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Linear Imperfections Measurements

and Correction in Storage Rings

Part II
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Focusing errors and Optics Measurements

We recall the equation for the β function used to “disentangle” the motion of the single

particles from the machine optics:

1

2
βzβ

′′
z −

1

4
β′2z + β2

zKz = 1 (z = x, y)

with

Kx ≡
( 1

ρ2
+K

)
and Ky ≡ −K

and

K(s) ≡
e

p

(∂By

∂x

)
x=y=0

Errors in the machine focusing elements (gradient errors in quadrupoles, but also feed-

down effects) lead to a β perturbation.
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A direct way a for finding the equation describing the perturbation in first approximation

consists in

• writing K = K0 + ∆K and β = β0 + ∆β;

• inserting those expressions in the β function equation;

• recognizing that β0 is the solution to the unperturbed equation;

• keeping only the linear terms in ∆K and ∆β;

• using β0β
′′
0 + 2β2

0K0 = 2(1 + β′20 /4) (from the unperturbed equation);

• writing the derivatives in terms of φ (see Part I).

aIn the literature it is in general obtained by introducing a thin lens perturbation in the one turn

transport matrix.
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The ∆β equation, which looks awful when s is used, takes a simple and enlightening

form when ∆β/β0 and φ are used

d2

dφ2

(
∆β

β0

)
+ 4Q2

(
∆β

β0

)
= −2Q2β2

0∆K̄(φ) φ ≡ µ/Q

It has the same form as the equation for η ≡ z/
√
β (see Part I) with

Q→ 2Q

and

Q2β3/2f(φ)→ −2Q2β2
0∆K̄(φ)

and we can use the results found for η here. For an integrated gradient error, ∆K`,

at s = sk

∆β

β0

(s) = −
1

2 sin(2πQ)
βk cos[2Qπ − 2|µ(s)− µk|]∆K`
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∆β/β0(s) (beta-beat)

• oscillates with twice the betatron frequency and is thus sensitive to error harmonics

near to 2Q→ true β-beat is reach in harmonics close to 2Q;

• is large when Q approaches a half integer.

The change of Q due the quadrupole error can be found

Q =
1

2π

∮
ds

β
' Q0 −

1

2π

∮
ds

β0

∆β

β0

= Q0 −
1

2π

∮
dµ

∆β

β0∮
dµ

∆β

β0

=
βk∆K`

2 sin(2πQ)

∮
dµ cos[2Qπ − 2|µ(s)− µk|] =

1

2
βk∆K`

∆Q =
1

4π
βk∆K`

http://www.mechanik.tu-darmstadt.de


6/67 P�i?�	�≫≪><

By the way, we can make use of this result to easily find the equation of the (linear)

chromaticity. Therefore let’s make an excursus on chromaticity...

Particles with different momentum wrt the nominal one, experience a different force:

K =
e

p0 + ∆p

∂Bx

∂y x=y=0

' K0 −
∆p

p0

K0

∆K = −
∆p

p0

K0

The tune change due to a single quadrupole is

(∆Q)k =
1

4π
βk∆K` = −

1

4π
βk

∆p

p0

K0`

and by integrating over the machine length we get the total tune change

∆Q = −
1

4π

∆p

p0

∮
dsβK0

Linear chromaticity:

ξ ≡
∆Q

∆p/p0

= −
1

4π

∮
dsβK0
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• The chromaticity is large in large machines.

• Strong quadrupoles at large β function values are the main contributors!
Future Circular Collider e+e− ring

Optics ξx ξy

45 GeV all sexts off -361 -1540

IR setxs off +3.5 -1230

80 GeV all sexts off -359 -1331

IR setxs off +3 -1017

First small accelerators could live w/o chromaticity correction!

First time it was realized that a correction was needed was during the commissioning of

the Fermilab Main Ring in 1971.
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Chromaticty leads to a spread of the particle tunes. The particles which tune lies on a

resonance may be losta. Resonance condition

nxQx + nyQy = p

with nz integer. Resonance order: |nx|+ |ny|.

SPS working point diagram (from E. Wilson, CAS 1984) with resonances up to 4th

order

adepending whether there are field driving the resonance.
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For correcting the chromaticity we need a quadrupole which strength depends linearly

on momentum. Sextupole magnets placed in locations where the horizontal dispersion

Dx 6=0 are exactly that

Bx = Sxy = S(Dx
∆p
p0

+ xβ)yβ = SDx
∆p
p0
yβ + Sxβyβ

By = 1
2
S(x2 − y2) ' SDx

∆p
p0
xβ + 1

2
S(x2

β − y2
β)

The simplest correction scheme consists in placing sextupoles in the arcs, where Dx 6=0,

∆ξx = 1
4π

∑NS
i=1 βx,iDx,iSi`i

∆ξy = 1
4π

∑NS
i=1 βy,iDx,iSi`i

Arranging the sextupoles into two families, the values of their strength, SF and SD, for

a given ∆ξx and ∆ξy are obtained by inverting a system of two equations ∆ξx

∆ξy

 =

 m11 m12

m21 m22

 SF

SD


For minimizing the strengths is convenient to place the sextupoles at location where

Dx is large and β2
z >> βxβy so that the corrections are (almost) orthogonal.
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Remarks:

• Sextupoles introduce non-linearities and drive 3th order resonances unless attention

is paid to the phase advance ∆µz between them.

• Colliders with very low β∗ need a sophisticated local correction of the chromaticity

generated by the IR quadrupoles.

End excursus on chromaticity
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Back to the β-beat. Errors in the focusing structure have bad consequences

• unpredictable response to any machine parameter change;

• uncontrolled beam size with consequences on aperture, luminosity, beams separa-

tion (when two counter-rotating beams share the same vacuum chamber).

The β function value at a quadrupole location may be evaluated by changing its current

and measuring the tune change

β = 4π
∆Q

∆K`

This is a good old method, but

• it requires independently powered quadrupoles (or trims): this may be the case for

the IR quads;

• results are affected by

- orbit perturbations if the beam is off-center at the quadrupole;

- magnet histeresys;

• the quadrupole calibration must be well known.
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Today BPM systems allow sophisticated techniques and several methods for measuring

the linear optics and fitting measurement to a model have been developed in the last

years.

Two main philosophies:

• Closed Orbit response to the excitation of correctors;

• Analisys of beam oscillations excited by a single kick or AC dipoles (TBT analysis);

data acquisition is fast.

http://www.mechanik.tu-darmstadt.de


13/67 P�i?�	�≫≪><

Orbit Response Matrix

Orbit change due to the jth corrector at the ith BPM (w/o coupling):

δzi = TijΘj =
1

2 sin (πQ)

√
βmi β

c
j cos (Qπ − |µmi − µ

c
j|)

with z = x or y. The response is proportional to β values both at corrector and

monitor position as well it depends on the phase advance between them. In presence of

errors the actual Twiss parameters may be determined by measuring the actual orbit

response matrix.

By powering one corrector and reading its effect at all M BPMs one get M conditions

and 2×M (ie βmi and µmi )+ 2 unknowns (ie βcj and µcj).

By using all N correctors the number of unknown parameters increases to 2×M +

2×N but the number of constraints becomes M × N . The number of unknown

parameters increases by 2×M+ 2×N if also BPM and correctors roll angles and

calibrations are considered.
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To have a constrained system, assuming M ' N it must be M2 ≥ 8×M ie M ≥ 8
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The (usually) large number of constraints allows to compute accurately the unknown

parameters at BPMs and correctors by “simple” computations.

The equations being non-linear in the unknown parameters, some iterations may be

needed.
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One can do more by attempting to change the machine model so to fit the measured

orbit changes. In general (eventually coupled machine)

~Z = Mmeas~Θ with ~Z ≡

x
y

 ~Θ ≡

Θx

Θy


Mmeas

ij being the measured beam position at the ith BPM due to a unitary kick at

the jth corrector. One can compute the response matrix, Mmod, for the theoretical

optics, by using any (coupled motion handling) optics code. Machine parameters as

quadrupole gradients, roll angles etc., as well as gauge factors and roll angles of BPMs

and correctors are varied so to minimize the difference between the model matrix and

the measured one

χ2 = Σij

[Mmod
ij −Mmeas

ij ]2

σ2
i

σi ≡ BPMs rms noise

↗
smaller weight for noisy BPMs
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Two ways for solving in practice the problem

• CALIF orginal algorithm by Corbett, Lee and Ziemann (SLAC) uses a first-order

perturbation

Mmod
ij = Mmod,0

ij + Σq

∂Mmod,0
ij

∂Kq

∆Kq

with Mmod,0
ij and its derivatives fixed.

• LOCO (Linear Optics from Closed Orbits) by Safranek (BNL) iterates the above

procedure recomputing Mmod,0
ij and derivatives at each step. It is slower but more

accurate.

Due to the large number of equations involved the SVD is the best suited method for

finding the mathematical solution.

Ideally the lower limit to the difference between model-expected orbit and measured

orbit is the BPMs resolution. These techniques were first developed for small machines

as SPEAR (SLAC) and the NSLS X-Ray Ring (BNL). The largest machine where LOCO

has been (routinely) applied is Tevatron, by using a sub-set of correctors.
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Relative skew-quadrupole errors fitted by LOCO for Tevatron show large skew quadrupoles

at A38 and D16.

It was found that the quadrupoles at A38 and D16 were erroneously assembled with a

large roll angle undetectable by alignment measurements outside of the magnet.

• LOCO can only resolve relative BPMs and corrector calibration errors (ie non sys-

tematic).

• Large kicks increase signal-to-noise ratio, but introduce large systematic errors (non-

linearities): common problem.

• For large machine one can divide the ring into sections to be analyzed and corrected

separately (like open beam lines) with fixed conditions at the boundaries.

http://www.mechanik.tu-darmstadt.de
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In some circumstances

• large machines where no all quadrupoles may be include in a global fit

rather then the true errors, an equivalent model may be found which correction may

still improve the machine performance.

After correcting the Tevatron optics on the basis of LOCO analysis, it was possible to

• reduce the β-beating;

• correct the discrepancy in the values of β∗ between the two experiments, D0 and

CDF;

• load a new optics with lower β∗ increasing the luminosity

http://www.mechanik.tu-darmstadt.de
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↑
New optics

LOCO allowed to reach a ∆β/β ≈ 1-2% at the BNL National Synchrotron Light

Source (NSLS2) and is currently used in many synchrotron light sources.
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Action and phase jump

In very large machine LOCO may be unpractical. For detecting optics errors the Action

and phase jump has been developed at the BNL Relativistic Heavy Ion Collider. Idea

• Use a pair of BPMs upstream and a pair downstream the Point of Interest for

computing (z1, z
′
1) upstream and (z2, z

′
2) downstream.

• The trajectory upstreams is given by z = A1

√
β cos (µ+ δ1), the trajectory

downstream is given by z = A2

√
β cos (µ+ δ2) with constant of motion deter-

mined by the measured coordinates:

– if there are no errors in between s1 and s2, it will be A1=A2 and δ1=δ2,

– the constant of motion will differ if there is an optic error instead.

Assumption:

• no errors between the BPMs of each pair, which allows to use the unperturbed

optics (although the Twiss functions are perturbed by errors outside).
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Evaluation of the error strength: the transport matrix from s1 to s2 is

M(s1→s2) = M0(sk→s2)mM0(s1→sk)

with (thin lens quadrupole)

m =

 1 0

−∆K` 1


M0(sk→s2)mM0(s1→sk)~z1 = ~z2 mM0(s1→sk)~z1 = M−1

0(sk→s2)
~z2

∆K` =
1

(M0(s1→sk)~z1)1

[
(M0(s1→sk)~z1)2 − (M−1

0(sk→s2)
~z2)2

]
or by writing explicitily the trajectory at s2 after the perturbation as the superposition

of the unperturbed and perturbed trajectories

z2 = A2

√
β2 cos (µ2 + δ2) = A1

√
β2 cos (µ2 + δ1) +√

βkΘk

√
β2 sin (µ2 − µk)]

with ∆K` = Θk/zk = ΘkA1

√
βk cos (µk + δ1)
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RHIC simulation of action and phase jump using one turn trajectory:

(from J. Cardona and S. Peggs, PRST 12, 2009)
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RHIC 2002 measurement of action and phase jump using TBT turn data:

(from J. Cardona and S. Peggs, PRST 12, 2009)

The APJ analysis reveals a large discontinuity at the IR where β is large at the IR

quadrupoles.
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Fourier Analysis of TBT data

Beam position at the jth BPM after n turns following a single kick in the z plane

(z ≡ x, y)

znj = A
√
βj cos (µj + δ0 + 2πQn) = A

√
βj cos (µj + δ0 +

2π

P
Q̃n)

with A and δ0 constant of motion, P total number of turns and Q̃ ≡ QP .

Assuming that P is large so that Q̃ can be approximated by an integer, zj(α) is a

periodic function between 0 and 2π sampled at P equidistant points αn=n2π/P and

we can expand it in a Fourier series. qth Fourier coefficient of zj(α):

Zj(q) =
1

2π

∫ 2π

0

dαzj(α)e−iqα =
1

P

P∑
n=1

znje
−iqαn (αn ≡ n

2π

P
)

=
1

P
A
√
βj

{
cos (µj + δ0)

P∑
n=1

[
cos Q̃αn cos qαn − i cos Q̃αn sin qαn

]
−

sin (µj + δ0)
P∑
n=1

[
sin Q̃αn cos qαn − i sin Q̃αn sin qαn

]}
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which is non-vanishing only for q=Q̃. For q=Q̃ 6= 0 and 6= P/2 it is

Zj(Q̃) =
A

2

√
βj

[
cos (µj + δ0) + i sin (µj + δ0)

]
Twiss functions:

βj = 4|Zj(Q̃)|2/A2 µj = arctan
=[Zj(Q̃)]

<[Zj(Q̃)]
− δ0

While the phase advance µ is always defined apart from an additive constant, to get

the numerical value of βj we need to know A:

• it depends on the kick amplitude: A =
√
βkΘk

– βk is in principle unknown

– the kicker calibration is only approximately known
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Under the reasonable assumption that the tune

Q =
1

2π

∮
ds

β
=

L

2π
<

1

β
>

is adjusted to the design value it is <1/β>=<1/β0> and we may compute A as:

βj = 4
|Zj(Q̃)|2

A2
→

∑
j

1

βj
= A2

∑
j

1

4|Zj(Q̃)|2

A2 =
∑
j

1

βj
/
∑
j

1

4|Zj(Q̃)|2
'
∑
j

1

β0j

/
∑
j

1

4|Zj(Q̃)|2

A systematic error for instance in the BPMs or kicker calibration is absorbed by the

constant A and does not affect the knowledge of β.

An unbiased value of β can be obtained from the phase advance by using 3 consec-

utive BPMs under the assumption that there are no optics errors between them. For

this purpose one uses the element M12(s1 → s2) =
√
β1β2 sin (µ2 − µ1) of the

transport matrix: the values of M12 are known from the unperturbed optics while the

phase advances are taken from the measurement.
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Some Tevatron results

The Tevatron BPMs could store 8192 positions data per BPM with high resolution ('
15- 50 µm).

R. Miyamoto, PhD Thesis

• Under ideal condition the coherent os-

cillation lasts many thousands turns.

• Non-linearities (here an octupole) cause

fast decoherence.

• Qs modulation with large chromaticity.
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Reconstructed Injection Optics (November 2005 data)
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Some results for KEK Accelerator Test Facility (June 2010)

The BPM system may store 1024 TBT data.
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• Tunes: 0.1831 0.5398

• Small coupling between planes,

orthogonal plan tune only visi-

ble on logarithmic scale.
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Optics (average over 9 data set)
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The statistical error is very small also for the the vertical plane where oscillations are

smaller.
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Harmonic analysis of the average ∆β/β shows large components at h=30 for the

horizontal plane and h=17 for the vertical one, which correspond to 2×Q (Qx=15.18,

Qy=8.54). Thus the beating is a true beating.

The fact that it is larger in the vertical plane is likely due to the fact that the vertical

tune is closer to a half integer than the horizontal one is to an integer.
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AC dipole

The coherent oscillation following a single kick decays more or less quickly and the

emittance growth makes the beam almost unusable afterwards.

One can use a AC dipole a for exciting a driven coherent oscillation. Although the dipole

frequency, Qd, is very close to the natural beam oscillation frequency, Q, if adiabatically

ramped up and down and if the field is small enough, it does not blow-up the emittance.

AC dipoles have been employed at BNL (AGS and RHIC), CERN SPS, Fermilab Tevatron

and now at the CERN LHC.

The relationship between TBT analysis results and actual BPMs Twiss parameters is not

as straightforward as for free oscillations: the AC dipole is equivalent to a quadrupole

perturbation which vanishes only when δQ = Q−Qd vanishes. For hadron machines

this condition cannot be fullfilled, but one can make several measurements for different

values of δQ and fit the results to find the unperturbed Twiss parameters at the BPMs

location.

a sinusoidally oscillating magnetic field
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At CERN Large Hadron Collider the optics is measured by analyzing the TBT data

recorded by exciting the beam with an AC dipole.

Analysis and correction are done segment-by-segment

• the ring is chopped into sections;

• the optics functions measured at the section entrance are propagated through the

section: when a gradient error is encountered there is a discontinuity between mea-

sured and computed values (clear analogy with APJ). Example:

M. Aiba et al.,

PRST 12 (2009).

Quadrupole cabling problem!

• MADX is used for fitting the model to the measurement.
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• Combining SBS with K-modulation, possible for the IR quadrupoles which are

independently powered,

• improving the β computation from the phase advance measurement (using more

than 3 consecutive BPMs)

• and some more tricks....

allowed to reach a rms ∆β/β in the order of 1.3%-1.8% for the first time in a large

hadron collider (40 cm β∗ optics)!

T. Persson et al., PRAB 20 (2017).
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Linear Coupling

Usually a ring is designed so that the motion in the radial and vertical plane are de-

coupled. Actually due to

• tilted quadrupoles

• vertical offsets in the sextupoles

• experiment solenoids

the two planes may be coupled. The Hill’s equation are then

x′′ +
( 1

ρ2
+K

)
x+ (N −H ′)y − 2Hy′ = −

e

p
∆By

y′′ −Ky + (N +H ′)x+ 2Hx′ =
e

p
∆Bx
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with

K(s) ≡
e

p

(∂By

∂x

)
x=y=0

and N ≡
1

2

e

p

(∂Bx

∂x
−
∂By

∂y

)
x=y=0

↑
↑

normal quad tilted quad

H ≡
1

2

e

p
Bs ← solenoid

http://www.mechanik.tu-darmstadt.de


39/67 P�i?�	�≫≪><

For a perfectly aligned pure skew quadrupole (a normal quadrupole rotated by 45 degrees

around the longitudinal axis) the equations of motion are simply

x′′ +Ny = 0

y′′ +Nx = 0

which can be easily solved for the new variables x+ y and x− y

(x+ y)′′ +N(x+ y) = 0

(x− y)′′ +N(x− y) = 0

for which the equations are decoupled.
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The solenoid case too can be easily studied. We assume for simplicity that the solenoid

is perfectly aligned and therefore ∆Bx=∆By=0 on the axis. The field is longitudinal

inside the solenoid, however it is easy to see that the fields at the entrance and exit

have a radial (rotation symmetric) component. For symmetry reasons, it must be(∂Bx

∂x

)
x=y=0

=
(∂By

∂y

)
x=y=0

→ N = 0

and (∂Bx

∂y

)
x=y=0

=
(∂By

∂x

)
x=y=0

= 0 → K = 0

and therefore (ρ2 =∞ at the solenoid)

x′′ − 2Hy′ −H ′y = 0

y′′ + 2Hx′ +H ′x = 0
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Introducing a frame which rotates around the longitudinal axis by α(s)=
∫ s

0
dsH ,

the particle coordinates in the rotating frame, x̄ and ȳ, are

x̄+ ı̇ȳ = e−ı̇α(s)(x+ ı̇y)

and using
dα

ds
= H(s) and

d2α

ds2
= H ′(s)

we get

(x̄+ ı̇ȳ)′′ +H2(x̄+ ı̇ȳ) = 0

• For a solenoid it is possible to decouple the equation of motion in the rotating

frame.

• Unless
∫ `s

0
dsH=0 the motion in the x and y coordinates is still coupled outside

the solenoid region.

• As H2 >0, the solenoid acts as a focusing lens in both directions.

At DaΦne, the e+e− collider in Frascati, the experiment solenoids were compensated

by anti-solenoids so that
∫ `s

0
dsH=0 and quadrupoles in-between were rotated around

their axis following the solenoid field integral.
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More source of coupling are normal quadrupoles rotated around the longitudinal axis,

for instance due to alignment errors.

There are many different general approaches to the problem. We will look at

• Edwards-Teng approach

• Mais-Ripken Twiss functions

• Canonical perturbation theory

Remember: in presence of solenoids the canonical variables are (x, px, y, py) with

px = x′ −Hy and py = y′ +Hx

The canonical coordinates are related to (x, x′, y, y′) by the matrix

U ≡


1 0 0 0

0 1 −H 0

0 0 1 0

H 0 0 1


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Edwards-Teng formalism

Edwards-Teng approach uses the matrix formalism. The one-turn transport matrix,

T (s), around s may be written as

T (s) =

 I cosφ D−1 sinφ

−D sinφ I cosφ

 A 0

0 B

 I cosφ −D−1 sinφ

D sinφ I cosφ


↑
R

↑
U

↑
R−1

which is a similarity transformation. In general R is not a simple rotation, unless

D = I. φ and the 2×2 matrices A, B and D are unknown. A, B and D have

unitary determinant, which reduces the number of unknown from 13 to 10.

Defining ~V ≡ R−1 ~Z, with ~Z=(x, px, y, py)
t it is

~Z(s+ C)︸ ︷︷ ︸
R~V (s+C)

= R~V (s+ C) = RUR−1︸ ︷︷ ︸
T

R~V (s)︸ ︷︷ ︸
~Z

→ ~V (s+ C) = U ~V (s)

that is U is the (block diagonal) transport matrix for ~V .
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U is parametrized in Courant-Snyder form as for the un-coupled case:

A(s) =

 cosµI + αI sinµI βI sinµI

−γI sinµI cosµI − αI sinµI



B(s) =

 cosµII + αII sinµII βII sinµII

−γII sinµII cosµII − αII sinµII


µI is related to the eigenvalues of A and µII is related to the eigenvalues of B in the

usual way as for the uncoupled case.

The 6 parameters βI, αI, µI, βII, αII and µII, the angle φ and the 3 independent matrix

elements of D (it is unitary) are found by inverting T (s) = RUR−1. The fact that

T is symplectic implies that only 10 out of the 16 matrix elements are independent.

In summary, the transformation R has allowed to find a new vector ~V which is trans-

ported by an uncoupled matrix. This approach is exact and well suited for coding in an

optics program. However it has no evident connection to measurable quantities.
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Mais-Ripken formalism

In this approach the the lattice functions definition is generalized to the 4D motion.

Here we outline the steps.

• Solve eigenvalue problem for the 4×4 one turn transport matrix M(s0 + C, s0).

– For stable motion the 4 eigenvalues must be unimodular complex conjugate

pairs: λ±k = e±ı̇2πQk and ~v−k = ~v∗k (as for the uncoupled case).

• Build the coupled lattice functions.

– Build the (real) “generating” vectors ~z1, ~z2, ~z3 and ~z4 defined as

~z1 =
1
√

2
(~vI + ~v∗I ) ~z2 = −

ı̇
√

2
(~vI − ~v∗I )

~z3 =
1
√

2
(~vII + ~v∗II) ~z4 = −

ı̇
√

2
(~vII − ~v∗II)
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• Write x1=(~z1)1=
√
βxI cosµxI , x2=(~z2)1=

√
βxI sinµxI and so on.

• The generalized periodic β functions and the phase advances are given by

βxI = x2
1 + x2

2 βxII = x2
3 + x2

4 βyI = y2
1 + y2

2 βyII = y2
3 + y2

4

µxI = tan−1
(x2

x1

)
µxII = tan−1

(x4

x3

)
µyI = tan−1

(y2

y1

)
µyII = tan−1

(y4

y3

)
In this way we have constructed the generalized lattice functions at s=s0 from the

knowledge of the one turn transport matrix eigenvectors.

The lattice functions in the rest of the machine can be obtained for instance by trans-

porting the generating vectors ~zi.
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Any solution of the equation of motion can be written in the eigenvector basis and

therefore the general solution has the form

~z(s) =
∑
k=I,II

ak~vk(s) + a−k~v−k(s)

and therefore

x = AIe
iδI
√
βxIe

iµxI +AIe
−iδI

√
βxIe

−iµxI

+AIIe
iδII
√
βxIIe

iµxII +AIIe
−iδII

√
βxIIe

−iµxII

y = AIe
iδI
√
βyIe

iµyI +AIe
−iδI

√
βyIe

−iµyI

+AIIe
iδII
√
βyIIe

iµyII +AIIe
−iδII

√
βyIIe

−iµyII

that is

x = AI

√
βxI cos (µxI + δI) +AII

√
βxII cos (µxII + δII)

y = AI

√
βyI cos (µyI + δI) +AII

√
βyII cos (µyII + δII)

In the absence of coupling: βxII=βyI=0.
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Canonical perturbation theory

Method of the variation of constants:

The general solution of the perturbed motion keeps the form of the unperturbed one with

constants, ai, depending on timea

(Guignard, CERN 78-11)

Hamiltonian in presence of a perturba-

tion H1

H = [H0 +H1](q1, ...qn, p1, ...pn)

= [U0 + U1](a1, ...a2n)

Equations of motion

daj

dθ
= Σm[aj, am]

∂U1

∂am
↑

Poisson bracket

aθ or s in our case
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When the unperturbed Hamiltonian describes the betatron motion, the variables may

be written as

x = a1

√
βxe

ı̇(µx−Qxθ)eı̇Qxθ + c.c. ≡ a1u(θ)eı̇Qxθ + c.c.

y = a2

√
βye

ı̇(µy−Qyθ)eı̇Qyθ + c.c. ≡ a2v(θ)eı̇Qyθ + c.c.

etc., with ak complex constant (starting conditons). The perturbed motion is described

by the same expression but with ak=ak(θ).

The perturbation hamiltonian for linear coupling is

H1(θ) = R2Nxy +RH(xpy − ypx) +
R2

2
H2(x2 + y2)

where N and H have been defined earlier and R=C/2π. We must express the

perturbation hamiltonian in terms of ~a:

U1 =
2∑

j,k,l,m=0

hjklma
j
1(a∗1)kal2(a∗2)mei[(j−k)Qx+(l−m)Qy]θ

with j + k + l +m = 2
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The functions hjklm(θ) are

h2000 ≡
R2

2
H2u2 h0200 ≡

R2

2
H2(u∗)2 h1100 ≡ R2H2uu∗

h0020 ≡
R2

2
H2v2 h0002 ≡

R2

2
H2(v∗)2 h0011 ≡ R2H2vv∗

h1010 ≡ R2Nuv +RH[u(v′ + iQyv)− v(u′ + iQxu)]

h1001 ≡ R2Nuv∗ +RH[u(v′∗ − iQyv
∗)− v∗(u′ + iQxu)]

h0101 = h∗1010 h0110 = h∗1001

As the fields and the functions u and v are periodic in θ it is possible to develop hjklm

in Fourier series

hjklm(θ) =

+∞∑
q=−∞

hjklmqe
iqθ

which adds a second sum on q in the expression for U1 and modify the argument of the

exponential to [(j − k)Qx + (l−m)Qy + q]θ.
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Under the assumption that slowly varying part gives the largest contribution, the indices

are kept for which

(j − k)Qx + (l−m)Qy + q = 0

In addition neglecting the terms containing H2 we are left with

nxQx + nyQy + q = 0 → Qx ±Qy = p

Writing u and v explicitly, the important Fourier components are

h± =
R

4π

∮
dθ
√
βxβy

{N
2π

+
H

C

[(αx
βx
−
αy

βy

)
−i
( 1

βx
∓

1

βy

)]}
ei[µx±µy+(Qx±Qy−p)θ]

which becomes a sum for localized perturbations.
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Coupling correction

• Decoupling of the transport matrix

– If the perturbed transport matrix is known, one can set the off-diagonal block

elements to zero by introducing skew quadrupoles in the lattice. The symplec-

ticity of the transport matrix reduces the number of free parameters from 16

to 10. By setting M13=M14=M23=M24=0 also the other off-diagonal block

will vanish. This means we need at least 4 skew quadrupoles to decouple the

transport matrix.

• Compensation of linear coupling driving terms (Guignard approach)

• Local coupling correction
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Guignard approach suggests that the driving terms h± must be compensated. For a

localized source of coupling as an experiment solenoid the driving terms are

hsol± =
1

4π

∮
dθ
√
βxβyH

[(αx
βx
−
αy

βy

)
− i
( 1

βx
∓

1

βy

)]
ei[µx±µy+(Qx±Qy−p)θ]

→ In general 4 quantities to be corrected by 4 skew quads.

Experiment solenoids are located around the IP were usually the β functions are sym-

metric which means that, choosing the origin θ=0 at the IP, hsol± are purely imaginary.

These 2 quantities may be compensated by using 2 pairs of skew quadrupoles symmet-

rically placed wrt the IP and powered anti-symmetrically (→ 2 knobs) so that the real

part of their contribution vanishes.

However introducing two more pairs of

such skew quadrupoles (8 skews, 4 free

knobs) also the integrals from the first

skew to IP and from IP to last skew can

be made vanishing (LEP scheme).
-200

-100

 0

 100

 200

 300

 400

 500

-20 -15 -10 -5  0  5  10  15  20

β[
m

]

s[m]

solenoid

IP
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An example from HERAe. After the luminosity upgrade the H1 and Zeus solenoids

were no more locally compensated by anti-solenoids. 4 skew quadrupoles per IP were

used. In particular the H1 solenoid was not symmetrically positioned wrt the IP and was

overlapping with machine quadrupoles. The actual solenoid fields had been measured,

3 slightly different transport maps through the solenoids were computed. We had also

some simple “sandwich” model to compare with. 3 approaches were used for evaluating

the needed strengths for the 4 skew quadrupoles. Here there are the results for two of

them and one of the 3 maps.

matrix method Guignard method

[m−1] [m−1]

QSKN1 -0.00257 -0.00231

QSKN2 0.00024 0.00028

QSKN3 -0.00747 -0.00649

QSKN4 0.00178 0.00146

We were prepared to empirical fine adjustments of the quadrupole strengths. For this

we needed some observable quantities and “orthogonal” optimization knobs.
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Orthogonal knobs:

• 4 knobs each changing simultaneously the values of the 4 skew quadrupoles for

exciting one components at a time were programmed.

Observables:

• the beam ellipse orientation.

– In a uncoupled machine the beam (x, y) cross section is an ellipse with axes

aligned with x and y. Its tilt is a sign of coupling and depends upon machine

azimuth. At HERA it was measured at 4 different positions by the synchrotron

light monitor (HERAe was a 27 GeV lepton ring), the transverse polarimeter

and the experimental luminosity monitors.

• Minimum tune distance.

– In an uncoupled machine, it is possible to set the horizontal and vertical tunes

to “any” value separately by using the quadrupole circuits. This is not true in

presence of coupling in particular when the tunes are close.

This strategy proved to work quite well.
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Coupling functions

This approach is based on canonical perturbation theory for solving the coupled equation

of motion.

We recall that the perturbation hamiltonian, keeping only the linear terms in the per-

turbing fields, is

U1 = h1010a1a2ei(Qx+Qy)θ + h0101a
∗
1a
∗
2e−i(Qx+Qy)θ

+h1001a1a
∗
2ei(Qx−Qy)θ + h0110a

∗
1a2e−i(Qx−Qy)θ

or in more compact form

U1 = C+(θ)axay + C∗+(θ)a∗xa
∗
y + C−(θ)axa

∗
y + C∗−(θ)a∗xay

with

C+ ≡ h1010 = h∗0101 C− ≡ h0101 = h∗1010

and

ax ≡ a1eiQxθ ay ≡ a2eiQyθ
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“Ansatz”

ax(θ) = ax0(θ) + w∗−(θ)ay0(θ) + w∗+(θ)a∗y0(θ)

ay(θ) = ay0(θ)− w−(θ)ax0(θ) + w∗+(θ)a∗x0(θ)

Inserting into the equation of motion

daj

dθ
= Σm[aj, am]

∂U1

∂am

and keeping 1th order terms one finds the equations for w±

2ie−iQ±θ
d

dθ
eiQ±θw±(θ) = C±(θ)

http://www.mechanik.tu-darmstadt.de


58/67 P�i?�	�≫≪><

The periodic solutions are

w±(θ) = −
∫ 2π

0

dθ′
C±(θ′)

4 sinπQ±
e−iQ±[θ−θ′−πsign(θ−θ′)]

with

Q± ≡ Qx ±Qy

The functions w̃± ≡ w±eiQ±θ are

• constant in coupler free regions

• experience a discontinuity −iC±`/2R at coupler locations⇒ diagnostics tool !

• are constant on the resonances Qx ±Qy = int.
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Coupling functions measurement through TBT analysis

TBT beam position at the jth vertical BPM following a horizontal kick

yjn =
[√
βjy

(
e−iΦ

j
ywj+ − eiΦ

j
ywj−

)]
AxeiQx(θj+2πn) + c.c.

TBT beam position at the j-th horizontal BPM following a vertical kick

xjn =
[√
βjx

(
e−iΦ

j
xwj+ + eiΦ

j
xw∗j−

)]
AyeiQy(θj+2πn) + c.c.

Here it is Φz ≡ µz −Qzθ.

The FFT of yj at Qx, Y j(Qx), for a horizontal kick (Xj(Qy) for a vertical one) is

proportional to the coupling functions w±(θj).

We get per each BPM 2 real equations (amplitude and phase of the Fourier component)

in 4 unknowns (w± are complex). When between two consecutive monitors there are

no strong source of coupling, the four equations can be solved in favor of w±(θj) =

w±(θj+1).
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Examples of Tevatron Measurements

Coupling functions (November 2005 data)
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Discontinuities visible around 1000 (SQA0), 1500 (A38) and 4000 (D16) meters, con-

firming LOCO results.
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The measured w± were used for correcting the global coupling with 2 skew quadrupoles

(the working point was Qx=20.584 and Qy=20.574 ie close to the difference reso-

nance).

Minimum tune split measured with spectrum analyzer and computed from TBT data
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TEVATRON was a fast ramping machine (83 seconds from 150 to 980 GeV), the TBT

analysis was a very practical method for measuring optics and coupling also during

acceleration.

First ramp after 2006 shut down

(3th June 2006)

After correcting with W118

(6th June 2006)
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A local correction is particularly important for e± machines when a very small vertical

beam size is required.

A part of the vertical beam size comes from the spurious vertical dispersion which is

generated by

• vertical misalignment of quadrupoles

• rotation of normal quadrupoles at Dx 6= 0 locations

Thus one must correct betatron coupling and spurious vertical dispersion.

Simulations for KEK Accelerator Test Facility (ATF), a 139 m test damping ring with

a goal of εy ≈ 1 or 2 pm.

• Gaussian random roll errors (5 mrad rms) applied to all normal quadrupoles

• coupling functions w± computed

• All 68 skew quadrupoles used for minimizing w± and spurious vertical dispersion

along the ring
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ATF simulations: coupling functions
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ATF simulations: Mais-Ripken cross functions
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Transverse Emittance
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Nominal 0.973 0.000

with errors 0.971 0.042

with β-tron coupling 0.973 0.012

correction

with Dy correction 0.970 0.013

correcting both 0.973 0.001

http://www.mechanik.tu-darmstadt.de


66/67 P�i?�	�≫≪><

Summary

We have studied two kind of linear perturbations:

• Gradient errors:

– We have found the equation for the β-beating in lowest order.

∗ The same formalism has allowed us to find the equation for the linear chro-

maticity.

– We have seen methods for measuring and correcting gradient errors.

• Linear coupling (generated by skew quadrupoles, solenoids and roll angle of normal

quadrupoles:

– Overview of different formalism:

∗ Edwards-Teng and Mais-Ripken generalized optics functions.

∗ Canonical perturbation theory and linear coupling resonances.

– Corrections method by using skew quadrupoles have been described.
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“The search for truth is more precious than its possession”

(Albert Einstein)

...therefore don’t be too disappointed if there are mistakes in my slides!
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