

July 14-20, 2019, Dubna, Russia

Relativistic description of novel nuclear structure towards extremes of spin and isospin

Pengwei Zhao (赵鹏巍)

Peking University

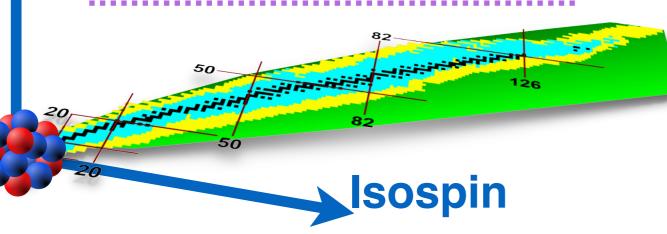
Nuclear spectroscopy

Spin

Long Range Plan 2015

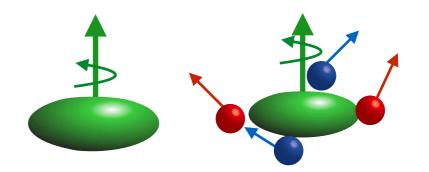
Towards extreme spin and isospin

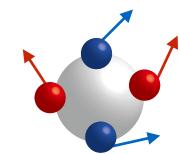
- √ collectivity
- √ shape coexistence/transition
- √ evolution of shell structure
- √ super- (hyper-) deformation
- √ novel modes of excitation
- √ superfluidity
- √ superheavy nuclei
- √ fission
- **√** ...



Nuclear Rotation

interplay



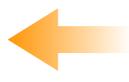


collectivity

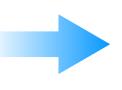
valence nucleon

Strong deformation

Weak deformation



Novel structure at the limits



Outline

- Covariant density functional theory
- Rod-shaped nuclei at high spin and isospin
- Chiral conundrum in ¹⁰⁶Ag
- Extending CDFT: a new spectroscopic method
- Summary

Density functional theory

The many-body problem is mapped onto an one-body problem

Hohenberg-Kohn Theorem

The exact ground-state energy of a quantum mechanical many-body system is a universal functional of the local density.

Kohn-Sham DFT

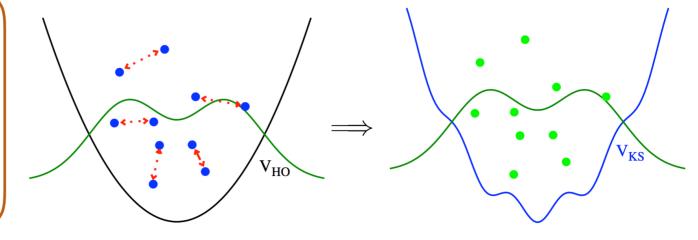


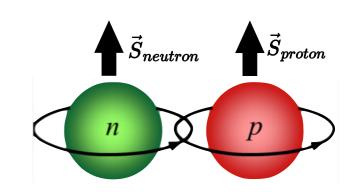
Figure from Drut PPNP 2010

$$E[\rho] \Rightarrow \hat{h} = \frac{\delta E}{\delta \rho} \Rightarrow \hat{h}\varphi_i = \varepsilon_i \varphi_i \Rightarrow \rho = \sum_{i=1}^A |\varphi_i|^2$$

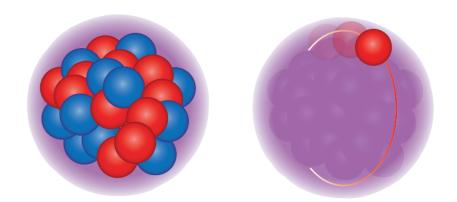
The practical usefulness of the Kohn-Sham theory depends entirely on whether an **Accurate Energy Density Functional** can be found!

Density functional theory for nuclei

√ The nuclear force is complicated

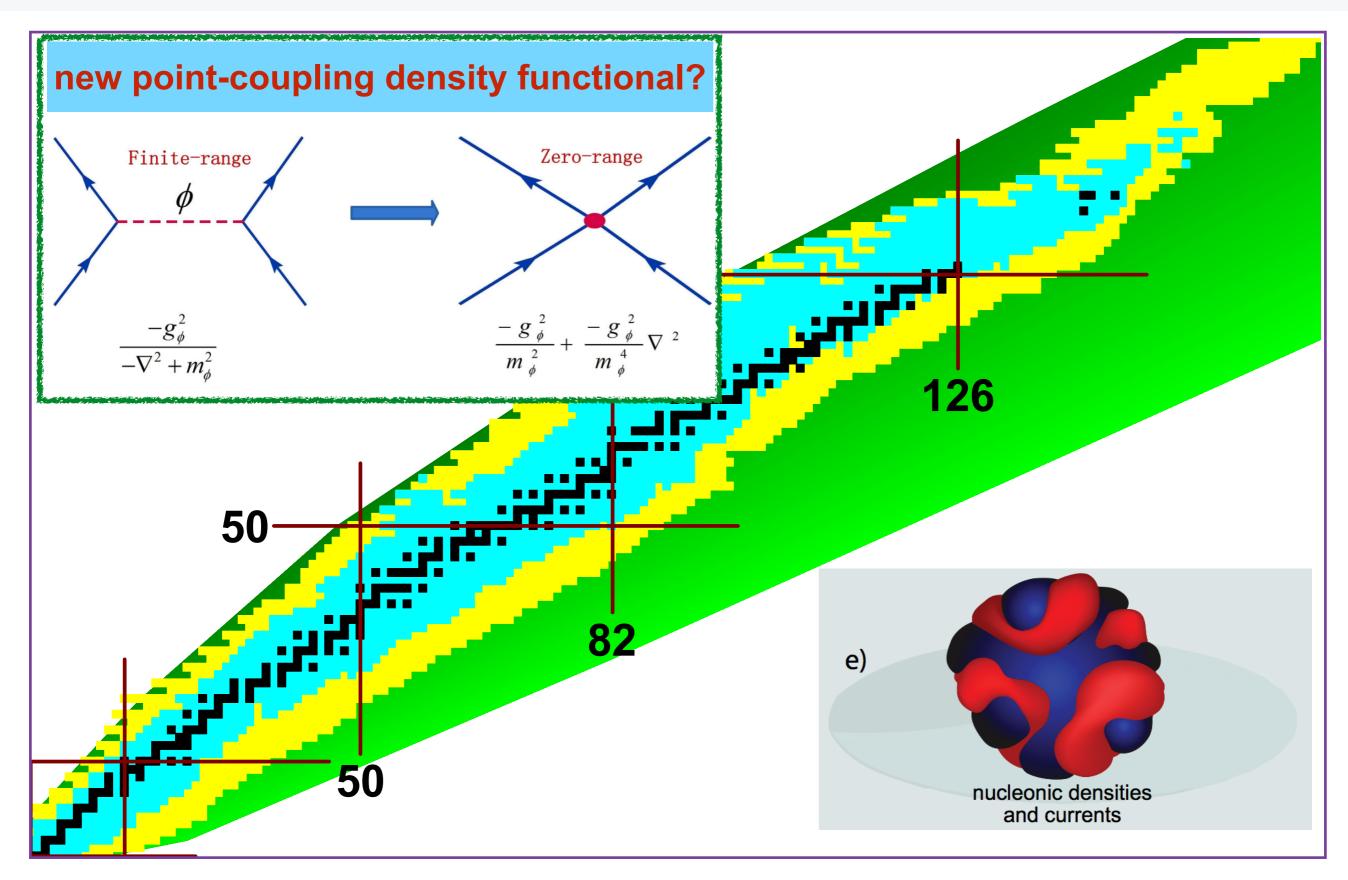


- ✓ More degrees of freedom: spin, isospin, pairing, ...
- ✓ Nuclei are self-bound systems
 DFT for the intrinsic density



- ✓ At present, all successful functionals are phenomenological not connected to any NN- or NNN-interaction
- ✓ Adjust to properties of nuclear matter and/or finite nuclei, and (in future) to ab-initio results

Covariant density functionals



Covariant Density Functional Theory

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{ au}\Gamma\psi)$$

$$\mathcal{O}_{\tau} \in \{1, \tau_i\}$$

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi)$$
 $\mathcal{O}_{\tau}\in\{1,\tau_i\}$ $\Gamma\in\{1,\gamma_{\mu},\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}\}$

Densities and currents

Isoscalar-scalar

$$ho_S(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_k(\mathbf{r}) \psi_k(\mathbf{r})$$

Isoscalar-vector
$$j_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \gamma_{\mu} \psi_{k}(\mathbf{r})$$

Isovector-scalar
$$\vec{\rho}_S(\mathbf{r}) = \sum_k^{occ} \bar{\psi}_k(\mathbf{r}) \vec{\tau} \psi_k(\mathbf{r})$$

Isovector-vector
$$\vec{j}_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \vec{\tau} \gamma_{\mu} \psi_{k}(\mathbf{r})$$

$$j_0 = \rho_V \quad j_i = 0$$

$$\vec{j}_0 = \rho_{TV} \quad \vec{j}_i = 0$$

Energy Density Functional

$$E_{kin} = \sum_k v_k^2 \int ar{\psi}_k (-\gamma
abla + m) \psi_k d{f r}$$

$$E_{2nd} = rac{1}{2} \int (lpha_S
ho_S^2 + lpha_V
ho_V^2 + lpha_{tV}
ho_{tV}^2) d{f r}$$

$$E_{hot} = rac{1}{12}\int (4eta_S
ho_S^3 + 3oldsymbol{\gamma}_S
ho_S^4 + 3oldsymbol{\gamma}_S
ho_V^4)d{f r}$$

$$E_{der} = rac{1}{2} \int (\delta_S
ho_S riangle
ho_S + \delta_V
ho_V riangle
ho_V + \delta_{tV}
ho_{tV} riangle
ho_{tV}) d{f r}$$

$$E_{em}=rac{e}{2}\int j_{\mu}^{p}A^{\mu}d{f r}$$

Covariant Density Functional Theory

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{ au}\Gamma\psi)$$

$$\mathcal{O}_{\tau} \in \{1, \tau_i\}$$

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi)$$
 $\mathcal{O}_{\tau}\in\{1,\tau_i\}$ $\Gamma\in\{1,\gamma_{\mu},\frac{\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}}{\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}}\}$

Densities and currents

Isoscalar-scalar

$$\rho_S(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_k(\mathbf{r}) \psi_k(\mathbf{r})$$

Isoscalar-vector
$$j_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \gamma_{\mu} \psi_{k}(\mathbf{r})$$

Isovector-scalar
$$\vec{\rho}_S(\mathbf{r}) = \sum_k^{occ} \bar{\psi}_k(\mathbf{r}) \vec{\tau} \psi_k(\mathbf{r})$$

Isovector-vector
$$\vec{j}_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \vec{\tau} \gamma_{\mu} \psi_{k}(\mathbf{r})$$

$$j_0 = \rho_V \quad j_i = 0$$

$$\vec{j}_0 = \rho_{TV} \quad \vec{j}_i = 0$$

Energy Density Functional

$$E_{kin} = \sum_k v_k^2 \int ar{\psi}_k (-\gamma
abla + m) \psi_k d{f r}$$

$$E_{2nd} = rac{1}{2} \int (lpha_S
ho_S^2 + lpha_V
ho_V^2 + lpha_{tV}
ho_{tV}^2) d{f r}$$

$$E_{hot} = rac{1}{12}\int (4eta_S
ho_S^3 + 3oldsymbol{\gamma}_S
ho_S^4 + 3oldsymbol{\gamma}_S
ho_V^4)d{f r}$$

$$E_{der} = rac{1}{2} \int (\delta_S
ho_S riangle
ho_S + \delta_V
ho_V riangle
ho_V + \delta_{tV}
ho_{tV} riangle
ho_{tV}) d{f r}$$

$$E_{em}=rac{e}{2}\int j_{\mu}^{p}A^{\mu}d{f r}$$

Covariant Density Functional Theory

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{ au}\Gamma\psi)$$

$$\mathcal{O}_{\tau} \in \{1, \tau_i\}$$

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi)$$
 $\mathcal{O}_{\tau}\in\{1,\tau_i\}$ $\Gamma\in\{1,\gamma_{\mu},\frac{\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}}{\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}}\}$

Densities and currents

Isoscalar-scalar

$$ho_S(\mathbf{r}) = \sum_k^{occ} \bar{\psi}_k(\mathbf{r}) \psi_k(\mathbf{r})$$

Isoscalar-vector

$$j_{\mu}(\mathbf{r}) = \sum_{k}^{bcc} \bar{\psi}_{k}(\mathbf{r}) \gamma_{\mu} \psi_{k}(\mathbf{r})$$

Isovector-scalar
$$\vec{
ho}_S(\mathbf{r}) = \sum_k \bar{\psi}_k(\mathbf{r}) \vec{\tau} \psi_k(\mathbf{r})$$

Isovector-vector
$$\vec{j}_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \vec{\tau} \gamma_{\mu} \psi_{k}(\mathbf{r})$$

$$j_0 = \rho_V \quad j_i = 0$$

$$\vec{j}_0 = \rho_{TV} \quad \vec{j}_i = 0$$

Energy Density Functional

$$E_{kin} = \sum_k v_k^2 \int ar{\psi}_k (-\gamma
abla + m) \psi_k d{f r}$$

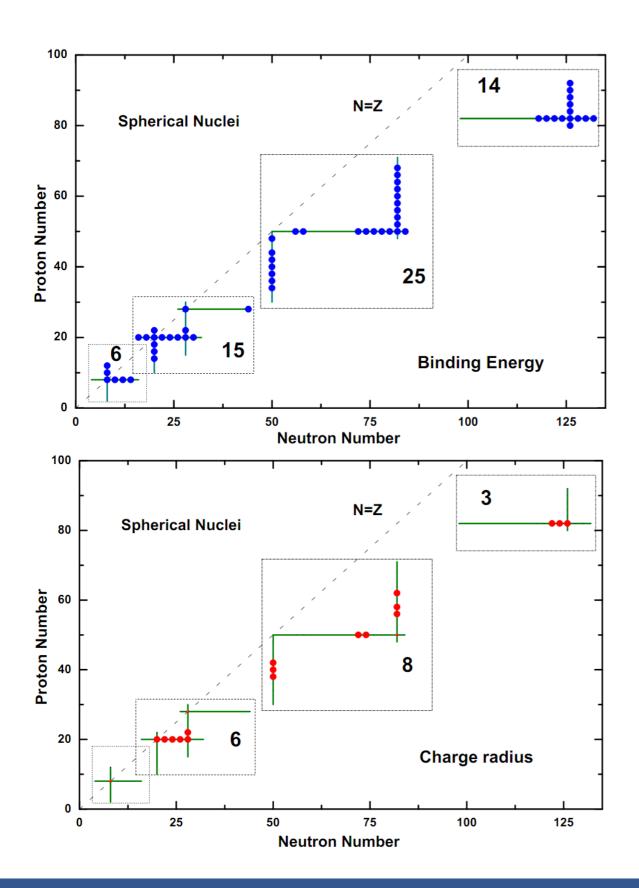
$$E_{2nd} = rac{1}{2} \int (lpha_S
ho_S^2 + lpha_V
ho_V^2 + lpha_{tV}
ho_{tV}^2) d{f r}$$

$$E_{hot} = rac{1}{12}\int (4 m{eta_S}
ho_S^3 + 3 m{\gamma_S}
ho_S^4 + 3 m{\gamma_S}
ho_V^4) d{f r}$$

$$E_{der} = rac{1}{2} \int (oldsymbol{\delta_S}
ho_S riangle
ho_S + oldsymbol{\delta_V}
ho_V riangle
ho_V + oldsymbol{\delta_{tV}}
ho_{tV} riangle
ho_{tV}) d\mathbf{r}$$

$$E_{em}=rac{e}{2}\int j_{\mu}^{p}A^{\mu}d{f r}$$

Covariant Functional: PC-PK1



Binding energies of 60 nuclei Charge radii of 17 nuclei

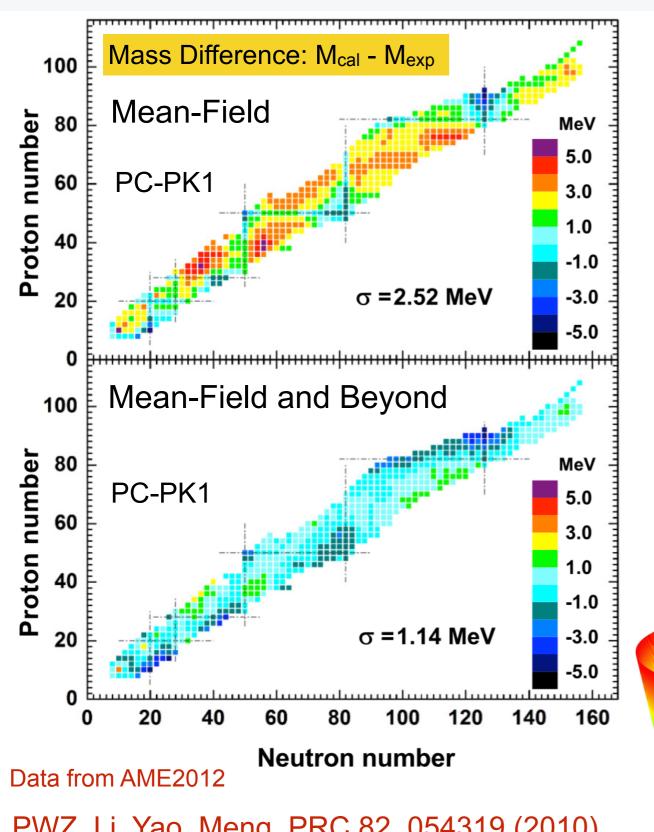
Coupl.	Cons.	PC-PK1	Dimension
α_S	$[10^{-4}]$	-3.96291	MeV^{-2}
eta_S	$[10^{-11}]$	8.66530	${ m MeV^{-5}}$
γ_S	$[10^{-17}]$	-3.80724	${ m MeV^{-8}}$
δ_S	$[10^{-10}]$	-1.09108	${ m MeV^{-4}}$
$lpha_V$	$[10^{-4}]$	2.69040	${ m MeV^{-2}}$
γ_V	$[10^{-18}]$	-3.64219	${ m MeV^{-8}}$
δ_V	$[10^{-10}]$	-4.32619	${ m MeV^{-4}}$
$lpha_{TV}$	$[10^{-5}]$	2.95018	${ m MeV^{-2}}$
δ_{TV}	$[10^{-10}]$	-4.11112	${ m MeV^{-4}}$
V_n	$[10^0]$	-349.5	$MeV fm^3$
V_p	$[10^0]$	-330	$MeV fm^3$

PWZ, Li, Yao, Meng, PRC 82, 054319 (2010)

Nuclear Masses

 Γ $[\rho,\kappa,\kappa^*;|q|]$

From Duquet



 $\sum \left(M_{\rm theo}^i - M_{\rm exp}^i \right)^2$ 2.96 2.39 2.25 2.01 1.14 DD-MEδ DD-ME2 **TMA** DD-PC1 PC-PK1 Agbemava PRC 2014

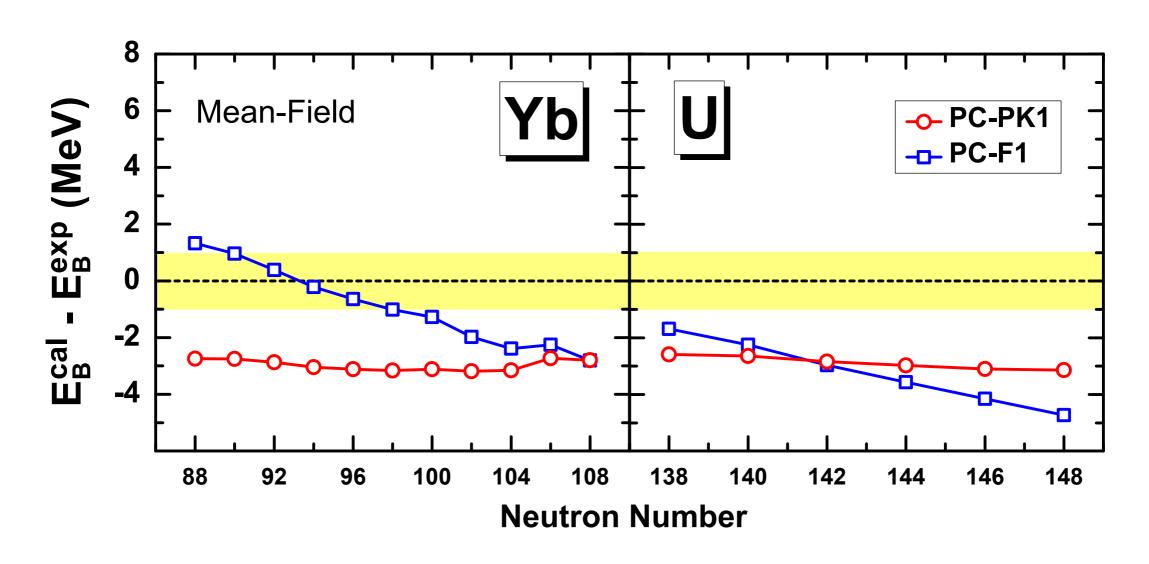
Best density-functional description for nuclear masses so far!

PWZ, Li, Yao, Meng, PRC 82, 054319 (2010) Lu, Li, Li, Yao, Meng PRC 91, 027304 (2015)

9 /32

Geng PTP 2005

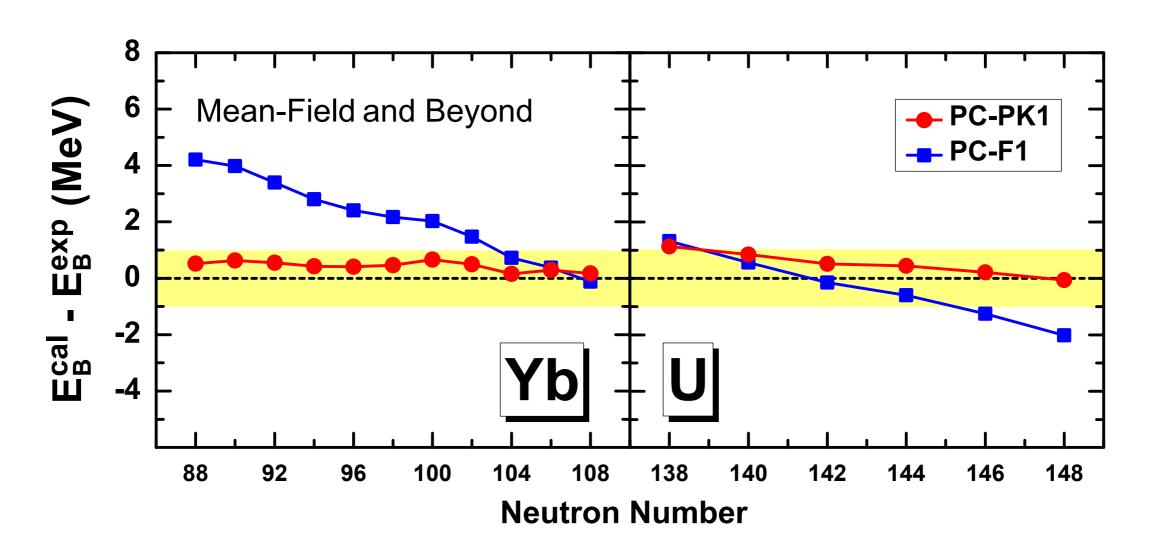
Deformed nuclei



PWZ, Li, Yao, Meng, PRC 82, 054319 (2010)

Improved isospin dependence Maybe more reliable for neutron-rich exotic nuclei ...

Deformed nuclei



PWZ, Li, Yao, Meng, PRC 82, 054319 (2010)

Improved isospin dependence Maybe more reliable for neutron-rich exotic nuclei ...

Extending CDFT for nuclear rotations

The cranking mean-field model has been very successful for rotations

Tilted axis cranking CDFT

Meson exchange version:

3-D Cranking: Madokoro, Meng, Matsuzaki, Yamaji, PRC 62, 061301 (2000)

2-D Cranking: Peng, Meng, Ring, Zhang, PRC 78, 024313 (2008)

Point-coupling version:

Simple and more suitable for systematic investigations

2-D Cranking: PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

2-D Cranking + Pairing: PWZ, Zhang, Meng, PRC 92, 034319 (2015)

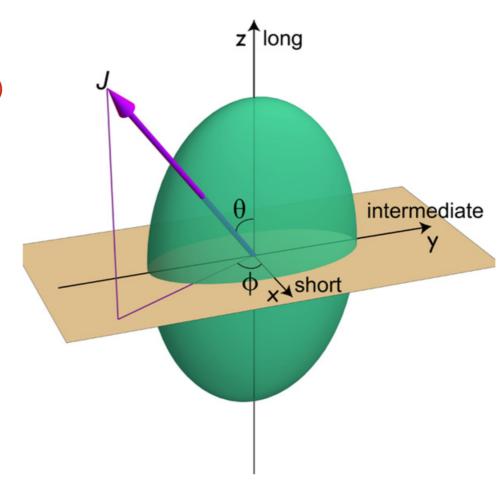
3-D Cranking: PWZ, PLB 773, 1 (2017)

3-D Cranking + Pairing: PWZ, in preparation

2-D Cranking: Olbratowski, et al., APPB 33, 389(2002); 3-D Cranking: Olbratowski et al., PRL 93, 052501(2004)

Self-consistent and microscopic investigations

no additional parameter beyond a well-determined functional



Cranking Relativistic Kohn-Sham Equation

Dirac Equation

$$\mathbf{F}\begin{pmatrix} m + V + S - \boldsymbol{\omega} \cdot \boldsymbol{J} & \boldsymbol{\sigma} \cdot \boldsymbol{p} - \boldsymbol{\sigma} \cdot \boldsymbol{V} \\ \boldsymbol{\sigma} \cdot \boldsymbol{p} - \boldsymbol{\sigma} \cdot \boldsymbol{V} & -m + V - S - \boldsymbol{\omega} \cdot \boldsymbol{J} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} = \varepsilon \begin{pmatrix} f \\ g \end{pmatrix}$$

$$\mathbf{S}(\boldsymbol{r}) = \alpha_{S}\rho_{S} + \beta_{V}\rho_{S}^{2} + \gamma_{V}\rho_{S}^{3} + \delta_{S}\Delta\rho_{S}$$

$$\mathbf{V}(\boldsymbol{r}) = \alpha_{V}\rho_{V} + \gamma_{V}\rho_{V}^{3} + \delta_{V}\Delta\rho_{V} + \tau_{3}\alpha_{TV}\rho_{TV} + \tau_{3}\delta_{TV}\Delta\rho_{TV} + e^{\frac{1 - \tau_{3}}{2}}A$$

$$\mathbf{V}(\boldsymbol{r}) = \alpha_{V}\boldsymbol{j}_{V} + \gamma_{V}\boldsymbol{j}_{V}^{3} + \delta_{V}\Delta\boldsymbol{j}_{V} + \tau_{3}\alpha_{TV}\boldsymbol{j}_{TV} + \tau_{3}\delta_{TV}\Delta\boldsymbol{j}_{TV} + e^{\frac{1 - \tau_{3}}{2}}A$$

Consistent treatment for time-odd fields from nuclear currents

PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

Cranking Relativistic Kohn-Sham Equation

Dirac Equation Coriolis term Time-odd mean fields

$$\mathbf{S}(\mathbf{r}) = \alpha_{S}\rho_{S} + \beta_{V}\rho_{V}^{2} + \gamma_{V}\rho_{S}^{3} + \delta_{S}\Delta\rho_{S}$$

$$\mathbf{V}(\mathbf{r}) = \alpha_{V}\rho_{V} + \gamma_{V}\rho_{V}^{3} + \delta_{V}\Delta\rho_{V} + \tau_{3}\alpha_{TV}\rho_{TV} + \tau_{3}\delta_{TV}\Delta\rho_{TV} + e^{\frac{1-\tau_{3}}{2}}A$$

$$\mathbf{V}(\mathbf{r}) = \alpha_{V}\mathbf{j}_{V} + \gamma_{V}\mathbf{j}_{V}^{3} + \delta_{V}\Delta\mathbf{j}_{V} + \tau_{3}\alpha_{TV}\mathbf{j}_{TV} + \tau_{3}\delta_{TV}\Delta\mathbf{j}_{TV} + e^{\frac{1-\tau_{3}}{2}}A$$

Consistent treatment for time-odd fields from nuclear currents

PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

Cranking Relativistic Kohn-Sham Equation

Dirac Equation Coriolis term Time-odd mean fields

Consistent treatment for time-odd fields from nuclear currents

PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

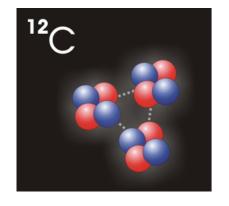
Outline

- Covariant density functional theory
- Rod-shaped nuclei at high spin and isospin
- Chiral conundrum in ¹⁰⁶Ag
- Extending CDFT: a new spectroscopic method
- Summary

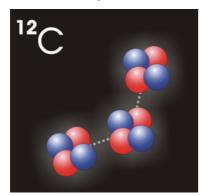
Rod-shaped nuclei

Strongly deformed states <u>towards a hyper-deformation</u> may exist in light N = Z nuclei due to a cluster structure.

Ground



Hoyle



- → the linear alpha cluster chain has been searched more than 60 years.
- → new radioactive beams provide new opportunities in realizing the linear chain state.

No firm evidence

Two difficulties

- √ antisymmetrization effects
- √ weak-coupling nature

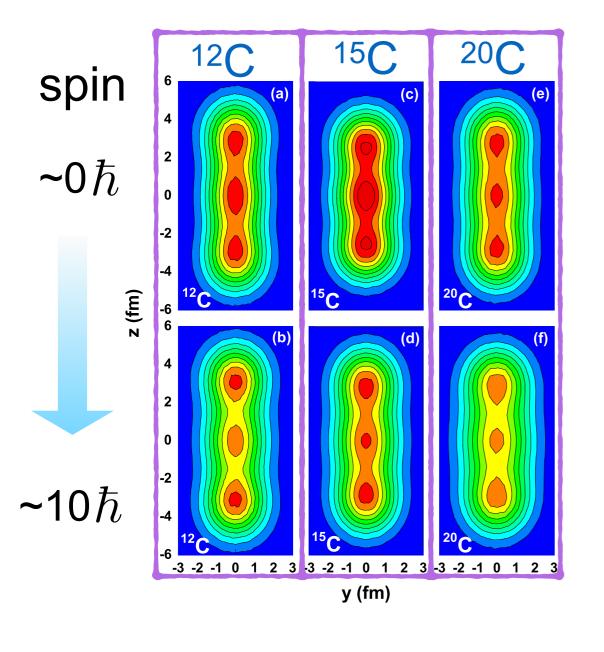
Two mechanisms

- √ adding neutrons (isospin)
- √ rotating the system (spin)

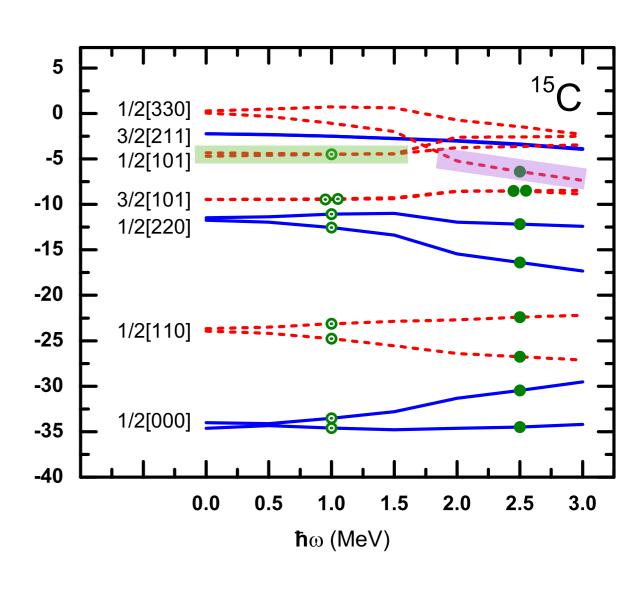
Itagaki, PRC2001; Maruhn, NPA2010; Ichikawa, PRL2011

CDFT is employed without assuming clustering a priori.

Proton density distribution



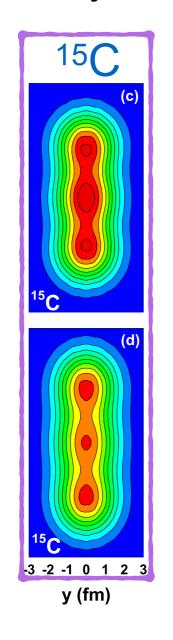
neutron orbitals



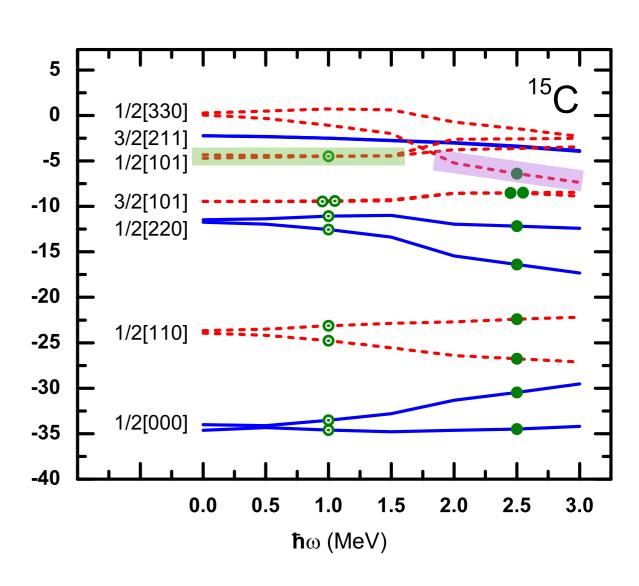
PWZ, Itagaki, Meng, PRL 115, 022501 (2015)

Proton density distribution



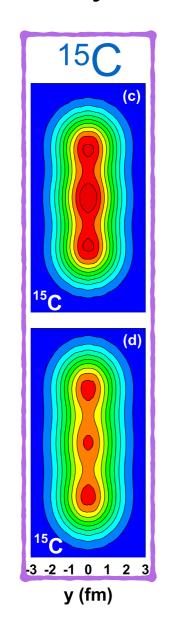


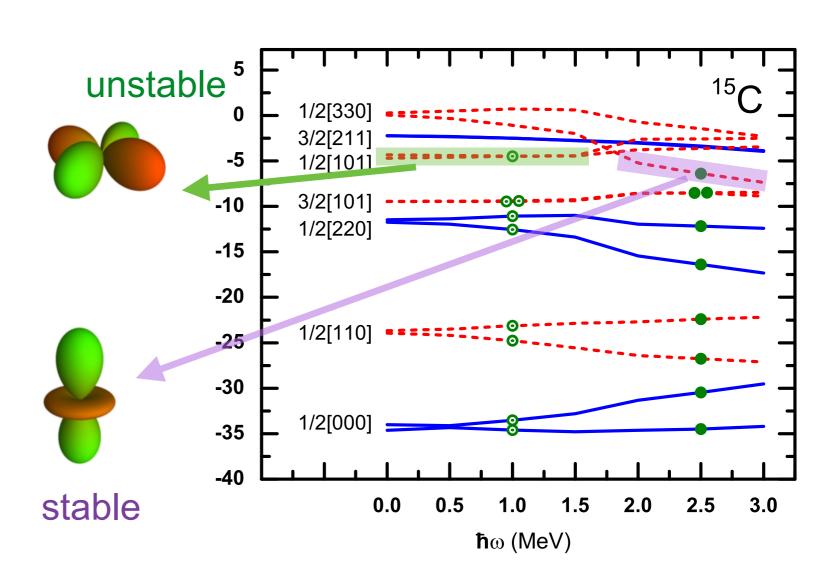
neutron orbitals



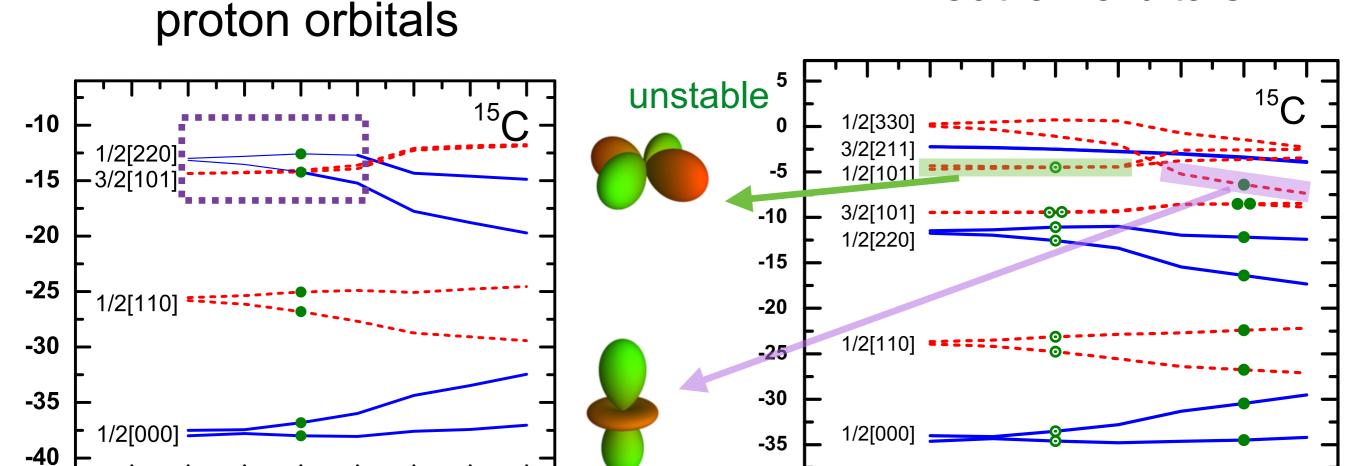
Proton density distribution

neutron orbitals





PWZ, Itagaki, Meng, PRL 115, 022501 (2015)



stable

-40

0.0

0.5

PWZ, Itagaki, Meng, PRL 115, 022501 (2015)

0.5

1.0

ħω (MeV)

2.0

1.5

2.5 3.0

2.0

1.5

ħω (MeV)

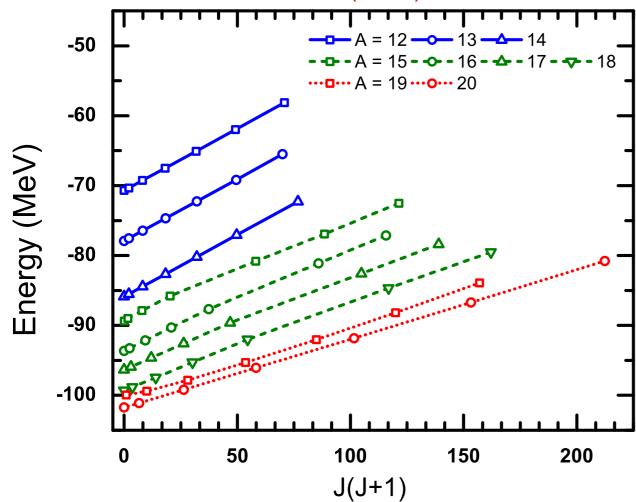
2.5

3.0

neutron orbitals

Recent experiments...

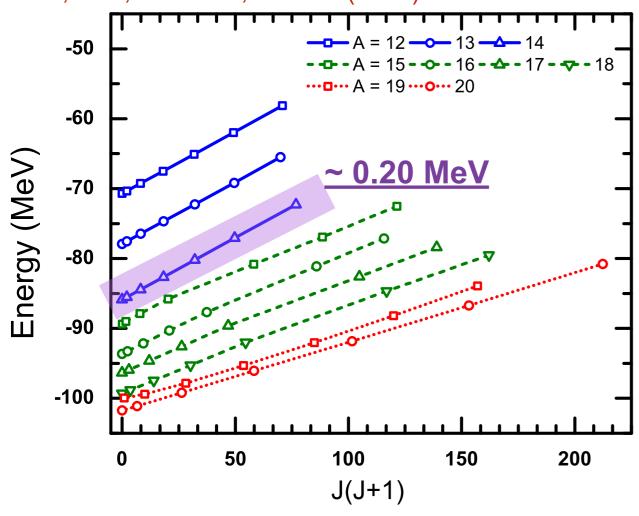
Our predictions



Recent experiments...

Our predictions

PWZ, et al, PRL 115, 022501 (2015)



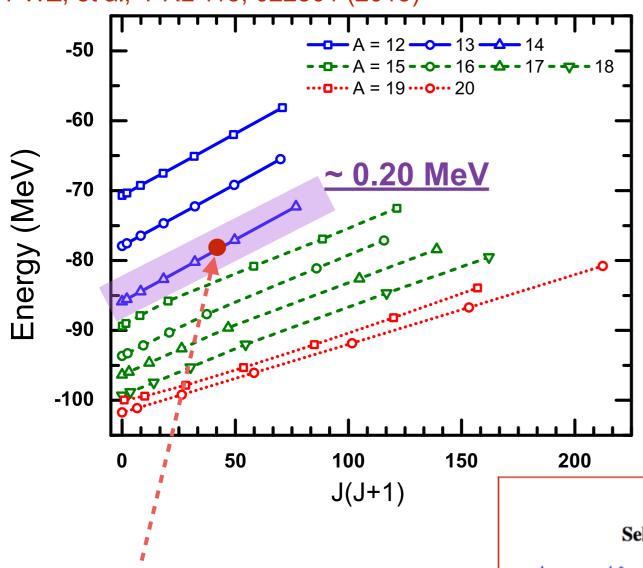
Exp @RIKEN

where \Im is the moment of inertia of the nucleus. The linearity allows us to interpret the levels as a rotational band, and the low $\hbar^2/2\Im=0.19$ MeV implies the nucleus could be strongly deformed, consistent with the interpretation of an LCCS. Although we ob-

Yamaguchi et al., PLB 766 (2017) 11-16

Recent experiments...

Our predictions



A state at 22.5(1) MeV in 14C

Exp @RIKEN

where \Im is the moment of inertia of the nucleus. The linearity allows us to interpret the levels as a rotational band, and the low $\hbar^2/2\Im=0.19$ MeV implies the nucleus could be strongly deformed, consistent with the interpretation of an LCCS. Although we ob-

Yamaguchi et al., PLB 766 (2017) 11-16

Exp @PKU

Li et al., PRC 95 (2017) 021303(R)

PHYSICAL REVIEW C 95, 021303(R) (2017)

Selective decay from a candidate of the σ -bond linear-chain state in 14 C

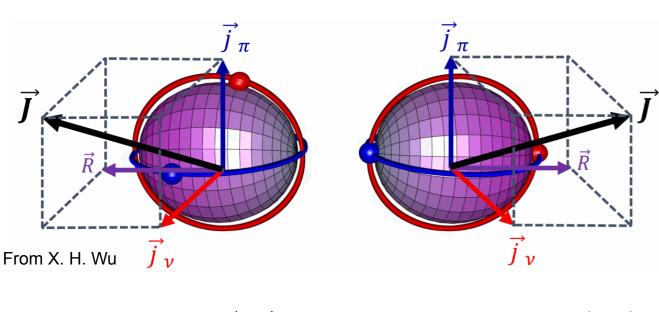
J. Li,¹ Y. L. Ye,^{1,*} Z. H. Li,¹ C. J. Lin,² Q. T. Li,¹ Y. C. Ge,¹ J. L. Lou,¹ Z. Y. Tian,¹ W. Jiang,¹ Z. H. Yang,³ J. Feng,¹ P. J. Li,¹ J. Chen,¹ Q. Liu,¹ H. L. Zang,¹ B. Yang,¹ Y. Zhang,¹ Z. Q. Chen,¹ Y. Liu,¹ X. H. Sun,¹ J. Ma,¹ H. M. Jia,² X. X. Xu,² L. Yang,² N. R. Ma,² and L. J. Sun²

Outline

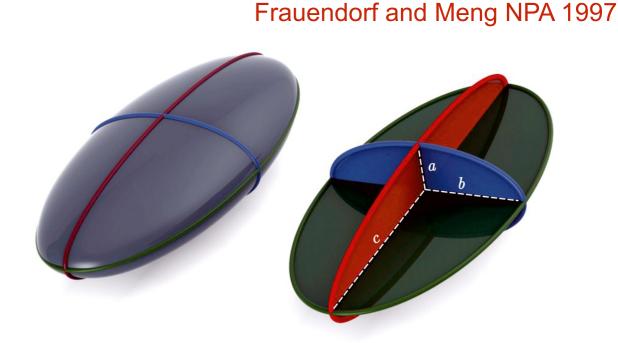
- Covariant density functional theory
- Rod-shaped nuclei at high spin and isospin
- Chiral conundrum in ¹⁰⁶Ag
- Extending CDFT: a new spectroscopic method
- Summary

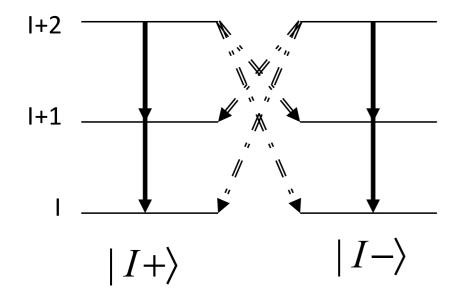
Nuclear spin-chirality

The aplanar (3D-) rotation of a triaxial nucleus could present chiral geometry.



Right-handed $|\mathcal{R}
angle$





Left-handed $|\mathcal{L}\rangle$

Lab. frame:

Chiral Symmetry restoration

$$|I+\rangle = \frac{1}{\sqrt{2}}(|\mathcal{L}\rangle) + |\mathcal{R}\rangle)$$

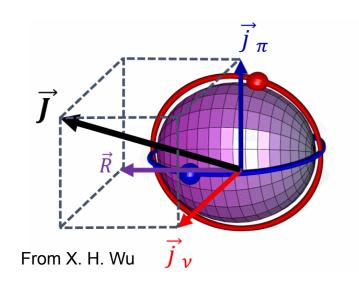
$$|I-\rangle = \frac{i}{\sqrt{2}}(|\mathcal{L}\rangle) - |\mathcal{R}\rangle)$$

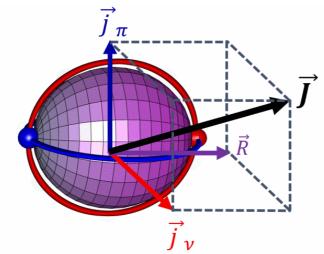
Exp. signal: Two near degenerate $\Delta I = 1$ bands, called chiral doublet bands

Nuclear spin-chirality

The aplanar (3D-) rotation of a triaxial nucleus could present chiral geometry.

Frauendorf and Meng NPA 1997





Left-handed $|\mathcal{L}
angle$

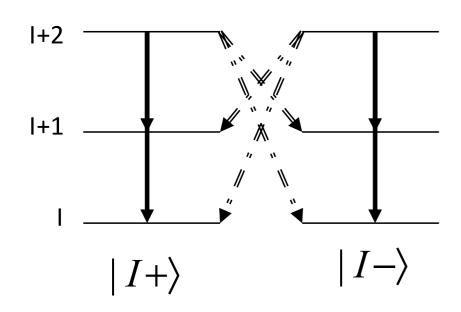
Right-handed $|\mathcal{R}\rangle$

Intrinsic frame:

Chiral Symmetry breaking

$$\hat{\chi} = \hat{T}\hat{R}_y(\pi)$$

$$\hat{\chi} |\mathcal{L}\rangle = |\mathcal{R}\rangle \qquad \hat{\chi} |\mathcal{R}\rangle = |\mathcal{L}\rangle$$



Lab. frame:

Chiral Symmetry restoration

$$|I+\rangle = \frac{1}{\sqrt{2}}(|\mathcal{L}\rangle) + |\mathcal{R}\rangle)$$

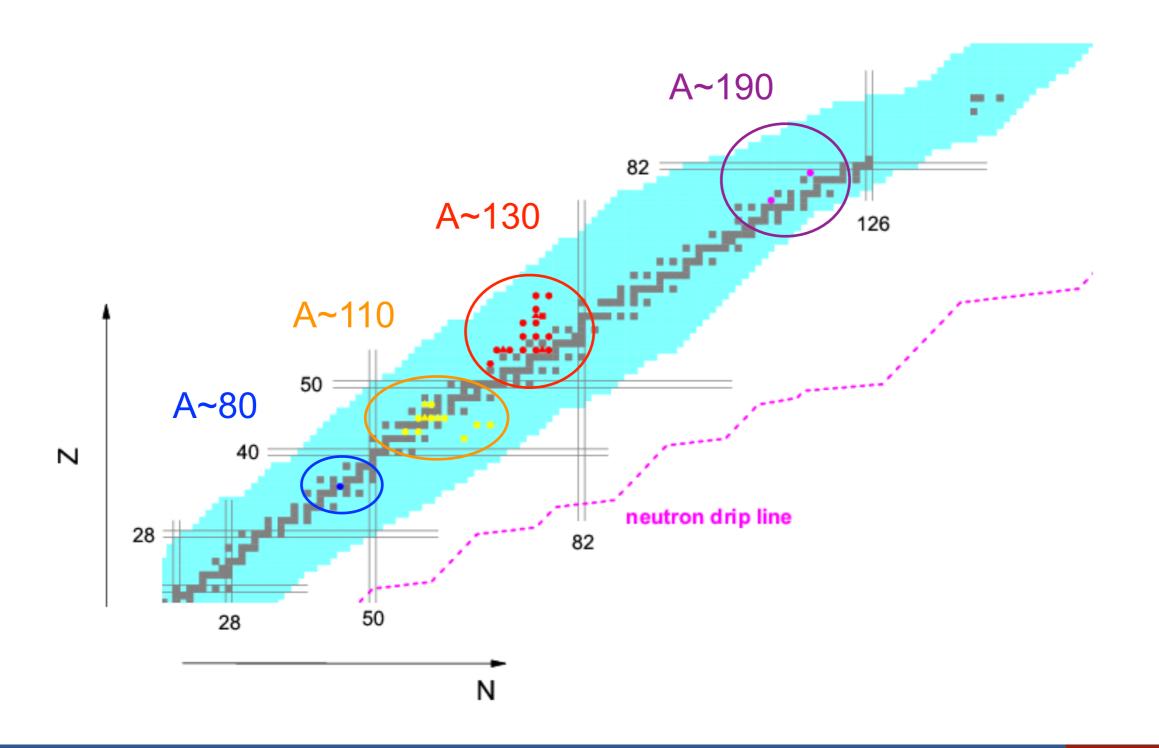
$$|I-\rangle = \frac{i}{\sqrt{2}}(|\mathcal{L}\rangle) - |\mathcal{R}\rangle)$$

Exp. signal: Two near degenerate $\Delta I = 1$ bands, called chiral doublet bands

Observed chiral nuclei

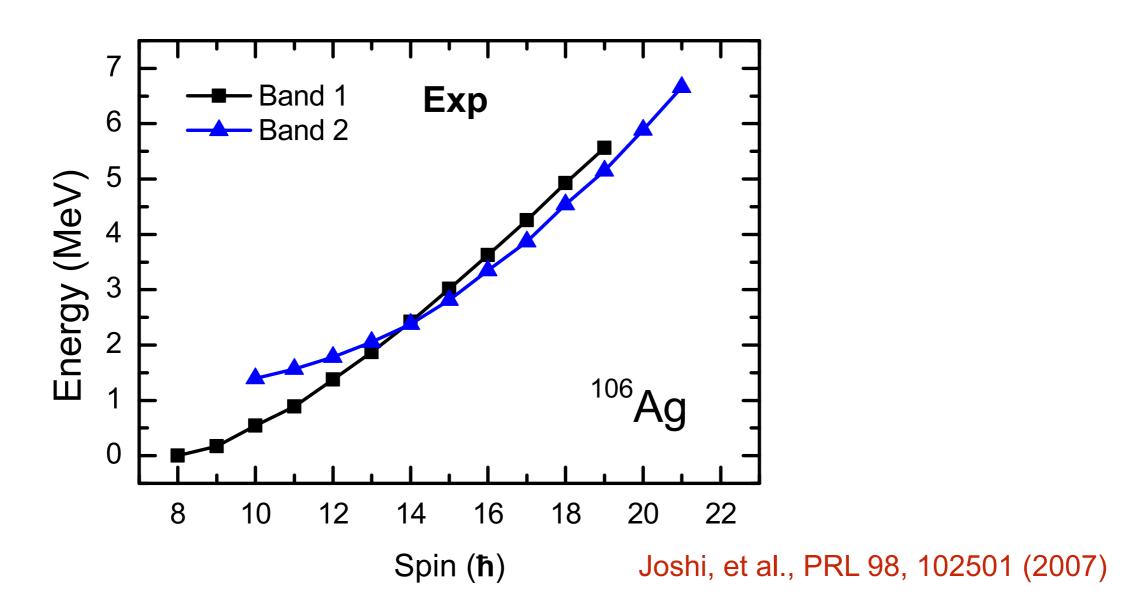
More than 45 candidate chiral nuclei have been reported in the A~80, 100, 130, and 190 mass regions, so far.

Xiong, Wang arXiv:1804.04437



Chiral conundrum in ¹⁰⁶Ag

Experimental observations in 2007: Energy Spectrum



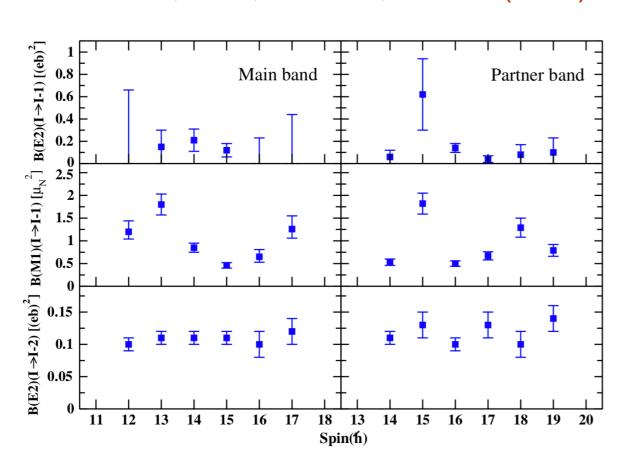
A pair of strongly coupled bands observed

Chiral bands? But why crossing?

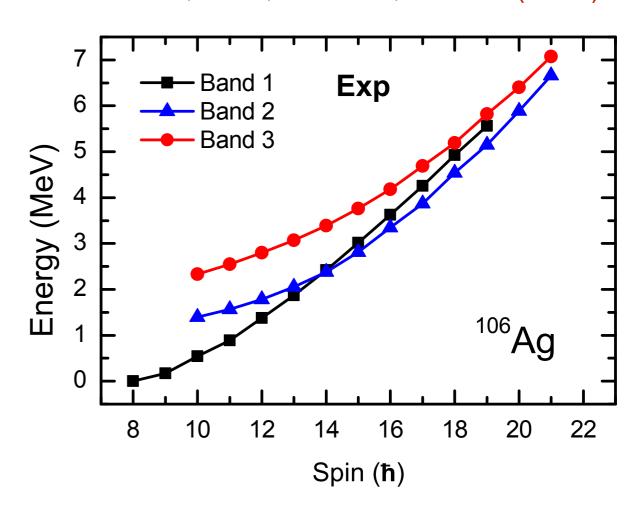
Chiral conundrum in ¹⁰⁶Ag

Experimental observations in 2014: Transition strength

Rather, et al., PRL 112, 202503 (2014)



Lieder, et al., PRL 112, 202502 (2014)

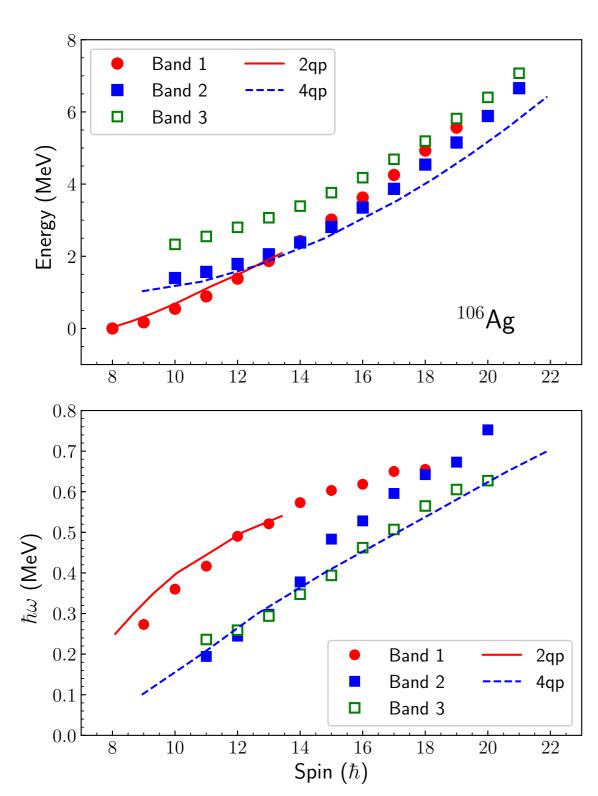


B(M1) and B(E2) values were measured in both experiments A third band is reported in Lieder's experiment

Chiral bands? But why crossing? Why three bands?

Chiral conundrum in ¹⁰⁶Ag

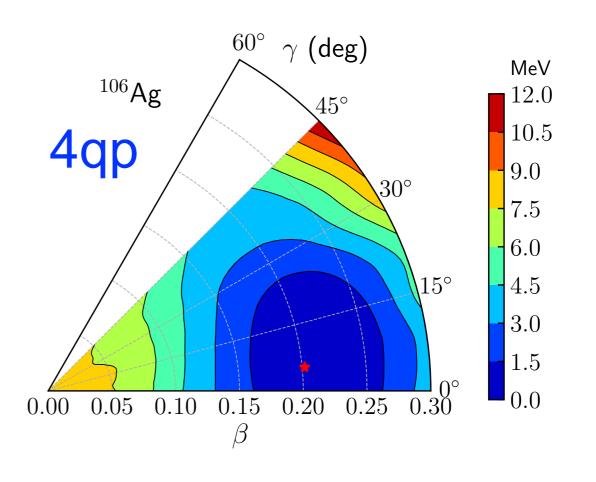
TAC-CDFT calculations



PWZ, Wang, Chen PRC 99, 054319 (2019)

2qp $\pi g_{9/2} \otimes \nu h_{11/2}$

4qp $\pi g_{9/2} \otimes \nu h_{11/2} (gd)^2$



Outline

- Covariant density functional theory
- Rod-shaped nuclei at high spin and isospin
- Chiral conundrum in ¹⁰⁶Ag
- Extending CDFT: a new spectroscopic method
- Summary

(C)DFT and Shell Model

(C)DFT

Shell Model

Symmetry broken
Single config. fruitful physics
No Configuration mixing

- ✓ Applicable for almost all nuclei
- No spectroscopic properties

X Non-universal effective interactions

No symmetry broken
Single config. little physics
Configuration mixing

- x intractable for deformed heavy nuclei
- spectroscopy from multi config.

a theory combining the advantages from both approaches?

Configuration Interaction Projected DFT (CI-PDFT)

Successful projected shell model based on the Nilsson potential

Hara and Sun IJMPE1995 Sun Phys. Scr. 2016

- 1. Covariant Density Functional Theory a minimum of the energy surface
- 2. Configuration space multi-quasiparticle states
- 3. Angular momentum projection rotational symmetry restoration
- 4. Shell model calculation configuration mixing / interaction from CDFT

Energy Density Functional

good angular momentum; from low- to high- spin;

Nuclear Spectroscopy

CI-PDFT: to provide a global study of many nuclear properties with no parameters beyond a well-established density functional.

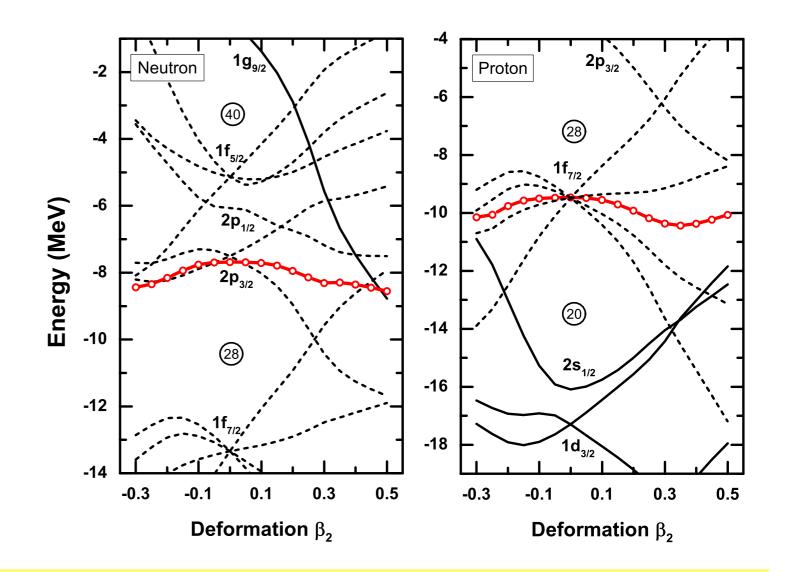
PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

First application for 54Cr

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

- Axial symmetry assumed
- Density functional:
 PC-PK1+ δ-force BCS
- Configuration space
 0-qp and 2-qp excitations &
 E < 6.5 MeV

$$|0\rangle, \quad \alpha_{\nu}^{\dagger} \alpha_{\nu'}^{\dagger} |0\rangle, \quad \alpha_{\pi}^{\dagger} \alpha_{\pi'}^{\dagger} |0\rangle$$



The configuration space consists of 37 states including 18 two-quasi-neutron, 18 two-quasi-proton excited states, and the quasi-particle vacuum $|0\rangle$.

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

Important configurations and their probability amplitudes in the yrast state

	E	K	Configurations	0	2	4	6	8	10
$\overline{\mathrm{gs}}$	0.00	0	_	0.959	0.856	0.623	0.280	0.150	0.113
2n1	2.68	1	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=1/2}$		0.314	0.448	0.241	0.098	0.100
	3.36	1	$(2p_{3/2})_{k=1/2}\otimes (2p_{3/2})_{k=-3/2}$		0.225	0.308	0.164	0.055	0.000
	4.64	2	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=3/2}$		-0.044	-0.146	-0.076	-0.037	-0.064
	4.64	1	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=-3/2}$		0.068	0.126	0.085	0.037	0.028
	2.39	0	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-5/2}$	0.265	0.146	-0.084	-0.232	-0.228	-0.166
$2\mathrm{p}1$	2.55	1	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-5/2}$		0.224	0.430	0.521	0.400	0.341
	2.55	4	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=5/2}$			0.013	0.205	0.183	0.146
	2.71	0	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-3/2}$	-0.055	-0.028	0.020	0.283	0.297	0.280
2p2	3.56	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-5/2}$		-0.047	-0.127	-0.386	-0.416	-0.409
	3.56	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=5/2}$			-0.018	-0.270	-0.320	-0.332
	3.71	1	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-3/2}$		0.076	0.159	-0.088	-0.277	-0.256
	3.71	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=3/2}$		-0.043	-0.075	0.070	0.178	0.152
	4.42	1	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-7/2}$		-0.152	-0.142	-0.019	0.020	0.061
	4.42	6	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=7/2}$				-0.130	-0.069	-0.054
	4.57	2	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-7/2}$		0.009	-0.073	-0.180	-0.204	-0.227
	4.57	5	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=7/2}$				0.194	0.216	0.192
	5.58	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-7/2}$			0.032	0.148	0.286	0.367
	5.58	4	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=7/2}$			-0.002	-0.152	-0.251	-0.355

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

Important configurations and their probability amplitudes in the yrast state

	E	K	Configurations	0	2	4	6	8	10
$\overline{\mathrm{gs}}$	0.00	0	_	0.959	0.856	0.623	0.280	0.150	0.113
2n1	2.68	1	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=1/2}$		0.314	0.448	0.241	0.098	0.100
	3.36	1	$(2p_{3/2})_{k=1/2}\otimes (2p_{3/2})_{k=-3/2}$		0.225	0.308	0.164	0.055	0.000
	4.64	2	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=3/2}$		-0.044	-0.146	-0.076	-0.037	-0.064
	4.64	1	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=-3/2}$		0.068	0.126	0.085	0.037	0.028
	2.39	0	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-5/2}$	0.265	0.146	-0.084	-0.232	-0.228	-0.166
$2\mathrm{p}1$	2.55	1	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-5/2}$		0.224	0.430	0.521	0.400	0.341
	2.55	4	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=5/2}$			0.013	0.205	0.183	0.146
	2.71	0	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-3/2}$	-0.055	-0.028	0.020	0.283	0.297	0.280
2p2	3.56	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-5/2}$		-0.047	-0.127	-0.386	-0.416	-0.409
	3.56	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=5/2}$			-0.018	-0.270	-0.320	-0.332
	3.71	1	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-3/2}$		0.076	0.159	-0.088	-0.277	-0.256
	3.71	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=3/2}$		-0.043	-0.075	0.070	0.178	0.152
	4.42	1	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-7/2}$		-0.152	-0.142	-0.019	0.020	0.061
	4.42	6	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=7/2}$				-0.130	-0.069	-0.054
	4.57	2	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-7/2}$		0.009	-0.073	-0.180	-0.204	-0.227
	4.57	5	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=7/2}$				0.194	0.216	0.192
	5.58	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-7/2}$			0.032	0.148	0.286	0.367
	5.58	4	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=7/2}$			-0.002	-0.152	-0.251	-0.355

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

Important configurations and their probability amplitudes in the yrast state

Spin I =

	E	K	Configurations	0	2	4	6	8	10
$\mathbf{g}\mathbf{s}$	0.00	0	_	0.959	0.856	0.623	0.280	0.150	0.113
2n1	2.68	1	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=1/2}$		0.314	0.448	0.241	0.098	0.100
	3.36	1	$(2p_{3/2})_{k=1/2}\otimes (2p_{3/2})_{k=-3/2}$		0.225	0.308	0.164	0.055	0.000
	4.64	2	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=3/2}$		-0.044	-0.146	-0.076	-0.037	-0.064
	4.64	1	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=-3/2}$		0.068	0.126	0.085	0.037	0.028
	2.39	0	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-5/2}$	0.265	0.146	-0.084	-0.232	-0.228	-0.166
$2\mathrm{p}1$	2.55	1	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-5/2}$		0.224	0.430	0.521	0.400	0.341
	2.55	4	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=5/2}$			0.013	0.205	0.183	0.146
	2.71	0	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-3/2}$	-0.055	-0.028	0.020	0.283	0.297	0.280
2p2	3.56	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-5/2}$		-0.047	-0.127	-0.386	-0.416	-0.409
	3.56	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=5/2}$			-0.018	-0.270	-0.320	-0.332
	3.71	1	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-3/2}$		0.076	0.159	-0.088	-0.277	-0.256
	3.71	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=3/2}$		-0.043	-0.075	0.070	0.178	0.152
	4.42	1	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-7/2}$		-0.152	-0.142	-0.019	0.020	0.061
	4.42	6	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=7/2}$				-0.130	-0.069	-0.054
	4.57	2	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-7/2}$		0.009	-0.073	-0.180	-0.204	-0.227
	4.57	5	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=7/2}$				0.194	0.216	0.192
	5.58	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-7/2}$			0.032	0.148	0.286	0.367
	5.58	4	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=7/2}$			-0.002	-0.152	-0.251	-0.355

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

Important configurations and their probability amplitudes in the yrast state

Spin I =

	-	T.F.	Q 0				-		
	E	K	Configurations	0	2	4	6	8	10
$\mathbf{g}\mathbf{s}$	0.00	0	_	0.959	0.856	0.623	0.280	0.150	0.113
2n1	2.68	1	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=1/2}$		0.314	0.448	0.241	0.098	0.100
	3.36	1	$(2p_{3/2})_{k=1/2}\otimes (2p_{3/2})_{k=-3/2}$		0.225	0.308	0.164	0.055	0.000
	4.64	2	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=3/2}$		-0.044	-0.146	-0.076	-0.037	-0.064
	4.64	1	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=-3/2}$		0.068	0.126	0.085	0.037	0.028
	2.39	0	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-5/2}$	0.265	0.146	-0.084	-0.232	-0.228	-0.166
2p1	2.55	1	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-5/2}$		0.224	0.430	0.521	0.400	0.341
	2.55	4	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=5/2}$			0.013	0.205	0.183	0.146
	2.71	0	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-3/2}$	-0.055	-0.028	0.020	0.283	0.297	0.280
2p2	3.56	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-5/2}$		-0.047	-0.127	-0.386	-0.416	-0.409
	3.56	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=5/2}$			-0.018	-0.270	-0.320	-0.332
	3.71	1	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-3/2}$		0.076	0.159	-0.088	-0.277	-0.256
	3.71	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=3/2}$		-0.043	-0.075	0.070	0.178	0.152
	4.42	1	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-7/2}$		-0.152	-0.142	-0.019	0.020	0.061
	4.42	6	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=7/2}$				-0.130	-0.069	-0.054
	4.57	2	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-7/2}$		0.009	-0.073	-0.180	-0.204	-0.227
	4.57	5	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=7/2}$				0.194	0.216	0.192
	5.58	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-7/2}$			0.032	0.148	0.286	0.367
	5.58	4	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=7/2}$			-0.002	-0.152	-0.251	-0.355

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)

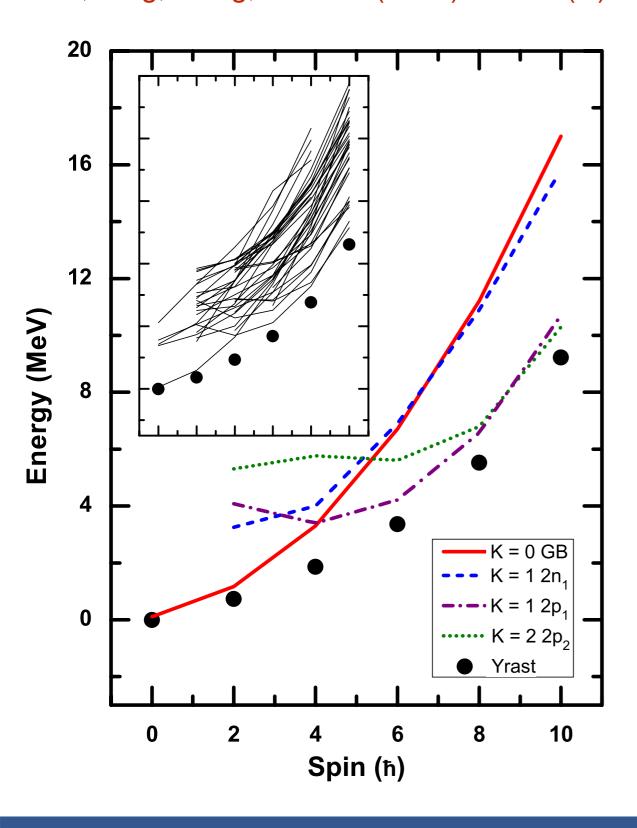
Important configurations and their probability amplitudes in the yrast state

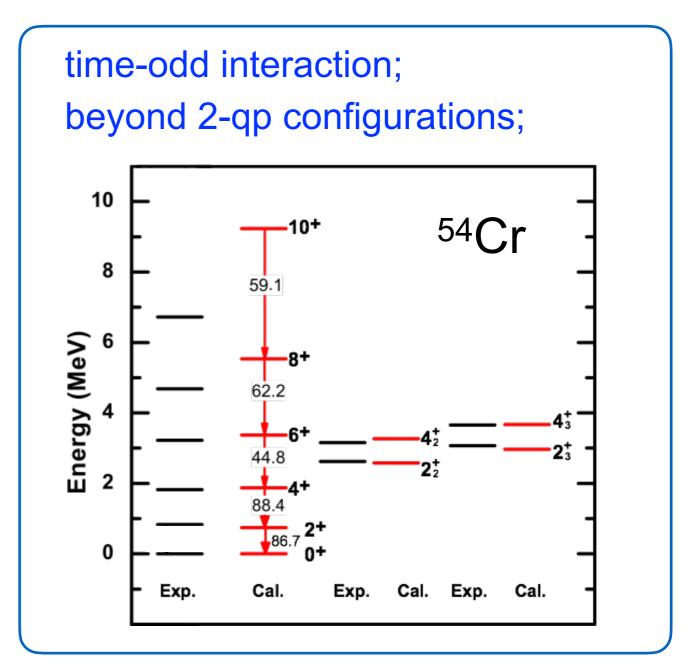
Spin I =

	E	K	Configurations	0	2	4	6	8	10
$\mathbf{g}\mathbf{s}$	0.00	0	_	0.959	0.856	0.623	0.280	0.150	0.113
2n1	2.68	1	$(2p_{3/2})_{k=1/2}\otimes (1f_{5/2})_{k=1/2}$		0.314	0.448	0.241	0.098	0.100
	3.36	1	$(2p_{3/2})_{k=1/2} \otimes (2p_{3/2})_{k=-3/2}$		0.225	0.308	0.164	0.055	0.000
	4.64	2	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=3/2}$		-0.044	-0.146	-0.076	-0.037	-0.064
	4.64	1	$(2p_{3/2})_{k=1/2} \otimes (1f_{5/2})_{k=-3/2}$		0.068	0.126	0.085	0.037	0.028
	2.39	0	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-5/2}$	0.265	0.146	-0.084	-0.232	-0.228	-0.166
$2\mathrm{p}1$	2.55	1	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-5/2}$		0.224	0.430	0.521	0.400	0.341
	2.55	4	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=5/2}$			0.013	0.205	0.183	0.146
	2.71	0	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-3/2}$	-0.055	-0.028	0.020	0.283	0.297	0.280
2p2	3.56	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-5/2}$		-0.047	-0.127	-0.386	-0.416	-0.409
	3.56	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=5/2}$			-0.018	-0.270	-0.320	-0.332
	3.71	1	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-3/2}$		0.076	0.159	-0.088	-0.277	-0.256
	3.71	2	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=3/2}$		-0.043	-0.075	0.070	0.178	0.152
	4.42	1	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=-7/2}$		-0.152	-0.142	-0.019	0.020	0.061
	4.42	6	$(1f_{7/2})_{k=5/2} \otimes (1f_{7/2})_{k=7/2}$				-0.130	-0.069	-0.054
	4.57	2	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=-7/2}$		0.009	-0.073	-0.180	-0.204	-0.227
	4.57	5	$(1f_{7/2})_{k=3/2} \otimes (1f_{7/2})_{k=7/2}$				0.194	0.216	0.192
	5.58	3	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=-7/2}$			0.032	0.148	0.286	0.367
	5.58	4	$(1f_{7/2})_{k=1/2} \otimes (1f_{7/2})_{k=7/2}$			-0.002	-0.152	-0.251	-0.355

Level scheme for 54Cr

PWZ, Ring, Meng, PRC 94 (2016) 041301(R)





Towards neutron-rich nuclei

Outline

- Covariant density functional theory
- Rod-shaped nuclei at high spin and isospin
- Chiral conundrum in ¹⁰⁶Ag
- Extending CDFT: a new spectroscopic method
- Summary

Summary

Covariant density functional theory has been improved and extended for nuclear spectroscopic properties.

- A point-coupling covariant energy density functional PC-PK1 improves isospin dependence good performance for nuclear global properties towards neutron-rich...
- Titled axis cranking CDFT coherent effects between spin and isospin to stabilize the exotic rod shape. chiral conundrum in Ag-106
- Configuration interaction projected DFT: CI-PDFT merits of (C)DFT and Shell Model preserved no parameters beyond a well-established density functional

Collaborations

Beijing

Jie Meng
Jing Peng
Yakun Wang
Shuangquan Zhang

Chongqing

Zhipan Li Jiangming Yao

Munich

Peter Ring Qibo Chen

Kyoto

Naoyuki Itagaki

• • •

Thank you for your attention!

I HALLIY DAG TOL DAG ACCOLLECTION

13	BSk19	BSk20	BSk21	BSk18
$t_0~{ m [MeV~fm^3]}$	-4115.21	-4056.04	-3961.39	-1837.96
$t_1~{ m [MeV~fm^5]}$	403.072	438.219	396.131	428.880
$t_2~{ m [MeV~fm^5]}$	0	0	0	-3.23704
$t_3 \; [{ m MeV \; fm^{3+3lpha}}]$	23670.4	23256.6	22588.2	11528.9
t_4 [MeV fm ^{5+3β}]	-60.0	-100.000	-100.000	-400.000
$t_5~[{ m MeV~fm^{5+3\gamma}}]$	-90.0	-120.000	-150.000	-400.000
x_0	0.398848	0.569613	0.885231	0.421290
x_1	-0.137960	-0.392047	0.0648452	-0.907175
t_2x_2 [MeV fm 5]	-1055.55	-1147.64	-1390.38	-186.837
x_3	0.375201	0.614276	1.03928	0.683926
x_4	-6.0	-3.00000	2.00000	-2.00000
x_5	-13.0	-11.0000	-11.0000	-2,00000
W_0 [MeV fm ⁵]	110.802	110.228	109.622	138.904

1/121/12 0.3 1/12 α β 1/31/61/21.0 1/12 1/12 $\sqrt{12}$ 1.0 γ 1.00 f_n^+ 1.00 1.00 1.00 f_n^- 1.05 1.06 1.051.06 f_p^+ 1.09 1.07 1.19 1.04 1.16 f_p^- 1.17 1.09 1.13 16.0 16.0 16.0 ε_{Λ} [MeV 16.0 1.80 -2.10 V_W [MeV] -2.00-2.10250 280 280 340 V_W' [MeV] 1.16 0.96 0.96 0.7424 24 24 28 A_0

3 density dependence

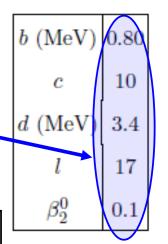
5 pairing properties

Gorieli et al, (2010)

4 Wigner term

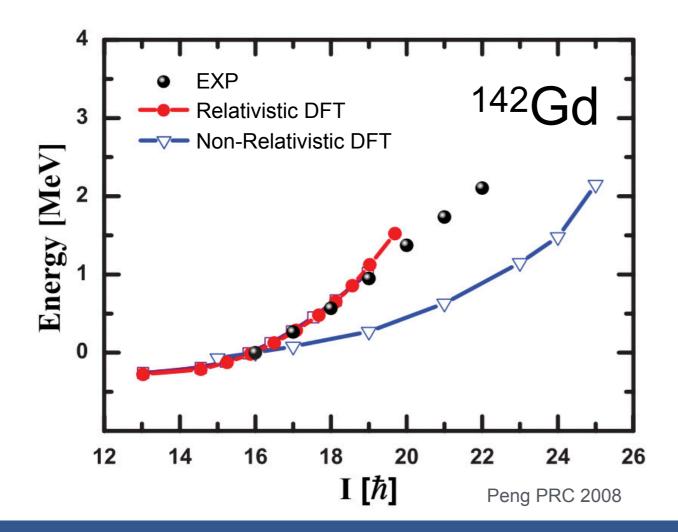
5 rotational correction

13+3+5+4+5 = 30 parameters

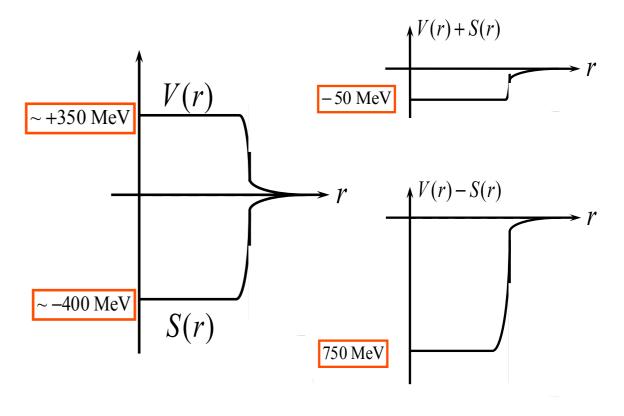


Why Covariant?

- √ No relativistic kinematics necessary
- √ Large mean fields S≈-400 MeV, V≈350 MeV
- √ Large spin-orbit splitting
- √ Pseudo-spin Symmetry
- √ Success of Relativistic Brueckner
- √ Consistent treatment of time-odd fields



$$\sqrt{p_F^2 + m_N^2} = m_N \sqrt{1 + 0.075}$$



P. Ring Physica Scripta, T150, 014035 (2012) Cohen, Furnstahl, Griegel PRL 67, 961(1991) Brockmann, Machleidt, PRC42, 1965 (1990)

Chiral conundrum in ¹⁰⁶Ag

