

Role of the $h_1(1800)$ and $f_1(1285)$ states in the J/ψ decays

Ju-Jun Xie (谢聚军)

Institute of Modern Physics, Chinese Academy of Sciences (中国科学院近代物理研究所)

13th APCTP - BLTP JINR Joint Workshop ''Modern Problems in Nuclear and Elementary Particle Physics"

14-20 July 2019, International Conference Hall, Dubna, Russia

Outline

Introduction

 $K^*\bar{K}^*$ and $K^*\bar{K}$ interactions in the Chiral Unitary Approach Signature of an h_1 state in the $J/\psi \to \eta h_1(1800) \to \eta K^{*0}\bar{K}^{*0}$ decay The $J/\psi \to \phi \bar{K} K^*$ decay and the $f_1(1285)$ state

Summary

Hadrons: normal & exotic

 Quark model: hadrons are composed from 2 (meson) quarks or 3 (baryon) quarks

- QCD does not forbid hadrons with $N_{quarks} \neq 2$, 3
 - Glueball:
 - Hybrid:
 - Multiquark state:
 - Molecule:

 $N_{quarks} = 0 (gg, ggg, ...)$ $N_{quarks} = 2 (or more) + excited gluon$ $N_{quarks} > 3$ bound state of more than 2 hadrons

From Cheng-Ping Shen.

Hadronic molecules

Example $\Lambda(1405)$ as KbarN molecular state

$$P_c(4312) \\
 P_c(4440) ? \\
 P_c(4457)$$

Hadronic molecules

Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, and Bing-Song Zou Rev. Mod. Phys. **90**, 015004 – Published 8 February 2018

Vector-Vector interactions

Vector-Vector scattering amplitudes

$$\rho^{+}(k_{1})$$
 $\rho^{+}(k_{3})$
 $\rho^{-}(k_{2})$ $\rho^{-}(k_{4})$
Contact term of the $\rho\rho$ interaction.
Contact term of the $\rho\rho$ interaction.
 $\rho^{-}(k_{2})$ $\rho^{-}(k_{4})$
Vector exchange diagram for $\rho^{+}\rho^{-} \rightarrow \rho^{+}\rho^{-}$.
Potential (Kernel) V
 $G:$ two vectors loop function
 $G = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - M_{V_{1}}^{2} + i\epsilon} \frac{1}{(P-q)^{2} - M_{V_{2}}^{2} + i\epsilon}$

_

An h_1 state in $K^*\bar{K}^*$ system

 $h_1: I^G(J^{PC}) = 0^{-}(1^{+-})$

The pseudoscalar--vector channels are allowed, but their thresholds are far away. They can contribute to the width, but have little effect in the energy of the interacting *VV* components.

It cannot couple to other vector--vector because of Charge parity, which makes its observation difficult.

Pole position : (1802,
$$-i39$$
) MeV
Coupling : $g^R_{K^*\bar{K}^*} = (8034, -i2542)$ MeV

L. S. Geng, and E. Oset, PRD 79, 074009 (2009).

Values of some of the parameters used or determined in this work.

Potential	C (GeV ⁻¹)	a_{μ}	v/g^2	χ^2 /d.o.f.
Constant	42 ± 6	-0.8	-6.2 ± 1.2	0.45
Hidden gauge	42 ± 6	-1.0	Eq. (8)	0.56
Hidden gauge	53 ± 7	-0.8	Eq. (8)	0.47
Hidden gauge	67 ± 9	-0.6	Eq. (8)	0.42

More check

Ju-Jun Xie, M. Albaladejo, and E. Oset, PLB728, 319 (2014).

 $f_1(1285)$ 1 f1(1285) DECAY MODES

$G^{G}(J^{PC}) = 0^{+}(1^{+})$

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ1	4π	$(33.5 \ + \ 2.0 \ 1.8)$ %	S=1.3
Γ ₂	$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	(22.3 + 1.3) %	S=1.3
Г ₃	$2\pi^+2\pi^-$	$(11.2 ^+ \ \ 0.7 \) \ \%$	S=1.3
Γ ₄	$ ho^{0}\pi^{+}\pi^{-}$	$(11.2 ^+ \ \ 0.7 \) \%$	S=1.3
Γ ₅ Γ ₆ Γ ₇ Γ∘	$\rho^{0} \rho^{0}$ $4\pi^{0}$ $\eta \pi^{+} \pi^{-}$ $\eta \pi \pi$	seen $< 7 imes 10^{\circ}$ $(35 \pm 15) \%$ $(52.0^{+} 1.8) \%$	-4 CL=90%
С ₉	$a_0(980)\pi$ [ignoring $a_0(980) \rightarrow K\overline{K}$]	$(38 \pm 4)\%$	
Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃	$\eta \pi \pi \text{ [excluding } a_0(980) \pi \text{]}$ $K \overline{K} \pi$ $K \overline{K}^*(892)$ $\pi^+ \pi^- \pi^0$	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3
Γ ₁₄	$\rho^{\pm}\pi^{+}$	$< 3.1 \times 10^{-1}$	-3 CL=95%
Γ ₁₅ Γ ₁₆ Γ ₁₇	$ \begin{array}{c} \gamma \rho \\ \phi \gamma \\ \gamma \gamma^* \end{array} $	$(5.3 \pm 1.2)\%$ $(7.5 \pm 2.7) \times 10^{-1}$	-4 5=2.9

$$f_1(1285) \qquad I^{G(J^{PC})} = 0^{+(1^{+})}$$

$$\mathcal{L}_{VVPP} = -\frac{1}{4f^2} Tr\left([V^{\mu}, \partial^{\nu} V_{\mu}] [P, \partial_{\nu} P] \right)$$

 $t = \frac{v}{1 - vG}$, Pole position : (1282, -i0) MeV Coupling : $g_{K^*\bar{K}}^R = (7555, -i0)$ MeV

where v is the $\bar{K}K^* \to \bar{K}K^*$ transition potential and G is the loop function for the propagators of the \bar{K} and K^*

L. Roca, and E. Oset, "Low lying axial-vector mesons as dynamically generated resonances ", Phys. Rev. D 72, 014002 (2005).

F. Aceti, J.M. Dias and E. Oset, "f1(1285) decays into $a0(980)\pi0$, $f0(980)\pi0$ and isospin breaking," Eur. Phys. J. A 51, 48 (2015).

R. Molina, M. Döring and E. Oset, "Determination of the compositeness of resonances from decays: the case of the B0s-> J/ψ f1(1285)," Phys. Rev. D 93, 114004 (2016).

$f_1(1285)$ in the unitized chiral perturbation theory

	$h_1(1170)$		$h_1(1380)$		$f_1(1285)$	
	LO	NLO	LO	NLO	LO	NLO
\sqrt{s}	918 – <i>i</i> 17	925 <i>- i</i> 29	1244 - i7	1257 <i>– i</i> 0	1286 – <i>i</i> 0	1289 - i0
$\frac{1}{\sqrt{2}}(\bar{K}^*K + K^*\bar{K})$					7219 + i0	7884 + i0
$\dot{\phi}\eta$	-46 + i13	69 – <i>i</i> 102	-3309 + i47	-5963 - <i>i</i> 38		
ωη	-24 + i28	711 – <i>i</i> 427	3019 - i22	2642 - i47		
ρπ	3452 <i>- i</i> 1681	3576 – <i>i</i> 1909	650 – <i>i</i> 961	134 <i>– i</i> 233		
$\frac{1}{\sqrt{2}}(\bar{K}^*K - K^*\bar{K})$	-784 + i499	-1488 + i757	6137 + i183	6435 + i35	•••	

TABLE II. Pole positions and couplings in the (S, I) = (0, 0) channel.

PHYSICAL REVIEW D 90, 014020 (2014)

Pseudoscalar meson and vector meson interactions and dynamically generated axial-vector mesons

Yu Zhou, Xiu-Lei Ren, Hua-Xing Chen, and Li-Sheng Geng*

$$\begin{split} f_1(1285) \to \pi K \bar{K} \,\, \mathrm{decay} \\ \frac{1}{\sqrt{2}} (K^* \bar{K} - \bar{K}^* K) \;\; = \;\; -\frac{1}{2} (K^{*+} K^- + K^{*0} \bar{K}^0 \\ -K^{*-} K^+ - \bar{K}^{*0} K^0) \,\, . \end{split}$$
 We take the convention $CK^* = -\bar{K}^*,$

 K^+ \bar{K}^0 K^0 K^{-} K^{*-} K K^{*-} $K^ K^ K^+$ K^{+} A)B)E)F) \bar{K}^0 K^+ K^{*0} K^{*0} \bar{K}^{*0} \bar{K}^{*0} . \bar{K}^0 \bar{K}^0 K^0 K^0 C)D) G) H)

A

$$\Gamma = 6 \frac{1}{64\pi^3 M_{f_1}} \int \int d\omega_{K^+} d\omega_{K^-} \overline{\sum} |M|^2$$

$$\times \theta (1 - \cos^2 \theta_{K\bar{K}}) \theta (M_{f_1} - \omega_{K^+} - \omega_{K^-} - m_{\pi}),$$

$$B)$$

$$(24)$$

Theory $Br[f_1(1285) \rightarrow \pi K\bar{K}] = (7.2 \sim 7.8)\%$ Experiment

where M is the full amplitude of the process $f_1(1285) \rightarrow \pi^0 K^+ K^-$ including the FSIs,

$$M = M_{\text{tree}} + M_{\text{FSI}}^{K\bar{K}} + M_{\text{FSI}}^{\pi K}, \qquad (25) \qquad Br[f_1(1285) \to \pi K\bar{K}] = (9.0 \pm 0.4)\%$$

F. Aceti, J.J. Xie and E. Oset, "The K-bar K pi decay of the f1(1285) and its nature as a K* K-bar molecule," Phys. Lett. B750, 609 (2015).

Invariant mass distributions

$$\frac{d\Gamma}{dM_{K^+K^-}} = \frac{M_{K^+K^-}}{64\pi^3 M_{f_1}^2} \int d\omega_{K^+} \overline{\sum} |M|^2 \theta (1 - \cos^2 \theta_{K\bar{K}}) \times \theta (M_{f_1} - \omega_{K^+} - \omega_{K^-} - m_\pi) \theta (\omega_{K^-} - m_K), (31)$$

$$\frac{d\Gamma}{dM_{\pi^{0}K^{+}}} = \frac{M_{\pi^{0}K^{+}}}{64\pi^{3}M_{f_{1}}^{2}} \int d\omega_{K^{+}} \overline{\sum} |M|^{2} \theta (1 - \cos^{2}\theta_{K\bar{K}}) \times \theta (M_{f_{1}} - \omega_{K^{+}} - \omega_{K^{-}} - m_{\pi}) \theta (\omega_{K^{-}} - m_{K}), (32)$$

FIG. 3: The mass distribution $\frac{d\Gamma}{dM_{K^+K^-}}$ for $f_1(1285) \rightarrow \pi^0 K^+ K^-$ as a function of the invariant mass of the $K^+ K^-$ system.

FIG. 4: The mass distribution $\frac{d\Gamma}{dM_{\pi^0K^+}}$ for $f_1(1285) \rightarrow \pi^0 K^+ K^-$ as a function of the invariant mass of the $\pi^0 K^+$ system.

F. Aceti, J.J. Xie and E. Oset, "The K-bar K pi decay of the f1(1285) and its nature as a K* K-bar molecule," Phys. Lett. B750, 609 (2015).

$$J/\psi \rightarrow \phi \bar{K} K^{*} \text{ and } J/\psi \rightarrow \phi f_{1}(1285) \text{ deacys}$$

$$J/\psi \rightarrow \phi \bar{K} K^{*} \text{ and } J/\psi \rightarrow \phi f_{1}(1285) \text{ deacys}$$

$$J/\psi \rightarrow \phi \bar{K} K^{*} = V_{P}C_{s} \left[1 + G(M_{\text{inv}}^{2})t(M_{\text{inv}}^{2})\right] \qquad C_{s} = \epsilon_{ijk} \varepsilon_{i}(J/\psi) \varepsilon_{j}(\phi) \varepsilon_{k}(K^{*}).$$

$$= V_{P}C_{s} \frac{t(M_{\text{inv}})}{v(M_{\text{inv}})}, \qquad \sum \sum C_{s}^{2} = \frac{2}{3}(3 + \frac{p_{\phi}^{2}}{m_{\phi}^{2}} + \frac{p_{K^{*}}^{2}}{m_{K^{*}}^{2}}), \qquad (4)$$

$$\frac{d\Gamma_{J/\psi \rightarrow \phi \bar{K} K^{*}}}{dM_{\text{inv}}} = \frac{V_{P}^{2}}{(2\pi)^{3}} \frac{M_{\text{inv}}}{8M_{J/\psi}^{3}} \left| \frac{t(M_{\text{inv}})}{v(M_{\text{inv}})} \right|^{2} \qquad \text{where } p_{\phi} \text{ and } p_{K^{*}} \text{ are th } \phi \text{ and } K^{*} \text{ momenta in the } J/\psi \text{ rest frame, respectively,}$$

$$\sum_{M_{\phi \bar{K}}^{\text{max}}} \sum \sum_{M_{\phi \bar{K}}^{\text{max}}} \sum \sum C_{s}^{2}M_{\phi \bar{K}} dM_{\phi \bar{K}} \qquad p_{\phi} = \frac{\lambda^{1/2}(M_{J/\psi}^{2}, m_{\phi}^{2}, M_{\text{inv}}^{2})}{2M_{J/\psi}}, \qquad (5)$$

$$J/\psi \rightarrow \phi \bar{K} K^*$$
 and $J/\psi \rightarrow \phi f_1(1285)$ deacys
 $J/\psi \sim f_1(1285) = V_P C'_S G(M_{f_1}) g_{f_1}.$

$$\Gamma_{J/\psi \to \phi f_1(1285)} = \frac{V_P^2}{8\pi} \frac{G^2(M_{f_1})g_{f_1}^2 p'_{\phi}}{M_{J/\psi}^2} \overline{\sum} \sum C'_s{}^2, \qquad C'_s = \epsilon_{ijk} \varepsilon_i (J/\psi) \varepsilon_j(\phi) \varepsilon_k(f_1).$$

$$\overline{\sum} \sum C'_s{}^2 = \frac{2}{3} (3 + \frac{p'_{\phi}^2}{M_{f_1}^2} + \frac{p'_{\phi}^2}{m_{\phi}^2}), \qquad p'_{\phi} = \frac{\lambda^{1/2} (M_{J/\psi}^2, m_{\phi}^2, M_{f_1}^2)}{2M_{J/\psi}}.$$

$$R_{\Gamma} = \frac{d\Gamma_{J/\psi \to \phi \bar{K}K^*}/dM_{\rm inv}}{\Gamma_{J/\psi \to \phi f_1(1285)}}$$

The dotted curve stands for the phase space.

Ju-Jun Xie and E. Oset, PLB753, 591, (2016).

Summary

- The $h_1(1800)$ and $f_1(1285)$ are dynamically generated states from the vector-vector and pseudoscalar-vector interactions.
- More experimental measurements of the J/ ψ decays can be used to study the h₁(1800) and f₁(1285) states.

Thank you very much for your attention!