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Description of B-splines

B-splines ng) (r),2=1,2,...,N are piecewise polynomial functions of order k,
completely defined by a set of points {¢;}, 5 =1,2,..., N+ k
which may be in part coincident

Tmin = b1 S Tt S tN-l—k = T"ma=x
The common choice is to make the end-points of the support grid k-fold degenerate

tp = - =1 = T'min

tny1 = +* =tN+k = Tmaa

The knot sequence defines the extent of individual splines.
B-splines of the order k > 1 are defined recursively by the Cox - de Boor relation

'T'—t,j

tivr — —
B(f_l)(*r)—l— 4+ —T Bk 1)(r)

B(z'k)("’) = i
tivp—1 — t; titr — tita i

supplemented with the definition of B-splines of the order kK = 1

B(l)(fr) _ { ]_, for tz S r < ti—l—l
¢ 0, for r <t;, r>ti4q

The recursion is numerically stable and allows to define and manipulate
B-splines of arbitrary order and knot point distribution



e Each spline B(f}(r) expands over an interval [t;,t;1x), which contains k subintervals,
and is indexed by the knot 2, ¢ = 1,--- ; N, where it starts

e Splines B(ik)(r) are polynomials of the maximum degree n = k — 1

e The sum of B-splines represents the partition of the unity
Zfil B(:’)(r) = 1 for the radial interval r,in < 7 < Tjaz
The set of B-splines of the order k£ and the knot sequence {t;} forms
a complete basis for piecewise polynomials of the degree n
on the radial interval spanned by the knot sequence

e The derivative of a B-spline of the order k can be expressed as a linear combination
of B-splines of the order (k — 1)

e All B-splines are non-negative functions with convex shapes
e An arbitrary function f(r) in this interval can be decomposed over B-splines

i

N
f(r) = Z ¢ B(:’J(r) = Z c; B(;‘) (r), for r € [t;,t;41]
i=1 j=i—k+1
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Derivation of the B-spline analytical representation

To get the analytical presentation = scale a radial dependence
to a variable x; which is a common for all subintervals [¢;,%;11)

’P—ti
r; = —, for t; <r <tiyq
tig1 — 1
tiy1—r
1—x; = L, where 0 < x; < 1
tig1 — t;

Subinterval 7 can be selected by a projector operator §; = B(il)(r) =1lfort; <r <ty
5’**‘53—{ 0, i#]
A set of constant zf,’,f;% which depends on the grid {t¢;} can be defined

o t: — t. . .
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Factors before B-splines in the Cox - de Boor recurrence relation
n—1

_ o i+7,1 +i+1,e+3
t: t: Z Oitj (z'i-f-n,z‘ T Zitn,i *’Et+3)
t+n — Uz .

’!‘—ti

=]

=

-1
bitnt1 — T N itn41,itj G 42, i3]
— § : »1+7+2 t+J+2,1+7+1
= 6i—|—j—|—1 (z-;,+n+1,,,;+1 + zz'+'n,-|-1,‘i+1 (1 - :B?H-j-Fl))
titnt1 — tipa o



It follows from the Cox - de Boor recurrence relation

2l

. ) ) a sum of products from two factors,
B-spline on any subinterval 7 =

x; and (1 — x;), taken in different powers

e

The Bernstein basis function bﬁm}(m) for ] =0,1,--- ,m is the m-th degree polynomial
m) N — (™ _1q _ o ym—t my ~ m!
i@ = (7)ot 0ge < () = oy

bP(z) =2, b (z) =1—=
These functions form a complete basis over interval [0, 1]

Thus, B-splines of the order (n + 1) can be presented by an analytic form
via Bernstein basis functions of the n-th degree

BU T (r) =3 645 > e 7 b (i)
j=0 1=0

The aim is to find unknown coefficients c;:;l that depend only
on a distribution of the grid points {¢;} and a degree of B-spline polynomials n



Coefficients (:;-’?’ are obtained by recurrence relations for three regions

[tistiv1]s [tit1stizay + o+ s tivn] and [t;4pn, tixn+1] Where a spline B(in+l)(r) is non-zero

j = 0, region [t;, ;1]

L,m —

cg, = 0, for 1 =0,1,---,(n—1)

ism __ _i+1,d iym—1 _ _i+1,4 it+1,1 it+1,i

Co,mn = Zidm,i ¥ Coon—1 = Ritm,i ¥ RFign_1,4 F 7 F 2544

Jj = n, region [t;4n,titnit1]

i, 10 i+n+1,i4+n i, n—1 __ _i+n+l,i+n i+n+1,i4+n .. i+n+1,i4n
Cn,0 = Zign+1,i+1 ¥ Cn—1,0 = %Fitn41,i+1 * Zitnt1,i+2 * ¥ Zitn+1,i+n
;] =0, for l=1,--+,n

j =12, --- ,n—1, regions [té+13tz’+29 te ati—l—n]
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Bernstein basis functions and Bernstein polynomials

e Lorentz G. G. Bernstein Polynomials. Toronto: University of Toronto Press, 1953.

e Phillips G. M. Interpolation and Approximation by Polynomials. New York: Springer, 2003.
: : ; (m) my m—1
Bernstein basis functions b,/ (z) = l x" (1 — x) , 0<x<1

e The Bernstein basis functions are positive b(fn)(a:) >0

e satisfy symmetry relation b(;n)(:lf) = bi;n_)l(l —x)

e partition of the unity > ;" b(;n ) () = 1 on interval [0, 1] for any degree m
e Bernstein function b(:n) () has a unique local maximum at point x = l/m

e An arbitrary Bernstein basis polynomial can be written
in terms of Bernstein polynomials of higher degree

b, 1)(93)_Tb( '(x )+ ™ bz(+1)(w)

O b(,:m ~Y(x) can be calculated by the numerically stable recurrence relation

p(™(z) = &bV (@) + (1 — )]V ()
b(ll)(a:) = =z, b%)(m) =1—=x



e The first and second derivatives of the m-th degree Bernstein basis function

(m)
ab'™ (x) . -
Ld—m = m (b(l—l )((IJ) _ b(.i,' )(33))
de(m) (m) n— m— m—
i = mm=1) (07757 @) = 20077 () + 077 (@)

e multiplication of two Bernstein functions gives again the Bernstein basis function

D2 b

I+

m k
(™ () * b () =

e An indefinite integral of Bernstein basis is given by a sum
of the Bernstein basis functions of degree (m + 1)

80 @) de =

m-+1

Z b(;n_l_l) (m)

J=1+1

m -+ 1
e all Bernstein basis functions of the same order have

the same definite integral over interval [0, 1]

m +

1
1
/ b(lm)(az)dar:: — forl =0,1,--- ,m
0



Function f(x) (continuous on the interval [0,1]) can be approximated
by the Bernstein polynomials B,,(f; x)

f(@) = Bu(fiz) = fma b0 (@) 5 fmy = £ (1/m)
=0
fm,1 is a value of the function f(x) at the point xz = (I/m)

where basis polynomial bl(m)(a':) has the maximum

The sequence of Bernstein polynomials B,,(f;x) converges uniformly
to the function f(x) on interval [0, 1] with increasing of the order m.
Convergence can be increased significantly by iterated Bernstein polynomials

f(z) ~ B®(f;z) —Zf""’ o™ ()

=0

FEED Z 30 0 (0,0 = 65 (1/m)) + Frnyt s k> 1

1=0

Fo —me g (2 8,1 — b0 )(l/m))

£ = Z Frnyi | 385,0 — 360 @/m) + 3 60 (i /m) 85 (1/m)

i=0

The ’optimal’ Bernstein polynomial approximation corresponds to the limit & — oo

Fod = Z fncs (B @/m))

Guan Z. Iterated Bernstem polynomlal approximations, arXiv 0909.0684



Sum Rules

From an unity partition by B-splines follows sum rule for coefficients c;:?“

J

Z Z Cj— z,lzl

t=j3—n =0

n+1

average value of a B-spline B(f+ )(r) over its support interval is independent of 2
and thus is independent of the choice of the knots

n

titn n
gty 1 i+j+1, i+ in _
r By (r) = ntl = Z Zitn+1,i G =

i)
(tignt+1 — ti) Je,

Overlap integrals

overlap integral between two B-splines, B(t-?+1)(?‘) and B(;:+1)(r) with [i; —i2| < n

n+1 n+1 fmae n+1 n+1
BEBEY) = [T ar BT @) B ()
n—iy+iz n -1
n+1)| p(nt1 (tiy+41+1 — tiy+4,) N - n\ /n 2n
(B(il }lB( )) = Z : (12..” _+_ 1)1 : Z C;lai * C?:lt—;:+j11£2 (I ) (I ) (l _+_£
jlzﬂ !1,!220 1 2 1 2

The similar expressmns can be derived for other overlap integrals
(B(n-i-l) IB(n+1) ) and (B(‘n+1)|B(n+1) )



Matrix elements

the function f(r) can be approximately written on grid [Tmin, Tmaz] as

N;
Fr) = 38 Br,(fiz) =D 6; > Fry 1 097 ()
J ] =0

f f(t + (¢ t)t) r=b
Nj,l —_— . - 1 —_— . —_— m- - —
J J+ J N; ’ J tiv, —t;
Matrix elements of the function f(r) between two B-splines (B(g_:"'l)(r) and B{;;"'l)(r))
set up the banded symmetric matrix, which has non-zero elements for indices [i; — 12| < n,
corresponding to B-splines with the common support domain

(B £ B =/

Tmax

d B('ﬂs—i—l) T) f('r') B('ﬂ—l—l) (T)

Tmin
n—iy+iz
N (t. . ) 'Lj_ T ‘1.2,71 n F31+Jl
- 31+31+1 '51+Jl j]_ £1 31—3‘2+j1,£2 l I l]_+r.2
J1=0 ly1,2=0 1 2

Coefficients Flj, l=0,1,--- ,2n equal to

. 2n + Nj
Fi' = (2n+N +1) ZfN‘”m( >(l+m)

This method of calculations is rather flexible.
The integration over a radial variable is performed exactly.
Total accuracy depends on the precision of function approximation,
which can be additionally accelerated by using the iterated Bernstein polynomials




1
approximation of the function f(r) = — by the iterated Bernstein polynomials

with IN; = 10 for the first, second, third iterations and the optimal approximation
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1
The optimal function approximation for f(r) = — by the iterated Bernstein polynomials

with IN; = 5, 10 and 15. The vertical dashed lines are boundaries of the interval [t;, t;11]
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Summary and conclusion

e B-splines are one of the most commonly used family of piecewise polynomials,
which are well adapted to numerical tasks

e The analytic representation for B-splines of the arbitrary degree (n + 1) and
arbitrary sets of the knot sequence via a decomposition on Bernstein basis

polynomials b&")(m) of the n-th degree was derived

e After the knot sequence of B-splines is constructed,
the decomposition coefficients c;:? must be calculated only once

e Bernstein basis polynomials have remarkable analytic properties that allows
to perform analytically many mathematical operations with B-splines

e If necessary, the iterated Bernstein polynomials can be used
to accelerate the convergence

e This expands an applicability and enhances a flexibility of B-spline methods



