

Joint Institute for Nuclear Research Dzhelepov Laboratory of Nuclear Problems

13th APCTP – BLTP JINR Joint Workshop "Modern Problems in Nuclear and Elementary Particle Physics"

Ordinary muon capture studies by means of γ-spectroscopy

D. Zinatulina, V. Egorov, V, Brudanin, S. Kazarcev, N. Rumyantseva,

M. Shirchenko, E. Shevchik, I. Zhitnikov

16/07/2019, Dubna

Ordinary Muon Capture (OMC)

6Se

methods)

Angular correlations in OMC

(Doppler shape of γ -lines)

Experimental input for NME calculations

Measurement set-up

Number of μ -stop = (8 – 25) x 10³ with 20 – 30 MeV/c

HPGe's: register μ X- and γ -radiation, following OMC in the target, and time

2β-decay	2β-experiments	experiments OMC target	
⁷⁶ Ge	Gerdal/II, Majorana Demonstrator	⁷⁶ Se	2004 (PSI)
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	2002 (PSI)
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	2004 (PSI)
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	EMO3, SuperNEMO, Lucifer(R&D) ⁸² Kr	
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU(R&D)	¹⁰⁰ Ru	2018 (RCNP)
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn	2002
¹⁵⁰ Nd	SuperNEMO, DCBA(R&D)	¹⁵⁰ Sm	2006 (PSI)
¹³⁶ Xe	EXO200, Kamland-Zen, NEXT	¹³⁶ Ba	2019 (RCNP)
¹³⁰ Te	Cuore 0/Cuore, SNO+	¹³⁰ Xe	2019 (PSI) ₅

(*E*, *t*) distribution of the correlated events following μ-capture in ⁷⁶Se target

(*E*, *t*) distribution of the correlated events following μ-capture in ⁷⁶Se target

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) \varkappa ^{nat}Se (bottom). ⁷

Total µ-capture rates in different isotopes of Se

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) \varkappa ^{nat}Se (bottom) ^{(A}.

^{A)} D. Zinatulina, V. Egorov et al. // Phys. Rev. C 99(2019)024327

^{B)} T. Suzuki, D.F. Measday // Phys. Rev. C 35(1987)2212

Energy spectra in OMC

- > $t_{\mu\gamma} = 0.50 \text{ ns: } \mu \text{X}\text{-cascades}$ (**Prompt** spectra) normalization, identification, composition of the surrounded materials and target itself;
- $t_{\mu\gamma}$ = 50-700 ns: γ-radiation following OMC (**Delayed** spectra) partial μ-capture rates strength function of the right side;
- > T >> $t_{\mu\gamma}$: background radiation (**Uncorrelated** spectra) calibration of the det-s, identification, yields of short-lived RI during exposure

Results measured with U-spectra in ⁷⁶Se

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- ➢ identification,
- yields of short-lived RI during exposure

Isotope	Type of decay	T _{1/2}	Λ _{cap} (xn yp) [10 ⁶ c ⁻¹]	P _{cap} [%]
⁷⁶ As	β-	26.3 h	1.45(11)	13.65(255)
^{75m} As	IT	17.6 µs	1.80(31)	6.5(11)
⁷⁵ As	sta	able	Not measured	
⁷⁴ As	β ⁻ , EC	17.8 d	1.1(2)	17.5(32)
⁷³ As	EC	80.3 d	Not me	asured
⁷² As	β^+	26 h	0.15(3)	2.4(5)
⁷¹ As	β+	65.3 h	0.061(18)	0.96(28)
^{75m} Ge	IT	48 s	0.047(13)	0.75(21)
⁷⁵ Ge	β-	82.8 min	0.054(2)	0.86(3)
^{71m} Ge	IT	20 µs	0.020(3)	0.32(5)
⁷⁴ Ga	β-	8.1 min	0.026(6)	0.40(9)
⁷² Ga	β-	14.1 h	0.026(7)	0.40(11)
				∑=43.7(43)

Results measured with U-spectra in ⁷⁶Se

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- ➢ identification,
- yields of short-lived RI during exposure

Isotope	Type of decay	T _{1/2}	Λ _{cap} (xn yp [10 ⁶ c ⁻¹]) P _{cap} [%]
⁷⁶ As	β-	26.3 h	1.45(11)	13.65(255)
^{75m} As	IT	17.6 µs	1.80(31)	6.5(11)
⁷⁵ As	sta	able	Not n	neasured
⁷⁴ As	β ⁻ , EC	17.8 d	1.1(2)	17.5(32)
⁷³ As	EC	80.3 d	Not n	neasured
⁷² As	β+	26 h	0.15(3)	2.4(5)
⁷¹ As	β+	65.3 h	0.061(18)	0.96(28)
^{75m} Ge	IT	48 s	0.047(13)	0.75(21)
⁷⁵ Ge	β-	82.8 min	0.054(2)	0.86(3)
^{71m} Ge	IT	20 µs	0.020(3)	0.32(5)
⁷⁴ Ga	β-	8.1 min	0.026(6)	0.40(9)
⁷² Ga	β-	14.1 h	0.026(7)	0.40(11)
				∑=43.7(43)

0v2β-decay	$0v2\beta$ -experiments	OMC targets	Status
⁷⁶ Ge	GerdaI/II, Majorana Demonstrator	GerdaI/II, Majorana Demonstrator ⁷⁶ Se	
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	Total and partial capture rates
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	Total and partial capture rates
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	3, SuperNEMO, cifer(R&D) ⁸² Kr	
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU(R&D)	¹⁰⁰ Ru	-
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn	-
¹⁵⁰ Nd	SuperNEMO, DCBA(R&D)	¹⁵⁰ Sm	Total capture rates, RI yields
¹³⁶ Xe	EXO200, Kamland-Zen, NEXT	¹³⁶ Ba	2020 (RCNP)
¹³⁰ Te	Cuore 0/Cuore, SNO+	¹³⁰ Xe	2019 (PSI) ¹⁷

Link: *muxrays.jinr.ru*

©2003-2016, Scientific Experimental Department of Nuclear Spectroscopy and Radiochemistry, DLNP, JINR

The information from the μX-ray spectra catalogue is **important**! (It helps us to <u>identify</u> γ-lines, <u>background</u>, and gives <u>correct selection of the targets</u> and <u>construction materials</u> for different experiments with muons)

Angular correlations with v in OMC (Doppler shape of γ -lines)

²⁰Ne, ¹²C and ¹⁶O were investigated for that purpose

Conclusions:

OMC presently seems to be a bit off the main stream of physics

But: it can provide important information about the high-q component of the weak nuclear response, i.e. it is relevant for the neutrinoless double beta decay (and astrophysics)

Several targets (⁴⁸Ti, ⁷⁶Se, ⁸²Kr, ¹⁰⁶Cd, ¹⁵⁰Sm) have been studied by our group for the double beta decay (⁴⁸Ca, ⁷⁶Ge, ⁸²Se ¹⁰⁶Cd, ¹⁵⁰Nd). Total and Partial capture rates were extracted and a substantial strength of the µ -capture was found to reside in the low-energy region -- especially in the case of heavy systems.

D. Zinatulina et al. Phys. Rev. C 99 (2019) 024327

PhD thesis of D.Zinatulina

- By-product: Electronic catalogue of muonic X-rays have been made (muxrays.jinr.ru)
- Angular correlations for ²⁰Ne, ¹⁶O and ¹²C have been investigated $(g_p/g_A, PCAC)$
- Further theoretical efforts is be needed
- New initiatives are very welcome to advance

Thank you for your attention!

Total μX -ray spectrum of Cd

Ordinary Muon Capture (OMC)

- Muonic characteristic X-rays (normalization, identification)
- γ-radiation following OMC in targets (total and partial capture rates)
- Yields of short-lived RI during exposure
- PhD thesis of D.Zinatulina
- [1] D. Zinatulina et al. Phys.
 Rev. C 99 (2019) 024327

Ordinary muon capture studies for the matrix elements in $\beta\beta$ decay

D. Zinatulina,¹ V. Brudanin,¹ V. Egorov,¹ C. Petitjean,² M. Shirchenko,¹ J. Suhonen,³ and I. Yutlandov¹

 ¹ Joint Institute for Nuclear Research, 141980 Dubna, Russia
 ² Paul Scherrer Institute, 5232 Villigen, Switzerland
 ³ Department of Physics, University of Jyväskylä, PO Box 35, FIN-40351 Jyväskylä, Finland (Dated: October 16, 2018)

Precise measurement of γ -rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched ⁴⁸Ti, ⁷⁶Se, ⁸²Kr, ¹⁰⁶Cd and ¹⁵⁰Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of γ -lines intensity allows to extract relative yield of several daughter nuclei and partial rates of (μ,ν) capture to numerous excited levels of the ⁴⁸Sc, ⁷⁶As, ⁸²Br, ¹⁰⁶Ag and ¹⁵⁰Tc isotopes which are considered to be virtual states of an intermediate odd-odd nucleus in 2β -decay of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁶Cd and ¹⁵⁰Nd, respectively. These rates are important as an experimental input for the theoretical calculation of the nuclear matrix elements of 2β -decay.

PACS numbers: 23.40.-s, 23.40.Hc, 27.40.+z, 27.50.+e, 27.60.+j, 27.70.+q

I. INTRODUCTION

At the moment the neutrinoless $\beta\beta$ ($0\nu\beta\beta$) decay of atomic nuclei is the only practical means of accessing the Majorana nature of the neutrino. In order to occur the decay requires the violation of lepton-number conservation and non-zero neutrino mass. Due to the importance of the related beyond-the-standard-model physics it is of interest to study the nuclei involved by both experimental and theoretical means. Large experimental collaborations have been established in order to measure the $0\nu\beta\beta$ half-lives in the presently running and future underground experiments. The connection between the (possibly) measured half-lives and the fundamental observables, like the electron neutrino mass, is provided by the nuclear matrix elements (NMEs) [1].

Nuclear models aimed at the description of the NMEs of $0\nu\beta\beta$ decays have traditionally been tested in connection with the two-neutrino $\beta\beta$ ($2\nu\beta\beta$) decays [1, 2] and β decays [3]. In [4] it was proposed that the ordinary muon capture (OMC) could be used for this purpose, as well. The $2\nu\beta\beta$ and β decays are low-momentum exchange processes ($q \sim \text{few MeV}$), whereas both $0\nu\beta\beta$ and OMC are high-momentum exchange processes ($q \sim 100$ MeV). In this way the $0\nu\beta\beta$ and OMC are similar processes and possess similar features: they are able to excite high-lying nuclear states with multipolarities J^{π} higher than $J^{\pi} = 1^+$. The $0\nu\beta\beta$ decay proceeds between the 0^+ ground states of parent and daughter even-even nuclei through virtual states of the intermediate odd-odd nucleus. These same virtual states can be accessed by the

the processes stemming, e.g., from the neutrino potential generated by the propagator of the virtual Majorana neutrino in the $0\nu\beta\beta$ decay [5]. Despite this difference the OMC can effectively probe the nuclear wave functions relevant for the $0\nu\beta\beta$ decay, as shown for the light nuclei in the shell-model framework in [6].

For the medium-heavy and heavy open-shell nuclei the shell-model framework is unfeasible due to computational limitations. For these nuclei the model framework of the quasiparticle random-phase approximation (QRPA [7] is a good choice. In particular, the proton-neutron version of the QRPA (pnQRPA) can access the virtual intermediate states of the $0\nu\beta\beta$ decays [1]. A particular problem pestering the pnQRPA approach is the uncertainty associated with one of its key parameters, the particleparticle interaction strength g_{pp} . This parameter is used to introduce a phenomenological overall scaling of the particle-particle part of proton-neutron interaction [8]. It is not clear how this scaling should be done for the $0\nu\beta\beta$ decays since there is no experimental data for transitions from either the $0\nu\beta\beta$ mother or daughter nuclei to the multipole $J^{\pi} \neq 1^+, 2^-$ intermediate states (the 1^+ and partly 2^- states can be probed by the (p, n) and (n, p) charge-exchange reactions [9]). In this case the only viable method to access this " $g_{\rm pp}$ problem" is the OMC [10]. By using experimental data on OMC to individual intermediate J^{π} states one can access the value of $g_{\rm DD}$ for each multipole separately and at the same time study the consistency of these values by comparison with the measured OMC rates for a wider palette of nuclear states.

In order to give an experimental input to 2β NME cal

<u>arXiv:</u> 1803.10960v2

URL: <u>http://muxrays.jinr.ru/</u>

Измерено более 75 химических элемён

Total μX -ray spectrum of Cd

Статус по ЯМЭ. Подавление g_д параметра (Й. Сухонен и др.,Ювяскюля)

$$(T_{1/2}^{0\nu})^{-1} = \left(\frac{\langle m_{\nu} \rangle}{m_e}\right)^2 \times F_{0\nu} \times |\mathsf{NME}_{0\nu}|^2$$

 $|\mathsf{NME}_{0\nu}|^2 \cong \left| M_{GTGT}^{0\nu} \right|^2 = \left(g_{a,0\nu} \right)^4 \left| \Sigma_{J^{\pi}} \left(\left\langle \mathbf{0}_f^+ \right| \mathbf{0}_{GTGT}^{0\nu} \left| \mathbf{0}_i^+ \right\rangle \right) \right|^2$

<u>Jiao et al.:</u>Phys.Rev. C 96 (2017) 054310 (GCM+ISM)

<u>Menendez et al</u>.:Nucl. Phys. A 818 (2009) 139 (ISM)

<u>Senkov et al</u>.:Phys. Rev. C 93 (2016) 044334 (ISM)

Barea et al.: Phys.Rev. C 91 (2015) 034304 (IBM-2)

Suhonen: Phys.Rev. C 96 (2017) 055501 (pnQRPA+ isospin restoration + data on $2\nu\beta\beta$)

<u>Расчеты с использованием оболочечной</u> модели (⁵⁶Fe, ²⁴Mn, ³²S)

- Кандидаты DBD
- Проверка подавления g_A
- Вклад V,A,P в парциальные скорости захвата

 $\boldsymbol{\lambda}_{\mu} \approx C(q_i) \sum |g_V M_V(\kappa, u) + g_A M_A(\kappa, u) + g_P M_P(\kappa, u)|^2$

Ускоритель RCNP и E489 эксперимент

BEAM LINE:

MuSIC

BEAM REQUIREMENTS:

Type of particle Beam energy Beam intensity proton 400 MeV 1 µA

Type of particle Muon momentum Beam intensity muon 50 MeV/c 1 µA

PRC 97(2018) 014617 (J-PARC 2014)

FIG. 6. The OMC strength distribution suggested from the experimental RI distribution. E_{G1} and E_{G2} are the OMC GRs at around 12 MeV and 30 MeV.

91

Atomic Mass Number, A

Overview of the method

Е489 эксперимент (февраль 2018г.)

Е489 коллаборация:

I.H. Hashim ¹, D. Zinatulina³,
H. Ejiri², A.Sato², M. Shirchenko³, S.A.Hamzah¹,
F.Othman², K.Ninomiya², T.Shima², K. Takahisa²,
D.Tomono², Y.Kawashima² and V. Egorov³

¹Технический Университет Малайзии, Скудай, Малайзия ²Центр исследования ядерных проблем, Япония, Осака ³Объединенный Институт Ядерных Исследований, Россия, Дубна

Detector efficiencies and timing

high γ's from ³⁵Cl(n,γ), ⁵⁶Fe(n,γ),²⁸Si(n,γ) and μX-rays from Au, Cd, Sm timing deterioration due co-axial geometry of HPGe time lag due to incomplete charge collection

URL: http://muxrays.jinr.ru/

Метод временно́й эволюции γ-линии

Полная скорость исчезновения мюона:

 $\Lambda_{tot} = 1/\tau = \Lambda_{cap} + \mathbf{H} \cdot \Lambda_{free} + \dots,$

Λ_{free}-распад свободного мюона, H-фактор Хаффа,

$$\Lambda_{cap} = \Lambda_{cap}(0n) + \Lambda_{cap}(1n) + \Lambda_{cap}(2n) + \Lambda_{cap}(1p) + \dots$$

(1) – центральная часть фрагмен
 + фон под ней) – 1 ч;

(2) – фоновая часть вокруг энерг
 (1ч);

 (3) – область γ-линии (фитировани Гаусса с пятью параметрами временного отрезка) – 73 ч.

 $f(t) = A_1 \cdot Exp(-t/\tau) + \mathcal{C}$

<u>Различная форма ү-линий в Ne. Угловые</u> корреляции.

- Газовая мишень при давлении 1 атм.
- 4 НРСе детектора
- 400 часов измерений

Мишень: ⁴⁸Ті

Годисследования: 2002 Обогащение: 95.8% Состав: ТіО₂ порошок Количество: 1.0 г

Полные скоростиµзахвата в ⁴⁸Ті

Парциальные


```
Мишени: <sup>106</sup>Cd, <sup>nat</sup>Cd
```

```
Годисследования: 2004

<sup>106</sup>Cd

Обогащение: 63.0%

Состав: Cd (метал.фольга)

Количество: 5.0 г

<sup>nat</sup>Cd

Состав: Cd (метал.фольга)

Количество: 5.0 г
```

Полные скоростиµ-захвата в различных изотопах Cd

Іарциальные

Вероятностищ-задра Коб Врата 1329.5 0.37 (20)

Мишени: ¹⁵⁰Sm, ^{nat}Sm

Годисследования: 2006

¹⁵⁰Sm

Обогащение: 92.6%

Состав: Sm₂O₃ (порошок)

Количество: 2.0 г

<u>natSm (тестовое измерение)</u>

Состав: Sm₂O₃ (порошок)

Количество: 2.0 г

Полные скоростиµ-захвата в ¹⁵⁰Sm

Мише нь	Доч ядр о	Е, ^γ [кэ В]	τ [нс]	<Λ _{cap} > [10 ⁶ c ⁻¹]
¹⁵⁰ Sm	¹⁴⁹ Pm	114.0	82.1(6)	
		211.2	81.8(9)	
	¹⁴⁸ Pm	219.8	83.1(21)	
		233.0	81.7(21)	
			<82.3(5)>	11.75(7)

Анализ энергетических спектров, измеренных с ¹⁵⁰Sm

- Проведена идентификация μX-лучей (Р) и γ-линий (D), получены парциальные интенсивности более 100 γ-переходов;
- Не было доступной информации о структуре возбужденных состояний ¹⁵⁰Pm
 - (анализ данных продолжается);
- ▶ ВU-спектрах идентифицировано семь изотопов/изомеров, определены выходы этих ядер в (µ-+¹⁵⁰Sm) реакции.

 $\Sigma = 68.3(69)$

Мишени:⁸²Kr, ^{nat}Kr

```
Годисследования: 2006

<sup>82</sup>Kr
Обогащение: 99.8%
Состав: Kr (газ)
Количество: 1.0 л (1 атм.)
<sup>nat</sup>Kr
Состав: Kr (газ)
Количество: 1.0 л (1 атм.)
```

Полные скоростиµ-захвата в различных изотопах Kr

Мише нь	До ч. яд ро	Е _i γ [кэ В]	τ [нс]	<Λ _{cap} > [10 ⁶ c ⁻¹]
⁸² Kr	⁸² Br	244.8	142.9(6)	
	⁸¹ Br	276.0	142.6(3)	
		<142.68(37)>		6.576(17)
^{nat} Kr				
⁸⁴ Kr	⁸⁴ Br	408.2	160.1(27)	5.81(10)
⁸⁶ Kr	⁸⁵ Br	233.0	173.5(26)	5.33(8)

Оценка погрешности

Извлекаемое	Источник	Ошибка, %	Комментарии	
значение	ошибки			
ΔI_i^{γ}	площадь пика	1-25	зависит от интенсивности линии и фона	
	эффективность детектора	5-20	возрастает в низком и вы- соком диапазонах энергий	
	относительная интенсивность ‡	2–30	взяты из [48]	
ΔY_j	сумма ошибок $\Delta I_{ m in}^{\gamma}$ и $\Delta I_{ m out}^{\gamma}$	22-43	зависит от полного ко- личества заселяющих и разряжающих уровень γ - линий	
ΔP_j	ΔY_j	22-43		
	$\Delta \lambda_{ m tot}$	0.06-0.6	зависит от примеси более тяжелого изотопа в обога- щенной мишени	
	$\Delta \lambda_{ m cap}$	0.06-0.6	зависит от примеси более тяжелого изотопа в обога- щенной мишени	

⁺) использовалась только в случаях, когда извлечение абсолютной интенсивности γ -пика было сомнительным.