

Развитие метода мультиэнергетической рентгеновской томографии с применением детекторов на основе микросхем семейства Medipix

Кожевников Данила Александрович

Научный руководитель: к.ф.-м.н. Шелков Георгий Александрович

ОИЯИ, Дубна, 29 января 2019 г.

- 1. Введение
- 2. Моделирование отклика детектора методом Монте-Карло
- 3. Энергетическая калибровка детектора
- 4. Рентгеновский микротомограф MARS
- 5. Мультиэнергетическая рентгеновская томография
- 6. Трехслойный детектор на основе микросхем Timepix
- 7. Заключение

Введение

Принцип рентгеновской томографии

Рентгеновская (компьютерная) томография (PT) - метод послойного исследования структуры неоднородных объектов в рентгеновском излучении, основанный на зависимости линейного коэффициента ослабления от состава и плотности вещества.

Принцип рентгеновской томографии

Вычислительная реконструкция позволяет по набору рентгеновских проекций, полученных под разными углами, восстановить трёхмерное изображение образца.

Принцип двух-энергетической рентгеновской томографии

https://www.gehealthcare.com/

5

5

Цель: разработать метод определения пространственного распределения веществ с применением детекторов на основе микросхем семейства Medipix.

Задачи:

- Создать инструментарий для Монте-Карло моделирования детектора на основе микросхем семейства Medipix, позволяющий выбрать оптимальные параметры детектора в зависимости от задачи.
- Разработать методику выравнивания энергетического отклика пикселей детектора на основе микросхемы семейства Medipix.
- 3. Разработать процедуру механической юстировки микротомографа MARS.

Цели и задачи

- Разработать методику мультиэнергетического рентгенотомографического сканирования и реализовать в виде программного обеспечения для управления томографом и проведения мультиэнергетического сканирования.
- Разработать методику обработки данных мультиэнергетического рентгенотомографического сканирования и реализовать в виде программного обеспечения.
- Разработать методику анализа мультиэнергетических рентгеновских томограмм, позволяющую сегментировать образец на области с различным элементным составом и идентифицировать вещества, реализовать в виде программного обеспечения.

Семейство микросхем Medipix

	Medipix2	Timepix(1)		Medipix3RX		Timepix3	
режим	Medipix	Medipix	TOT	Medipix	Medipix	Medipix &	TOT & TOA
					супер-пиксель	суммарный ТОТ	
размер	55×55	55×55		55×55	110×110	55×55	
пикселя, μm^2							
количество	256×256	256×256		256×256	128×128	256×256	
пикселей							
количество	2	1	-	2	8	1	-
порогов							
по энергии							
количество	1	1		2	8	2	
счетчиков							
измерение	-	- да		-		-	да
энергии							
(прямое)							
разрядность	14	14		12		10 (Medipix) +	10 (TOT) +
счетчика, бит						14 (iTOT)	18 (TOA)
количество	3	4		5		4	
подстроечных							
битов							
шум	80	75		85	180	90	
усилителя, e^-							
суммирование		-		да	да	-	-
заряда							
предельная	100	100 <0.01		100		100	≈ 0.6
загрузка, кгц							
THIRD CHO							

С 2015 г. ОИЯИ является членом коллаборации Medipix4.

• Интегрирующие детекторы

Аналоговый сигнал

Шум суммируется и присутствует в сигнале

• Режим счета отдельных фотонов

Моделирование отклика детектора методом Монте-Карло

Ионизация

- Geant4: пространственное распределение энерговыделения.
- Количество электрон-дырочных пар: $N = \frac{E_{deposit}}{E_{pairProduction}}$,

 $\sigma_N = \sqrt{fN}$, где f- фактор Фано, для полупроводников $f = 0.1 \div 0.2.$

• Начальное распределение электрон-дырочных пар является нормальным распределением с дисперсией [1]:

$$\sigma_{\rm cloud} = AE_{deposit}(1-\frac{B}{CE_{deposit}+1}),$$
где $A=1.03~\frac{\mu m}{keV},$ $B=0.98,$ $C=0.003~keV^{-1}.$

1. Benoit M., https://doi.org/10.1016/j.nima.2009.04.019

Дрейф заряда

- Кулоновское расталкивание при энерговыделении порядка нескольких сотен кэВ пренебрежимо мало по сравнению с другими процессами.
- Основные процессы дрейф носителей заряда и диффузия:

$$\sigma_{\rm диф фузии} = \sqrt{6Dt}$$

$$D = \frac{\mu kT}{q}$$
$$t = \frac{l}{v} = \frac{l}{\mu E} = \frac{ld}{\mu U_{bias}}$$

- D показатель диффузии,
- t время дрейфа,
- μ подвижность носителя,
- *k* постоянная Больцмана,
- Т температура,
- q заряд носителя,
- *l* расстояние дрейфа,
- *d* толщина сенсора

$$\begin{split} \sigma_{\mathrm{диф фузии}} &= C \sqrt{\frac{ldT}{U}} \\ C &= 0.23 \left[\mathrm{Д} \mathrm{ж}^{\frac{1}{2}} \mathrm{Kn}^{-\frac{1}{2}} \mathrm{K}^{-\frac{1}{2}} \right] \end{split}$$

Наведенный заряд

Заряд, наведенный на пикселе движущимся носителем заряда согласно теореме Рамо-Шокли:

 $\Delta Q = -q\varphi(x),$

Q - наведенный заряд, $\varphi(x)$ - весовой потенциал в точке $x,\,q$ - заряд носителя.

Полный заряд, наведенный в пикселе всеми движущимися носителями заряда:

$$Q = CCE \sum_{i=1}^{N} \Delta Q_i$$

Эффективность сбора заряда (одного типа носителей в планарном детекторе) *CCE* зависит от напряжения и толщины детектора, и определяется формулой:

$$CCE = \frac{\mu\tau U_{bias}}{d^2} \left[1 - exp(\frac{-d^2}{\mu\tau U_{bias}})\right]$$

au - время жизни носителя заряда

Сигнал

- В усилителе к наведенному заряду подмешивается электронный шум с нормальным распределением и дисперсией $\sigma_{\rm шум \ усилителя} \approx 100$ электронов.
- В результате усиления сигнал также искажается, а эти искажения определяются нормальным распределением с дисперсией: *о*усилителя.
- После предусиления сигнал дискриминируется по порогу. Согласно дизайну дискриминатора, порог задается достаточно точно, однако он варьируется от пикселя к пикселю с дисперсией σ_{порога}.

Моделирование энергетической калибровки детектора

Чувствительный объем - GaAs, толщиной 500 мкм, приложенное к сенсору напряжение 1000 В. Слева-направо, сверху-вниз распределения зарегистрированного заряда в результате попадания фотона с энергией 10 кэВ, 14 кэВ, 18 кэВ, 22 кэВ, 26 кэВ. На нижнем правом графике показана полученная калибровочная прямая.

Измерение чувствительной области пикселя

Источник синхротронного излучения ВЭПП-3М, расположенный в Институте ядерной физики им Г.И.Будкера СО РАН (Новосибирск).

Коллимированный монохроматический пучок фотонов с энергией 18 кэВ.

Сравнение моделирования с экспериментальными данными

Study of a GaAs: Cr-based Timepix detector using synchrotron facility / P. Smolyanskiy [идр.] // Journal of Instrumentation. — 2017. — Т. 12, № 11. — Р11009. Энергетическая калибровка детектора

Предпосылки для выравнивания энергетических порогов

Разница в коэффициенте усиления и энергетическом пороге между пикселями

Неоднородность материала чувствительного объема

- При сканировании по порогу может быть применена обобщенная или попиксельная калибровка на этапе пост-обработки.
- Такой подход не применим, когда количество энергетических измерений ограничено (например мультиэнергетическая PT).

Принцип подстройки энергетического порога

Сигнал показан красной линией. Глобальный энергетический порог, заданный с помощью THL ЦАП, – зеленой линией. Локальный энергетический порог, контролируемый подстроечным ЦАП, – синей линией. Диапазон локальной подстройки, контролируемый THS ЦАП, – оранжевой стрелкой.

- по электронному шуму усилителя;
- по характеристическому излучению;
- по монохроматическому излучению (синхротронный источник + монохроматор);
- используя полихроматическое излучение рентгеновской трубки и набор поглотителей;
- по калиброванным электрическим импульсам.

Частично или полностью не удовлетворяют требованиям:

- скорость проведения;
- учет неоднородности материала чувствительного объема;
- выравнивание порогов на произвольной энергии;
- без специальных приспособлений;
- возможность проведения не извлекая детектор из микротомографа (любой другой установки).
X-ray tube Hamamatsu L10951 (up to 110 kV, 50 W).

Аппроксимация экспоненциальной функцией числа отсчетов в пикселе в зависимости от заданного порога:

Распределение положения края спектра по пикселям

Измерения проводились детектором с чувствительным объемом из арсенида галлия толщиной 1000 мкм при напряжении -600 В.

минимальные, максимальные, оптимальные значения подстроечных битов

Матрица подстроечных битов

При правильно заданном диапазоне подстройки, матрица подстроечных битов не зависит от энергии, на которой производится выравнивание энергетических порогов.

Измерение положения края спектра

Энергетические пороги выравнены по шуму усилителя.

Измерение положения края спектра

Энергетические пороги выравнены с помощью предложенного метода.

Ширина распределения положения края спектра

Пороги выровнены по шуму предусилителя

 Пороги выровнены по краю спектра

Характеристическое излучение тантала

Энергетический порог задан примерно на 95% от энергии K_{lpha} линии тантала

• Пороги выровнены по шуму усилителя:

• Пороги выровнены по краю спектра рентгеновской трубки:

Распределение положения K_{α} линии индия

Измерения проводились детектором с чувствительным объемом из арсенида галлия толщиной 500 мкм при напряжении -900 В.

Полуширина на полу-высоте (и одной десятой высоты) уменьшилась на $\approx 11\%$.

Kozhevnikov, D. Equalization of Medipix family detector energy thresholds using X-ray tube spectrum high energy cut-off / D. Kozhevnikov, P. Smolyanskiy // Journal of Instrumentation. — 2019. — T. 14, № 01. — T01006.

Рентгеновский микротомограф MARS

Микротомограф MARS

- Произведен компанией Mars Bioimaging Ltd., New Zealand.
- Рентгеновская трубка и детектор вращаются вокруг образца.
- Диаметр образца до 10см, длина до 28 см.
- Напряжение рентгеновской трубки до 120кВ, ток до 350 мкА, размер фокусного пятна от ≈ 70 мкм.
- Геометрическое увеличение pprox 2 раза.
- Детектор на основе 2х Medipix3.1 + GaAs:Cr 500 мкм (в 2015 г. заменен детектором Timepix + Si, GaAs:Cr, в 2018 г. заменен детектором на основе трех микросхем Medipix3RX + CZT 2000 мкм).

Микротомограф MARS

Измерение люфта подвижных частей

Схемы измерений смещения оси вращения гентри в вертикальной плоскости (слева) и смещения гентри вдоль оси вращения (справа).

Измерение люфта подвижных частей

Смещение оси вращения гентри в вертикальной плоскости.

Измерение люфта подвижных частей

Смещение гентри вдоль оси вращения.

Параметры, т калибровки:

требующие

- положение проекции оси вращения на плоскость детектора;
- положение проекции фокусного пятна рентгеновской трубки на плоскость детектора;
- расстояния между фокусным пятном рентгеновской трубки, осью вращения и детектором.

Специальный образец: пластиковый цилиндр, на котором закреплены проволочки из вольфрама диаметром 50 мкм.

Схема определения угла между проекцией оси вращения и строкой пикселей детектора.

Схема определения положения источника в плоскости детектора вдоль оси вращения.

Результат определения положения источника в плоскости детектора вдоль оси вращения.

Схема определения положения источника в плоскости детектора вдоль оси перпендикулярной оси вращения и уточнения расстояния между источником и детектором.

Результат определения положения источника в плоскости детектора вдоль оси перпендикулярной оси вращения и уточнения расстояния между источником и детектором.

Реконструированное изображение до и после калибровки

Оценка пространственного разрешения

Сумма 20 реконструированных поперечных срезов проволочки

×10

Оценка пространственного разрешения

Реконструированные изображения трех образцов сеточки из нержавеющей стали: диаметром 25 мкм с шагом 67 мкм, диаметром 30 мкм с шагом 80 мкм и диаметром 50 мкм с шагом 265 мкм.

Оценка пространственного разрешения

Описание калибровочного фантома с обозначением нанесенных рисок.

Реконструированное изображение фантома: 3D визуализация и поперечные срезы в плоскости перпендикулярной оси вращения и в плоскости детектора.

Пример реконструированного изображения

Разработанная процедура механической юстировки позволила достичь пространственного разрешения $FWHM \approx 80$ мкм.

1 см

Alignment and resolution studies of a MARS CT scanner / A. Gongadze [идр.] // Physics of Particles and Nuclei Letters. — 2015. — Т. 12, № 5. — С. 725—735.

Примеры исследований на микротомографе MARS

Примеры исследований на микротомографе MARS

Исследования проведены совместно с:

- Светликов А.В., Гуревич В.С. КБ-122 им. Л.Г.Соколова, Санкт-Петербург;
- Хозяинов М.С., Якушина О.А. Университет "Дубна";
- Савельев Д.Е. ИГ УФИЦ РАН, Уфа;
- Савельева Е.Н. ПАО АНК "Башнефть", Уфа.

Публикации по результатам исследований

- Usage of novel hybrid pixel detectors for native atherosclerotic plaque imaging by high resolution X-ray computed tomography / A. Zhemchugov [и др.] // Atherosclerosis. — 2016. — T. 252. — e215.
- Compacting processes and their effect on reservoir properties of the Pashian horizon in Kitayamskoye field (Russian) / E. Savelyeva [и др.] // Oil Industry Journal. 2018. Т. 2018, № 04. С. 26—28.
- Савельев, Д. Структурные и петрографические особенности ультрамафитов на участке «месторождение№ 33» в восточной части массива Средний Крака (Южный Урал) / Д. Савельев, Д. Кожевников // Вестник Пермского университета. Геология. — 2015. — 1 (26).
- Experimental X-ray microtomograph MARS as the future new tool for the evaluation of infrarenal aneurysms rupture risk. / A. Svetlikov [et al.] // CardioVascular and Interventional Radiology. -- 2016. -- Vol. 39, no. 03. -- P. 189.
- Петрологические свидетельства синдеформационной сегрегации вещества при образовании дунитов (на примере офиолитов Крака, Южный Урал) / Д. Савельев [и др.] // Минералогия. 2016. № 4. С. 56.
- Evaluation of human ruptured infrarenal aorta aneurysm by new high resolution microtomography / A. Svetlikov [и др.] // EUROPEAN HEART JOURNAL. T. 37. — OXFORD UNIV PRESS GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND. 2016. — C. 270—270.

Мультиэнергетическая рентгеновская томография

Программа управления микротомографом MARS

Интерфейс программы для проведения спектрального томографического сканирования на микротомографе MARS. Проекции могут быть посчитаны для каждого энергетического измерения или для разницы двух последовательных энергетических измерений.

Проекции на разных порогах по энергии

J - Sn (29.2 кэВ) I - Pb (88.0 кэВ) N - Cd (26.7 кэВ) R - Cu (8.9 кэВ)

Специальный образец

Слева - фотография фантома для мультиэнергетической томографии, содержащего: раствор соли золота ($AuCl_3$) в концентрации 8 мг/мл и 2 мг/мл, раствор рентгеноконтраста (MultiHance by Bracco) с концентрацией гадолиния 8 мг/мл и 2 мг/мл, раствор рентгеноконтраста (Omnipaque 350 by GE Healthcare) с концентрацией йода 18 мг/мл, раствор соли кальция ($CaCl_2$), дистиллированная вода (в центре и с краю), и рапсовое масло. Справа - схема расположения веществ.

Мультиэнергетическое сканирование

Зависимость усредненного ЛКО от энергии

56
Попиксельное разложение на базовые вещества

Сегментация с помощью алгоритма водораздела

Разложение на базовые вещества

Воду, рапсовое масло и контраст на основе солей золота с концентрацией 2 мг/мл различить не удалось.

Performance and applications of GaAs: Cr-based Medipix detector in X-ray CT / D. Kozhevnikov [и др.] // Journal of Instrumentation. — 2017. — Т. 12, № 01. — С. C01005. Трехслойный детектор на основе микросхем Timepix

В качестве чувствительного объема для детекторов семейства Medipix в основном используются три материала: Si, GaAs:Cr, CdTe.

Каждый материал обладает своими достоинствами и недостатками:

- Si: хорошее энергетическое разрешение, но низкая эффективность поглощения фотонов с энергией выше 20 кэВ.
- GaAs:Cr: приемлемая эффективность поглощения фотонов с энергией до 50-60 кэВ, но присутствуют собственные характеристические линии (K_α) с энергией ≈ 10 кэВ, максимальная толщина сенсора – 1 мм.
- CdTe(CZT): наилучшая эффективность поглощения фотонов рентгеновского диапазона, толщина сенсора может достигать 5 мм, но присутствуют собственные характеристические линии (K_α) с энергией ≈ 25 кэВ.

Обычно материалы противопоставляются друг другу.

Выбор конкретного материала обусловлен задачей и является компромиссом между качеством и эффективностью.

Часть излучения проходит насквозь без взаимодействия с веществом детектором (для Si и GaAs основной процесс - фотоэффект).

Чип Medipix изготовлен из Si и имеет толщину менее 300 мкм, т.е. является практически прозрачным для фотонов с энергией выше 20 кэВ.

Три детектора с сенсорами из Si, GaAs, CdTe могут использоваться одновременно, дополняя друг друга, при этом каждый детектор будет работать в оптимальном для него диапазоне энергий.

Моделирование эффективности регистрации фотонов (доля) в каждом слое комбинированного детектора

Оптимальная комбинация толщин чувствительных объемов: Si - 300 мкм, GaAs:Cr - 500 мкм, CdTe - 1000 мкм (чем больше, тем лучше).

Стек из трех детекторов Timepix

1 – Si (300 μm), 2 – GaAs:Cr (500 μm), 3 – CdTe (1000 μm)

Для всех трех детекторов разрешение \approx 9 линий/мм, что близко к теоретическому пределу.

Si 300 μm

GaAs 500 μm

CdTe 1000 μm

Относительная эффективность

Спектр характеристического излучения неодима, измеренный в ToT режиме

Относительная эффективность

Спектральное томографическое сканирование

Спектральное томографическое сканирование

Спектральное томографическое сканирование

Заключение

Положения, выносимые на защиту

- Показана возможность определения пространственных распределений воды, кальция с концентрацией от 240 мг/мл, йода с концентрацией от 18 мг/мл, золота с концентрацией от 8 мг/мл, гадолиния с концентрацией от 2 мг/мл с помощью метода мультиэнергетической рентгеновской томографии с применением детектора на основе микросхемы Timepix с чувствительным объемом из арсенида галлия толщиной 300 мкм.
- В три раза увеличено количество энергетических порогов в одном измерении за счет применения трехслойного детектора с чувствительными объемами из кремния толщиной 300 мкм, арсенида галлия толщиной 500 мкм и теллурида кадмия толщиной 1000 мкм.
- В рентгеновском микротомогрофе MARS достигнуто пространственное разрешение 80 мкм за счет применения процедуры комплексной механической юстировки.

Положения, выносимые на защиту

- 4. Для гибридного полупроводникового детектора на основе микросхемы Timepix с чувствительным объемом из арсенида галлия толщиной 1000 мкм при напряжении -500 В достигнуто энергетическое разрешение 2.2 % в диапазоне энергий от 20 до 55 кэВ благодаря применению метода выравнивания энергетических порогов пикселей детектора по краю спектра рентгеновской трубки.
- 5. Эффект распределения заряда на несколько соседних пикселей в гибридном полупроводниковом детекторе с чувствительным объемом из арсенида галлия толщиной 1000 мкм при напряжении -500 В происходит за счет диффузии заряда во время дрейфа, при этом дисперсия носителей заряда, образовавшихся в результате поглощения фотона с энергией 18 кэВ, в плоскости пиксельной металлизации составляет 12.6 мкм, что показано с помощью проведенного Монте-Карло моделирования и сравнения его предсказания с экспериментальными измерениями.

Личный вклад

- Разработал инструментарий для моделирования отклика гибридного полупроводникового детектора на основе микросхем Medipix и провел сравнение его предсказаний с экспериментальными измерениями.
- Предложил метод выравнивания энергетических порогов пикселей детектора на основе микросхемы семейства Medipix с одновременной энергетической калибровкой детектора.
- Предложил одновременно использовать несколько детекторов на основе микросхем семейства Medipix с чувствительными объемами из кремния, арсенида галлия и теллурида кадмия, объединяя их в трехслойный детектор.
- Разработал методику рентгенотомографического сканирования, методику предварительной обработки данных мультиэнергетической рентгеновской томографии, методику обработки реконструированных спектральных изображений и определения пространственного распределения веществ, а также программное обеспечение: для управления томографом; для предварительной обработки данных спектрального рентгенотомографического сканирования; для анализа реконструированных спектральных изображений и декомпозиции их на базисные вещества.
- Внёс существенный вклад в разработку методики механической юстировки микротомографа MARS.
- Провел сканирование серии геологических и медицинских образцов.

Новизна

- Создан инструментарий для Монте-Карло моделирования детектора на основе микросхем семейства Medipix и проведено сравнение её предсказаний с экспериментальными измерениями.
- Предложен оригинальный метод выравнивания энергетических порогов пикселей детектора на основе микросхемы семейства Medipix по краю спектра рентгеновской трубки на произвольной энергии с одновременной энергетической калибровкой детектора.
- Впервые детекторы на основе микросхемы Timepix и чувствительным объемом из арсенида галлия толщиной 300 мкм и 500 мкм применены для мультиэнергетического рентгенотомографического исследования.
- Разработана новая процедура комплексной механической юстировки микротомографа MARS.
- 5. Продемонстрирован способ повышения качества идентификации веществ с помощью сегментации реконструированного изображения образца на основе зависимости линейного коэффициента ослабления от энергии.
- 6. Впервые предложена и реализована идея трехслойного детектора на основе микросхем Timepix с чувствительными объемами из кремния, арсенида галлия и теллурида кадмия.
- Проведены томографические сканирования серии геологических и медицинских образцов с применением детектора Medipix.

Конференции

- Балтийская школа-семинар «Петромодель2013», http://www.petromodel.ru/, Петергоф, Ленинградская область, 16-20 сентября 2013 г.
- Всероссийская научная конференция «Практическая микротомография», http:// http://www.microctconf.com/, Москва, 2-4 октября 2013 г.
- Балтийская школа-семинар «Петромодель2014», http://www.petromodel.ru/, Петергоф, Ленинградская область, 15-19 сентября 2014 г.
- 4. Всероссийская научная конференция «Практическая микротомография», http:// http://www.microctconf.com/, Санкт-Петербург, 1-4 октября 2014 г.
- 5. XVIII международня конференция молодых ученых и специалистов, Дубна, 24-28 февраля 2014 г.
- LINC Leipzig Interventional Course, http://www.leipzig-interventional-course.com, Leipzig, Germany, 26-29 January 2016.

Конференции

- 6-я Санкт-Петербургская школа (с международным участием) по диагностике и лечению атеросклероза, Санкт-Петербург, 25–26 февраля 2016 г.
- 8. ESVS Spring Meeting 2016, Institute of Child Health University College, London, UK, 13-14 May 2016.
- 9. IWORiD-2016, Barcelona, Spain, 3-7 July 2016.
- XVII международная конференция "Физико-химические и петрофизические исследования в науках о Земле", Москва, ИФЗ РАН, 26-30 сентября 2016 г.
- 11. LASNPA-WONP-NURT 2017, Havana, Cuba, 23-27 October 2017.
- 12. Совещание коллаборации Medipix, CERN, Geneva, Switzerland, 14-15 March 2018.
- 13. IWORiD-2018, Sunsvall, Sweden, 24-28 June 2018.
- 14. MARS spectral CT workshop, New Zealand, Christchurch, 7-8 November 2018.
- 15. Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), Sydney, Australia, 10-17 November 2018.

Микросхема Тітеріх

Previous Pixel

Измерение энергии

Схема выравнивания энергетических порогов

- 1. определение оптимального значения THS
- 2. Сканирование по порогу, когда все подстроечные биты:
 - 2.1 минимальны (0)
 - 2.2 максимальны (15)
- 3. Вычисление оптимального значения подстроечных битов для каждого пикселя:
 - 3.1 аппроксимация края спектра излучения в каждом пикселе
 - 3.2 построение распределений края спектра при минимальных и максимальных значения подстроечных битов
 - 3.3 определение оптимального значения подстроечных битов в каждом пикселе