384

0.31 in percent, respectively, and 0.56, 0.58, 0.56, and 0.56 in385

percent, respectively, for Rc. This comparison demonstrates386

that a specific value of the effective mass practically does not387

affect the basic properties of nuclei considered in this work.388

A set of parameters for different combinations of µs and µv389

is available in Ref. [4]. We note that giant resonances are390

better suited to study the acceptable values of the isoscalar391

and isovector effective mass. Currently the optimal values for392

describing giant resonances are not settled [18].393

The results for 16O, 28O, 60Ca, 90Zr, and 132Sn are also394

given in Tables II for each model. For both E/A and Rc,395

fitting quality and predictions of S4a, S4b, and S4c are similar,396

and it is hard to distinguish these models. Furthermore, it is397

also found that their predictions are similar to those of S3b,398

which means that the model with N = 3 is sufficient enough399

in practical calculations. This result leads to the conclusion400

that the three leading terms in the isospin symmetric part of401

the EDF are sufficient to describe not only the bulk properties402

of neutron stars but also magic nuclei. Both types of systems403

exhibit the same convergence behavior in a single and unified404

framework.405

IV. EXPANSION IN ASYMMETRIC PART 406

In this section, we focus on the EDF expansion in 407

asymmetric nuclear matter. We perform this examination by 408

retaining the KIDS-ad2 parametrization (N = 3) for SNM, 409

which was shown to be sufficient in the description of sym- 410

metric matter. With this constraint we proceed to examine the 411

expansion behavior in PNM by varying EoS parameters. In 412

Ref. [1] it was found that at least four terms are needed for 413

satisfactory description of PNM or nuclear symmetry energy. 414

In the present work, we increase the order of expansion of 415

isospin asymmetric part from N = 3 to N = 6 and use the 416

APR PNM EoS as input data because of lack of data for PNM. 417

Note that the APR pseudodata are not smooth but show a 418

kink at roughly twice the saturation density. Therefore, as in 419

Ref. [1], we assign a weight to the data at low energies by 420

defining cost function χ2 as 421

χ2 =
∑

j

exp(−β̃ρ j/ρ0)
(

E (ρ j ) − Dj

T (ρ j )

)2

, (19)

where Dj is the data point for density ρ j , E and T are 422

the nuclear EDF and its the kinetic term given by Eq. (1), 423

respectively, and we set β̃ = 1. We refer the details on this 424

form to Ref. [1]. 425

Fitted values of parameters and the corresponding χ2
n de- 426

fined as [1] 427

χ2
n = χ2

/ ∑

j

exp(−β̃ρ j/ρ0) (20)

are shown in Table IV. They are referred to as model PN 428

for N = (3, 4, 5, 6). For N = 6, we find that there may be 429

more than two sets of parameters that have similar low χ2
430

values. As examples, we give three sets, P6a, P6b, P6c in 431

Table IV. In particular, P6a is practically equal to P5 and 432

it does not have any physical meaning to work with N = 6 433

or higher for APR pseudodata. This is expected since the 434

APR EoS for PNM is determined at densities which can 435

hardly be probed by higher-order terms. The EoS parameters 436

computed for each model are also shown in Table IV. It can 437

be found that although values of model parameters ci would 438

heavily depend on model, the resulting physical quantities 439

or EoS parameters, J , L, Ksym, and even Qsym are similar 440

except Rsym that depends on the high-order behavior of EDF. 441

We also carry out this kind of analyses with the quantum 442

Monte Carlo (QMC) results of Ref. [19] that are obtained 443

with the AV8′ + UIX interaction and verify this observation. 444

TABLE IV. Values of ci(1) fitted to APR EoS of PNM. The unit of ci is MeV fm3+i and the units of J , L, Ksym, Qsym, and Rsym are MeV.

Model N c0(1) c1(1) c2(1) c3(1) c4(1) c5(1) χ 2
n J L Ksym Qsym Rsym

P3 3 −266.72 133.50 281.38 – – – 5.3 × 10−4 32.6 53.5 −129.7 422.3 −2421.8
P4 4 −407.94 990.09 −1321.86 937.14 – – 1.4 × 10−4 32.8 49.2 −156.3 583.1 −2469.7
P5 5 −224.16 −479.28 2814.48 −3963.71 2075.79 – 6.3 × 10−5 33.0 51.4 −166.8 461.4 −1388.4
P6a 6 −224.81 −473.46 2795.50 −3935.18 2056.11 4.94 6.3 × 10−5 33.0 51.4 −166.8 461.6 −1391.7
P6b 6 −283.99 110.63 604.05 −10.59 −1312.44 1117.76 6.4 × 10−5 33.0 51.5 −163.8 450.0 −1545.9
P6c 6 −313.98 400.88 −463.41 1864.00 −2891.61 1630.37 6.5 × 10−5 33.0 51.5 −162.3 446.6 −1631.2
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FIG. 5. Energy per particle of pure neutron matter with models
P3, P4, and P5 presented in Table IV. Here, the symmetric EoS
parameters αi are fixed as model S3b in Table I.

use the values of ci(0) determined as S3b in the previous505

section.506

We first examine the effect of Rsym variations on infinite507

nuclear matter by calculating the neutron-star mass-radius508

relations. Figure 8 depicts the predictions on the neutron509

star mass and radius curves with the models P5a, P5b, and510

P5c. All these models predict the maximum mass larger than511

2M⊙, which is consistent with the observational constraints of512

Refs. [14,15]. To see the origin of this phenomena, we plot the513

nuclear symmetry energy for these three models in Fig. 9. This514

clearly shows that varying Rsym affects the nuclear symmetry515

energy only at densities larger than 0.6 ∼ 0.7 fm−3, which516

is within the range of maximum central density of neutron517

FIG. 6. Energy of pure neutron matter EPNM divided by the free
gas energy EFG is compared to chiral EFT results of Ref. [20] at low
densities, where a(= −18.9 fm) is the neutron-neutron scattering
length in free space and kN is the neutron Fermi momentum.

FIG. 7. Neutron star mass-radius relations for the parameter sets
P3, P4, and P5.

stars [21]. Since R5a, R5b, and R5c give similar symmetry 518

energy below this density, they would give similar results for 519

neutron stars. 520

Inclusion of extra degrees of freedom like hyperons and 521

kaon condensation or transition to the deconfined quark states 522

generally softens the EoS state [22,23], and as a result reduces 523

the maximum mass of the neutron star. Therefore, 2M⊙ max- 524

imum mass is a minimal condition that should be satisfied 525

by a dense matter model before including the degrees of 526

freedom other than the nucleon. The nonnucleonic states are 527

predicted to happen at densities around 3ρ0 or more. This 528

means that there are many and large uncertainties in the 529

EoS at densities above 3ρ0. However, density at the center 530

of canonical stars (1.4M⊙) is predicted to be 3ρ0 or less. 531

Therefore, tidal deformability obtained from the measurement 532

of gravitational waves in GW170817 provides new informa- 533

tion on the nucleonic EoS for ρ ! 3ρ0 in which EoS is less 534

uncertain because of the absence of exotic degrees of freedom. 535

TABLE VI. Same as Table III but for P3, P4, and P5. Note that
t33 = t34 = 0 as we use S3b for αi = ci(0).

Parameter P3 P4 P5

t0 (MeV fm3) −1772.04 −1772.04 −1772.04
y0 (MeV fm3) −705.16 −140.27 −875.42
t1 (MeV fm5) 247.33 275.83 269.90
t2 (MeV fm5) −173.00 −161.48 −163.95
t31 (104 MeV fm4) 12216.73 12216.73 12216.73
y31 (104 MeV fm4) 9012.81 −11545.41 23719.36
t32 (MeV fm5) 1087.14 569.38 678.46
y32 (104 MeV fm5) −10346.18 28700.54 −70692.70
y33 (104 MeV fm6) – −22491.36 95128.93
y34 (104 MeV fm7) – – −49818.87
ζ −0.6931 0.1133 −0.0566
W0 (MeV fm5) 104.12 108.46 108.25
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FIG. 5. Energy per particle of pure neutron matter with models
P3, P4, and P5 presented in Table IV. Here, the symmetric EoS
parameters αi are fixed as model S3b in Table I.

use the values of ci(0) determined as S3b in the previous505

section.506

We first examine the effect of Rsym variations on infinite507

nuclear matter by calculating the neutron-star mass-radius508

relations. Figure 8 depicts the predictions on the neutron509

star mass and radius curves with the models P5a, P5b, and510

P5c. All these models predict the maximum mass larger than511

2M⊙, which is consistent with the observational constraints of512

Refs. [14,15]. To see the origin of this phenomena, we plot the513

nuclear symmetry energy for these three models in Fig. 9. This514

clearly shows that varying Rsym affects the nuclear symmetry515

energy only at densities larger than 0.6 ∼ 0.7 fm−3, which516

is within the range of maximum central density of neutron517

FIG. 6. Energy of pure neutron matter EPNM divided by the free
gas energy EFG is compared to chiral EFT results of Ref. [20] at low
densities, where a(= −18.9 fm) is the neutron-neutron scattering
length in free space and kN is the neutron Fermi momentum.

FIG. 7. Neutron star mass-radius relations for the parameter sets
P3, P4, and P5.

stars [21]. Since R5a, R5b, and R5c give similar symmetry 518

energy below this density, they would give similar results for 519

neutron stars. 520

Inclusion of extra degrees of freedom like hyperons and 521

kaon condensation or transition to the deconfined quark states 522

generally softens the EoS state [22,23], and as a result reduces 523

the maximum mass of the neutron star. Therefore, 2M⊙ max- 524

imum mass is a minimal condition that should be satisfied 525

by a dense matter model before including the degrees of 526

freedom other than the nucleon. The nonnucleonic states are 527

predicted to happen at densities around 3ρ0 or more. This 528

means that there are many and large uncertainties in the 529

EoS at densities above 3ρ0. However, density at the center 530

of canonical stars (1.4M⊙) is predicted to be 3ρ0 or less. 531

Therefore, tidal deformability obtained from the measurement 532

of gravitational waves in GW170817 provides new informa- 533

tion on the nucleonic EoS for ρ ! 3ρ0 in which EoS is less 534

uncertain because of the absence of exotic degrees of freedom. 535

TABLE VI. Same as Table III but for P3, P4, and P5. Note that
t33 = t34 = 0 as we use S3b for αi = ci(0).

Parameter P3 P4 P5

t0 (MeV fm3) −1772.04 −1772.04 −1772.04
y0 (MeV fm3) −705.16 −140.27 −875.42
t1 (MeV fm5) 247.33 275.83 269.90
t2 (MeV fm5) −173.00 −161.48 −163.95
t31 (104 MeV fm4) 12216.73 12216.73 12216.73
y31 (104 MeV fm4) 9012.81 −11545.41 23719.36
t32 (MeV fm5) 1087.14 569.38 678.46
y32 (104 MeV fm5) −10346.18 28700.54 −70692.70
y33 (104 MeV fm6) – −22491.36 95128.93
y34 (104 MeV fm7) – – −49818.87
ζ −0.6931 0.1133 −0.0566
W0 (MeV fm5) 104.12 108.46 108.25
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TABLE VII. Same as Table II but for P3, P4, and P5. The SNM parameters are fixed to the values of model S3b in Table I. The experimental
data are from Refs. [16,17].

Nuclei Energy per particle (MeV) Charge radius (fm)

Expt. P3 P4 P5 Expt. P3 P4 P5

40Ca 8.5513∗ 8.5573 8.5564 8.5561 3.4776∗ 3.4785 3.4781 3.4782
(0.070%) (0.059%) (0.056%) (0.026%) (0.014%) (0.015%)

48Ca 8.6667∗ 8.6556 8.6565 8.6581 3.4771∗ 3.4891 3.4867 3.4870
(0.129%) (0.118%) (0.099%) (0.345%) (0.277%) (0.285%)

208Pb 7.8675∗ 7.8849 7.8806 7.8793 5.5012∗ 5.4934 5.4886 5.4891
(0.222%) (0.167%) (0.151%) (0.141%) (0.228%) (0.221%)

16O 7.9762 7.8641 7.8683 7.8669 2.6991 2.7634 2.7618 2.7621
(1.405%) (1.353%) (1.371%) (2.382%) (2.322%) (2.335%)

28O – 6.0705 6.0628 6.0585 – 2.8435 2.8371 2.8396
60Ca – 7.6659 7.6548 7.6513 – 3.6511 3.6465 3.6478
90Zr 8.7100 8.7336 8.7330 8.7344 4.2694 4.2489 4.2476 4.2476

(0.272%) (0.264%) (0.280%) (0.480%) (0.510%) (0.511%)
132Sn 8.3549 8.3592 8.3559 8.3549 4.7093 4.7133 4.7088 4.7090

(0.052%) (0.013%) (0.001%) (0.085%) (0.010%) (0.006%)

The effect of varying Rsym can also be explored in low-536

mass neutron stars by considering the tidal deformability. For537

a neutron star with a mass of 1.4M⊙, we found that P5a, P5b,538

and P5c models give the dimensionless tidal deformability of539

315.8, 304.1, and 289.4, respectively. These values are well540

below the upper limit of the observation, !(1.4M⊙) ! 800,541

which again originates from the similarities of symmetry542

energy of the three models below 0.6 ∼ 0.7 fm−3.543

Tables IX and X show the fitted parameters and resulting544

properties of nuclei. Here again, we find that the three models545

give similar results, which leads us to conclude that nuclear546

properties are quite insensitive to Rsym. To illustrate the point547

visually, we compare in Fig. 10 the neutron skin thickness548

"rnp obtained with P3, P4 (baseline set), P5, P5a, P5b, P5c,549

together with the results for E/A and Rc. The similarities550

shown in Fig. 10 imply that the higher-order terms in EDF551

cannot be constrained by normal nuclear data.3552

V. DISCUSSION553

Following the above-detailed presentation of results, let554

us recapitulate what we have done and learned and discuss555

how our work relates to other current undertakings of similar556

scope.557

First, we have confirmed that seven EoS parameters suffice558

for a description of nuclei as well as homogeneous matter in559

a broad range of densities. The number is consistent, on one560

hand, with the four EoS parameters (plus the surface tension)561

required in the “minimal nuclear energy functional” [27]562

which only concerns finite nuclei; and, on the other hand, with563

the conclusions of the recently proposed “metamodeling”564

approach for neutron stars [28], namely that the skewness of565

3We also investigated the dependence of nuclear properties on the
value of Rsym by allowing more than ±1, 000 MeV from the value of
P5b to confirm that the nuclear properties are not sensitive to Rsym.

the EoS plays a nonnegligible role, but a less significant one 566

than low-order parameters in the description of neutron stars. 567

The analytical form of the KIDS EoS and EDF for homo- 568

geneous matter, namely an expansion in powers of the cubic 569

root of the density [1], was inspired by quantum many-body 570

theories and effective field theories. The analytical form al- 571

lows a straightforward, analytical mapping between the KIDS 572

parameters and an equal number of EoS parameters, see, e.g., 573

Eqs. (9)–(13). Thus, we can vary any of the EoS parameters 574

at will and examine its effect on observables. In addition, we 575

are able to vary the effective mass values at will [4], which 576

gives KIDS unprecedented flexibility. So far we have applied 577

the KIDS EDF at the Hartree-Fock level for nuclear ground 578

states, but studies of excitations within the random phase 579

approximation are also possible and in progress. In this sense 580

our approach goes well beyond the metamodeling, whose ap- 581

plications in nuclei have been limited to semiclassical results 582

for bulk ground-state nuclear properties [29,30]. 583

The description of nuclei was achieved by reverse- 584

engineering a convenient Skyrme-type functional. In the pro- 585

cess, the amount of momentum dependence (encoded, for 586

example, in the effective mass value and gradient terms) ver- 587

sus genuine density dependence (encoding correlations and 588

three-nucleon forces) needs to be determined. Although we 589

have found that static, bulk nuclear properties are practically 590

TABLE VIII. Values of ci(δ) with δ = 1 fitted to the sym-
metry energy parameters J = 32.78 MeV, L = 49.25 MeV, Ksym =
−156.26 MeV, Qsym = 583.07 MeV, and three Rsym values. The unit
of Rsym is MeV and ci is in the unit of MeV fm3+i.

Model Rsym c0(1) c1(1) c2(1) c3(1) c4(1)

P5a −2170 −329.19 411.12 275.64 −1022.73 901.92
P5b −2470 −407.32 986.75 −1314.84 930.40 2.50
P5c −2770 −485.44 1562.38 −2905.32 2883.52 −896.92
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FIG. 8. Neutron star mass-radius relations: Results correspond-
ing to the parameter sets P5a, P5b, and P5c.

independent of the effective mass [4], the same may not591

be true for dynamic phenomena such as giant resonances.592

Studies are in progress [31]. Nevertheless, the small amount of593

momentum relative to density dependence generally favored594

by our studies so far, undermines the possibility to eliminate595

density-dependent couplings completely, as is attempted in596

certain generalizations of the Skyrme functional based on597

high-order momentum-dependent terms and on the density-598

matrix expansion [32,33].599

Based on our present results we may conclude that a fit600

of more than the above seven EoS parameters to nuclear601

data would make little sense. (On the contrary, a free fit of602

all parameters could lead to overfitting.) Although further603

EoS parameters and a strong momentum dependence are604

not desired or required, to achieve precision, it does make605

sense to explore extensions of the KIDS EDF for nuclei606

FIG. 9. Symmetry energy obtained with the parameter sets P5a,
P5b, and P5c.

TABLE IX. Same as Table IV but for P5a, P5b, and P5c. Here,
t33 = t34 = 0 as we use S3b for αi = ci(0)

Parameter P5a P5b P5c

t0 (MeV fm3) −1772.04 −1772.04 −1772.04
y0 (MeV fm3) −455.27 −142.77 169.73
t1 (MeV fm5) 246.82 275.85 273.68
t2 (MeV fm5) −173.35 −161.47 −162.34
t31 (104 MeV fm4) 12216.73 12216.73 12216.73
y31 (104 MeV fm4) 2349.81 −11465.31 −25280.43
t32 (MeV fm5) 1099.03 569.01 608.27
y32 (104 MeV fm5) −10223.47 28532.42 66660.82
y33 (104 MeV fm6) 24545.47 −22329.53 −69204.53
y34 (104 MeV fm6) −21646.05 −59.93 21526.20
ζ −0.7116 0.1139 0.0527
W0 (MeV fm5) 105.57 108.49 107.90

by including additional effects which are not active (or are 607

weakly active) in homogeneous matter. One of them, already 608

included, is the spin-orbit term. Another interesting possibility 609

is the tensor force, as already pursued in modern Skyrme 610

functionals [34]. Time-odd terms are also unconstrained at 611

present. Our preferred approach would be to use pseudodata 612

for polarized homogeneous matter. For the closed-shell nuclei 613

considered in this work, the effect of pairing is inactive. In 614

a recent publication [35], various properties of neutron drops 615

confined in a harmonic oscillator trap have been considered. 616

Pairing effects are incorporated in recently developed EFT- 617

inspired EDFs, YGLO [36], EYLO [37], and KIDS. The 618

results indicate that YGLO and KIDS are in good agreement 619

with ab initio results. A work investigating the properties of 620

open-shell nuclei with the pairing correlations is in progress. 621

VI. SUMMARY AND CONCLUSION 622

The main purpose of this work was to validate the opti- 623

mal number of EoS parameters required for a description of 624

nuclei and homogeneous matter in a broad range of densi- 625

ties. Previous work in the framework of the KIDS EDF had 626

indicated that symmetric nuclear matter could be efficiently 627

modeled with three low-order parameters in an expansion in 628

Fermi momentum and that PNM requires four parameters. 629

The conclusion was based solely on a statistical analysis of 630

fits to pseudodata for homogeneous matter. In this work, to 631

confirm the expansion and its convergence, we explored the 632

role of widely used parameters characterizing the EoS at the 633

saturation point. In particular, we fixed the saturation density, 634

the energy at saturation and the compression modulus K0 of 635

symmetric matter, as well as the symmetry energy at satu- 636

ration density J , its slope L and its curvature and skewness, 637

to baseline values and varied the EoS skewness in symmetric 638

matter at saturation, Q0, and the kurtosis of the symmetry 639

energy, Rsym. We examined the effect in dilute and dense 640

matter (neutron star properties) and on nuclear structure. 641

In regard to the uncertainty from Q0, its effect is negli- 642

gible up to ρ ∼ 0.4 fm−3 (∼2.5ρ0). The maximum mass of 643

neutron stars shows nonnegligible dependence on Q0, but the 644
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TABLE X. Same as Table VII but for P5a, P5b, and P5c. The SNM parameters are fixed to the values of model S3b in Table I. The
experimental data are from Refs. [16,17].

Nuclei Binding energy per nucleon [MeV] Charge radius [fm]

Expt. P5a P5b P5c Expt. P5a P5b P5c

40Ca 8.5513∗ 8.5567 8.5564 8.5564 3.4776∗ 3.4786 3.4781 3.4782
(0.063%) (0.060%) (0.060%) (0.029%) (0.014%) (0.018%)

48Ca 8.6667∗ 8.6575 8.6566 8.6560 3.4771∗ 3.4872 3.4867 3.4863
(0.106%) (0.117%) (0.123%) (0.291%) (0.276%) (0.264%)

208Pb 7.8675∗ 7.8800 7.8806 7.8808 5.5012∗ 5.4891 5.4886 5.4880
(0.159%) (0.167%) (0.170%) (0.221%) (0.229%) (0.240%)

16O 7.9762 7.8633 7.8683 7.8679 2.6991 2.7636 2.7618 2.7619
(1.42%) (1.35%) (1.36%) (2.39%) (2.32%) (2.33%)

28O – 6.0467 6.0623 6.0746 – 2.8381 2.8371 2.8353
60Ca – 7.6470 7.6545 7.6611 – 3.6475 3.6465 3.6451
90Zr 8.7100 8.7357 8.7330 8.7322 4.2694 4.2474 4.2476 4.2474

(0.295%) (0.265%) (0.255%) (0.516%) (0.511%) (0.516%)
132Sn 8.3549 8.3539 8.3559 8.3564 4.7093 4.7093 4.7088 4.7082

(0.012%) (0.013%) (0.019%) (0.000%) (0.010%) (0.024%)

FIG. 10. Results for E/A, Rc, and neutron skin thickness !rnp .
Neutron skin thickness data are from Refs. [24–26].

uncertainty is not significant enough to affect the consistency 645

with existing observations. No effect on bulk nuclear proper- 646

ties was discerned. 647

In the extension of expansion of isospin asymmetric part of 648

EDF, the results for N = 6 showed symptoms of overfitting so 649

we stopped at the fifth term. Comparison of N = 3 fitting re- 650

sult to input data demonstrated that three terms in asymmetric 651

part are insufficient to guarantee the reproduction of input data 652

but the fits saturate at N = 5. The interpretation is consistent 653

with the EoS of dilute neutron matter (down to a fraction 654

of saturation density), symmetry energy at suprasaturation 655

densities, and mass-radius curves of neutron stars (at least 656

when streangeness is neglected). Again, the choice of kurtosis 657

values Rsym did not affect the description of nuclear properties. 658

Bulk properties of spherical magic nuclei were calculated. 659

Results turned out to be independent of Q0 values, and the 660

number of terms in asymmetric part of EDF did not affect the 661

prediction for nuclei. Similar conclusions hold for Rsym. 662

From the present results we conclude that three terms in 663

the symmetric part, and four terms in the asymmetric part of 664

the EoS are sufficient for a unified description of both infinite 665

(unpolarized) nuclear matter and finite nuclei in a single 666

framework. Fitting a nuclear EDF with more than the seven 667

necessary EoS parameters to nuclear data can arguably lead to 668

overtraining and loss of predictive power. The determination 669

of the most realistic values for the minimal EoS parameters 670

can of course be persued with the help of data and statistical 671

analyses. In addition, extended density dependencies of non- 672

local terms can be explored [13,38,39]. The EoS of polarized 673

matter is yet another topic to be considered. But attempts 674

at refining the nuclear EDF beyond that number of terms 675

must focus on parameters which are not active (or strongly 676

active) in static properties of unpolarized homogeneous matter 677

examined here, for example, the effective tensor force, time- 678

odd terms, and the pairing correlations. 679
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CONCLUSIONS & OUTLOOK

▸ We developed a generalized Skyrme functional for nucleus: 
Nuclear Matter →Nucleus 

▸ Power series expansion of nuclear EDF in the Fermi 
momentum. 

▸ Independence of nuclear bulk properties on effective masses 

▸ Neutron star mass-radius relation 

▸ Other nucleus; nuclear chart; drip lines; pairing; deformation, 
response to external perturbations and much more
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240 ➔ 16 ➔ 5 
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241 ➔ 17 ➔ 6 ?! 
    ⤋

MORE WORKS TO BE DONE!



MODERN PROBLEMS IN NUCLEAR AND ELEMENTARY PARTICLE PHYSICS

CONCLUSIONS & OUTLOOK

▸ To develop more realistic theories on the nuclear 𝜶 decay. 

▸ simple potential models 

▸ based on EDF 

▸ Other elements 

▸ deformation 

▸ direct calculation using 𝜶 cluster models 

▸ other theoretical framework
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