

BFKL evolution manifestation in jet production at colliders Victor Kim

Petersburg Nuclear Physics Institute NRC KI, Gatchina St. Petersburg Polytechnic University

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

- High energy asymptotics of pQCD
- BFKLP: NLL BFKL within generalized BLM
- Y*Y*- collisions at LEP2
 - Dijets from pQCD dynamics: GLAPD vs. BFKL
- Summary

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

NRC KI - PNPI, Gatchina & SPbPU

Lev N. Lipatov:

High-energy asymptotics in QED V. Gribov, V. Gorshkov, L. Lipatov, G. Frolov (1969-70)

- High-energy Bjorken asymptotics in QCD: GLAPD
 V. Gribov, L. Lipatov (1971-72) L. Lipatov (1974)
 G. Altarelli, G. Parisi (1977) Yu. Dokshitzer (1977)
- High-energy asymptotics in QCD: LL BFKL
 V. Fadin, E. Kuraev, L. Lipatov (1975-77)
 I. Balitsky, L. Lipatov (1978) L. Lipatov (1986)

1940 - 2017

- High-energy asymptotics in QCD: NLL BFKL 194
 V.Fadin, L.Lipatov (1989-98)
 S. Brodsky, V. Fadin, V. K., L. Lipatov, G. Pivovarov (1999-02)
- High-energy asymptotics in quantum gravity L. Lipatov (1989)
- High-energy QCD as an integrable theory
 L. Lipatov (1993) L. Faddeev, G. Korchemsky (1994)
- AdS/CFT (N=4 SUSY)

A. Kotikov, L. Lipatov, A. Onischenko, V. Velizhanin

High-order estimate in QFT (1976) L. Lipatov (1976)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

NRC KI - PNPI, Gatchina & SPbPU

Lev N. Lipatov: 3 BFKLs

BFKL

High-energy asymptotics in QCD: LL BFKL V. Fadin, E. Kuraev, L. Lipatov (1975-77) I. Balitsky, L. Lipatov (1978) L. Lipatov (1986)

BFKL

High-energy asymptotics in QCD: spin-dependent evolution, GPDF A. Bukhvostov, G. Frolov, E. Kuraev, L .Lipatov (1982-86)

BFKLP

High-energy asymptotics in QCD: NLL BFKL S. Brodsky, V. Fadin, V. K., L. Lipatov, G. Pivovarov (1999-02)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

NRC KI - PNPI, Gatchina & SPbPU

High-energy asymptotics of pQCD: GLAPD and BFKL

 $s=(p_1+p_2)^2$ $t=(p_1-p_3)^2 \qquad Q^2=-t$ Scattering in the Standard Model (QCD) at high energies: Large logarithms: as log(s), as log(Q²)

Bjorken limit (large-angle scattering): s ~ Q² >> m² Q²/s = x ~ I Gribov-Lipatov-Altarelli-Parisi-Dokshitzer (GLAPD) <-> I-scale RG: (as log(Q²))ⁿ resummation Inclusive cross section ~ I/Q⁴

Gribov-Regge limit (small-angle scattering): $s >> Q^2 >> m^2$ $Q^2/s = x \Rightarrow 0$ Balitsky-Fadin-Kuraev-Lipatov (BFKL): $(as log(s))^n$ resummationTotal cross section ~ $s^{(a_P-1)}$ a_P – Pomeron interceptsoft scattering data: $a_P = 1.1$

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

High energy asymptotics

- Large-angle scattering:

 QED and QCD in Bjorken limit
 GLAPD: V. Gribov & L. Lipatov (71-72); L. Lipatov (74); G. Altarelli & G. Parisi (77); Yu. Dokshitzer (77)

- Small-angle scattering:
 - **QED in Gribov-Regge limit**
 - V. Gribov, V. Gorshkov, L. Lipatov & G. Frolov (67-70) H. Cheng & T. Wu (66-70)

QCD in Gribov-Regge limit BFKL: V. Fadin, E. Kuraev & L. Lipatov (75-78) I. Balitsky & L. Lipatov (78)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Asymptotics of pQCD: x-section

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Asymptotics of QED cross sections

 $\sigma \sim (a_{QED})^2 \log(s)/s \quad \sigma \sim (a_{QED})^4 \operatorname{const}(s)$

All orders: V.N. Gribov, L.N. Lipatov, G.V. Frolov & V.G. Gorshkov (69-71) H. Cheng & T.T. Wu (69-70)

Cross section at s -> ∞ : ~ (a_{QED}) ⁴ (S/S₀) (aP-I) a_P = I + C (a_{QED})² ≈ 1.002

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Asymptotics of QCD cross sections: yy

 $\sigma \sim (a_{QED})^2 \log(s)/s$ $\sigma \sim (a_{QED})^2 (a_s)^2 \operatorname{const}(s)$

All orders: LL BFKL

Cross section at s -> ∞ : ~ (a_{QED})² (as)² (S/S₀) (aP-I)

a_P = I + C (as) ≈ 1.5 LL BFKL S. Brodsky & F. Hautmann (96) a_P = I + C (as) ≈ 1.2 NLL BFKL S.Brodsky, V Fadin, VK, L. Lipatov, G. Pivovarov (2001-02)

Ultrahigh energies: all particles behave as hadrons!

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Leading Log (LL) BFKL: problems

LL BFKL: designed for infinite collision energies

LL BFKL problems (at finite energies):
 - fixed (non-running) coupling as
 - energy-momentum conservation
 - transverse momentum conservation

 $\sigma = \sigma_0 (S/S_0)^{(aP-I)} \qquad a_P = I + C a_S \approx I.5 - I.6$

Data: a_P ≈ **1.2-1.3**

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

V.S. Fadin & L.N. Lipatov (89-98) C.Camici & M. Ciafaloni (96-98) next-to-leading log approximation (NLL) BFKL MSbar-renormalization scheme: large corrections

S.Brodsky, P.Lepage & P.Mackenzie - BLM (1983) Resummation of running coupling within the standard BLM is not possible for NLL BFKL: BLM approach valid only for Abelian case

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

S.Brodsky, P.Lepage & P.Mackenzie (83) BLM approach for NLO

- QCD asymptotically conformal
- non-conformal corrections (running coupling corrections) are resummed into optimal scale

Standard BLM approach for does not work (!) for:

- NLL BFKL in MSbar scheme
- Upsilon ->ggg decay in NLO in Msbar scheme

BLM resummation depends on non-Abelian structure in LO

BLM generalized on non-Abelian case: S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

BFKLP: NLL BFKL within generalized BLM - 1

Direct BLM application does not work in non-Abelian case(!):

- NLL BFKL in Msbar scheme
- Upsilon ->ggg decay in NLO in MSbar scheme

MSbar-scheme: nonphysical RG scheme (!) numerically close to V-scheme (heavy quark potential) – Abelian in LO

physical RG scheme: MOM scheme (guage dependent)

- NLL BFKL in non-Abelian in LO
- Upsilon ->ggg decay in non-Abelian in LO

one can use MOM-scheme based on ggg-vertex non-Abelian in LO

BLM generazlized on non-Abelian case: S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP BFKLP: NLL BFKL + resummation of running coupling as

BLM resummation depends on non-Abelian structure in LO

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

BFKLP: NLL BFKL within generalized BLM - 2

$$\omega_{\overline{MS}}(Q_1^2,\nu) = \int d^2 Q_2 \ K_{\overline{MS}}(\mathbf{Q}_1,\mathbf{Q}_2) \left(\frac{Q_2^2}{Q_1^2}\right)^{-\frac{1}{2}+i\nu}$$

$$= N_{C} \chi_{L}(\nu) \frac{\alpha_{\overline{MS}}(Q_{1}^{2})}{\pi} \left[1 + r \,\overline{_{MS}}(\nu) \frac{\alpha_{\overline{MS}}(Q_{1}^{2})}{\pi} \right],$$
$$\chi_{L}(\nu) = 2 \,\psi(1) - \psi(1/2 + i \,\nu) - \psi(1/2 - i \,\nu)$$

$$r_{\overline{MS}}(\nu) = r_{\overline{MS}}^{\beta}(\nu) + r_{\overline{MS}}^{\text{conf}}(\nu)$$

$$r_{\overline{MS}}^{\beta}(\nu) = -\frac{\beta_0}{4} \left[\frac{1}{2} \chi_L(\nu) - \frac{5}{3} \right]$$

$$r_{\overline{MS}}^{\text{conf}}(\nu) = -\frac{N_C}{4\chi_L(\nu)} \left[\frac{\pi^2 \sinh(\pi\nu)}{2\nu \cosh^2(\pi\nu)} \left(3 + \left(1 + \frac{N_F}{N_C^3} \right) \frac{11 + 12\nu^2}{16(1 + \nu^2)} \right) - \chi_L''(\nu) + \frac{\pi^2 - 4}{3} \chi_L(\nu) - \frac{\pi^3}{\cosh(\pi\nu)} - 6\zeta(3) + 4\varphi(\nu) \right]$$

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

TO PETHAN BUE AS STATE

BFKLP: NLL BFKL within generalized BLM - 3

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

BFKLP: NLL BFKL within generalized BLM - 4

V.S. Fadin & L.N. Lipatov (89-98) C.Camici & M. Ciafaloni (96-98) next-to-leading log approximation (NLL) BFKL MSbar-renormalization scheme: large corrections

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP D. Colferai, M. Ciafaloni & G. Salam (99) ... BFKLP: NLL BFKL + resummation of running coupling as in physical renormalization scheme

> BFKLP: Conformal BFKL kernel in NLL -> SUSY N=4 Pomeron intercept: $a_P=1.2 - 1.3$ Cross section: $\sigma_0 (S/S_0)^{(aP-1)} a_P = 1 + C a_S$

> > L.N. Lipatov, A.V. Kotikov et al. (2000-06) SUSY N=4 BFKL-Pomeron Anomalous dimensions: test of AdS/CFT

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Asymptotics of QED cross sections

Asymptotics of QCD cross sections

LL BFKL J. Bartels et al (96), S.J. Brodsky & Hautmann (97)

NLL BFKL (with LO impact factors) S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov & G.B. Pivovarov (2001-02)

NLO impact factors and full NLL BFKL (in progess): I. Balitsky, J.Chirilli, J. Bartels et al., A. Papa, D. Ivanov et al.

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Highly virtual photon scattering at LEP-2

S.J Brodsky, VK, L.N. Lipatov, V.S. Fadin & G.B. Pivovarov (2002) BFKLP: NLL BFKL + generalized BLM (LO impact factors)

LL BFKL: ruled out

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

BFKL: dijet processes

A. Mueller & H. Navelet, Nucl. Phys. (87) Most forward/backward (Mueller-Navelet) dijets: x-section ~ $exp(|\Delta|y)$

V.T. Kim & G.B. Pivovarov, Phys. Rev. (96) Inclusive dijets

J.C. Collins, R.K. Ellis (91), S. Catani et al (91) E.M.Levin, M.G.Ryskin, Yu.M.Shabelsky, A.G.Shuvaev (91) kT-factorization

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Dijet K-factor: 2-parton scattering

K-factor = x-section / Born x-section

GLAPD: x-section $\rightarrow C_1 \alpha_s^2 + C_2 \alpha_s^3 + ...$ Born x-section $\rightarrow C_1 \alpha_s^2$

**K-factor =
$$(1+C_2/C_1 \alpha_s + C_3/C_1 \alpha_s^2 + ...)$$**

Mueller-Navelet (87):

 $\begin{array}{l} \textbf{BFKL} \rightarrow \textbf{ enhanced } (\alpha_s \ \Delta y) \text{-terms} \\ \textbf{x-section} \rightarrow \textbf{B}_1 \ \alpha_s^2 \ \Delta y \text{+} \ \textbf{B}_2 \ \alpha_s^3 \ \Delta y^2 \text{+} \dots \\ \textbf{Born x-section} \rightarrow \textbf{B}_1 \ \alpha_s^2 \ \Delta y \end{array}$

 $K\text{-factor}_MN \rightarrow \ exp(\alpha_s \Delta y \)$

$$\Delta \mathbf{y} = |\mathbf{y}_1 - \mathbf{y}_2| \sim \log(1/\mathbf{x})$$

K-factor = x-section / Born x-section Born x-section: no real and no virtual corrections

only a theoretical quantity - > not measurable (!) Experiment: one cannot forbid virtual corrections by kinematical conditions

Exclusive dijet x-section: always contains virtual corrections

VK & G. Pivovarov: Using dijets with extra jet veto instead of Born dijets

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

NRC KI - PNPI, Gatchina & SPbPU

Forward dijets at Tevatron and LHC

 Tevatron : D0 ->
 |Δy| < 6</th>
 p_{Tmin} = 20 GeV

 - azimuthal decorr.
 (1997)

 - 1800/630 GeV x-section ratio (2001)

LHC: ATLAS -> $|\Delta y| < 6$ 70 GeV < $p_T < 90$ GeV - (inverse) "K-factor" (2011)

LHC: CMS -> $|\Delta y| < 9.4 \ p_{Tmin} = 35 \ GeV$ - "K-factor" (2012)

- azimuthal angle decorr. EJP C (2016)

22

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

CMS: dijet "K-factor"

EPJ C 72 (2012) 2216 7 TeV, pT_min = 35 GeV Δy = | | < 9.4

GLAPD (no AO and CC)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Color coherence and AO effects

GLAPD: strong kT-ordering & no rapidity ordering BFKL: strong rapidity ordering & no kT-ordering

Color coherence effects => rapidity ordering

Polar angle ordering (AO): jet cone veto for larger cone angles => rapidity ordering

Pythia 6 and 8: GLAPD + AO (AO cannot be fully switched off!) Herwig++: GLAPD + color coherence (CC cannot be swiched off)

No pure GLAPD MC generators (!) available at present: Pythia and Herwig generators contain |Δy|-effects

small CC and AO |Δy|-effects in GLAPD-regime can be large in BFKL-regime at large |Δy|

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Forward dijets at LHC

GLAPD generators Pythia 6 and 8 (with AO) are consistent with CMS dijet "K-factor" data rather well:

no sizeable BFKL effects at present energies?
 BFKL effects partially cancels out in dijet ratio?

in the latter case: "K-factor" with extra jet veto can be more sensitive BFKL effects 2-jet "exclusive" events: impose an extra jet veto p_{Tveto} < p_{Tmin}

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Forward dijets:

azimuthal angle decorrelations

Cosines V. Del Duca & C. Schmidt (94) J. Stirling (94) V. K. & G. Pivovarov (96)

Conformal properties of BFKL: Cosine ratios -> GLAPD cancellation -> more sensitive to BFKL (!) A. Sabio Vera et al (2011)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

$$\frac{1}{\sigma}\frac{d\sigma}{d(\Delta\phi)}(\Delta y, p_{\mathrm{Tmin}}) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} C_n(\Delta y, p_{\mathrm{Tmin}}) \cdot \cos(n(\pi - \Delta\phi)) \right]$$

 $C_n(\Delta y, p_{\text{Tmin}}) = \langle cos(n(\pi - \Delta \phi)) \rangle$, where $\Delta \phi = \phi_1 - \phi_2$

V. del Duca & C. Schmidt (94-95) Striling (94) V. K. & G. Pivovarov (96-98) A. Sabio Vera et al (2007-11)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

Dijets: <cos> vs NLL BFKL @BFKLP

28

13th APCTP-BLTP Workshop, 15-20 July 2019

019 Victor Kim

PETERSBURG STATE

Dijets: <cos2/>/<cos>) vs NLL BFKL @ BFKLP

 CMS:
 <cos> ratio
 > indication on BFKL?

 JHEP 08 (2016) 139
 7
 7

 7 TeV, pT_min = 35 GeV
 Δy < 9.4</td>
 NLL BFKL @BFKLP

B. Ducloue, L. Szymanowski & S. Wallon (2014)

29

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

other observables with jets

- dijet "K-factor" with veto on extra jets VK, G. Pivovarov et al. (2008)

- number of produced jets H. Jung et al. (2012)

- dijets with rapidity gaps A. Mueller & W.-K. Tang (1992) B. Peschanski, C. Royon et al. (2007-09)

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

y*y*- collisions at LEP2

NLL BFKL improved by BFKLP (generalized BLM) with LO impact factors (2001-02):

Indication on BFKL evolution

Outlooks: - Full NLL BFKL y*y*- collisions calculations - y*y*- collisions at LHC(?) - Future linear colliders

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim

- Forward dijet "K-factor" by CMS at 7 TeV : moderate rise with increasing |Ay|
- however: pure GLAPD -> const?
 Indication on BFKL evolution at LHC
- Azimuthal angle decorrelations (AAD) of CMS dijets:
 agreement with NLL BFKL improved by BFKLP (generalized BLM)
 partial agreement with GLAPD generators (Pythia, Herwig)
 Indication on BFKL evolution at LHC

Other observables:

- dijet "K-factor" with extra jet veto, number of extra jets, ...
- dijets with rapidity gaps, ... ?

Upcoming LHC Run 2 data at 13 TeV ?!

13th APCTP-BLTP Workshop, 15-20 July 2019

Victor Kim