Development of user interface for top tracker control software of JUNO experiment

Sharov Vladislav DLNP, JINR

Dubna, 2019

Location

	NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
	Status	Operational	Planned	Planned	Under construction	Under construction
2	Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW
	Overburd Kaiping,	len ~ 700 m	Suang Zho 2.5 h drive	Lt Dungguan CNS Shen Zhen	. Huizhou Daya Bay К.NPP	2020: 26.6 GW
	Jiangmen, Guangdong 53 km		Zimjiang River Ester	Hong Ko	ong Yangjiang NPP	Taishan NPP
53 km Taish Yangjiang NPP			an NPP	1		

JUNO : a multipurpose neutrino experiment

Physics:

- Determine mass hierarchy
- Precision measurement of oscillation parameters
- Astronomical and geo-v
- Proton decay and exotics

Project:

- 20 kton liquid scintillator,
 3%/1MeV energy resolution,
 700 m underground
- Approved in 2013, construction started in 2015, operation in 2021

Scheme underground detector JUNO

Entering the Experimental Hall

Experimental Hall Roof

Bottom of the Elevator Shaft

JUNO detector

Build a prototype detector JUNO

Transportation of the muon detector OPERA

Top Tracker electronics

USB 2.0 connector (used for tests without Concentrator)

Concentrator Prototype

Technology stack

In progress

Why WebGL*?

- Online event viewer for Top Tracker Events (TTE);
- Flexibility one can zoom/unzoom and easily get an access to any part of TT visual representation object;
- ✓ To minimize effort, to reduce double codding. The wish to use the single object booth for options 1 & 2;
- ✓ It`s cool!

* WebGL is a JavaScript API for rendering interactive 2D and 3D graphics within any compatible web browser without the use of plug-ins.

Why frameworks?

- The possibility of long-term support of the project and its refinement;
- Ability to develop applications from scratch;
- Possibility of using ready-made libraries and components;
- ✓ Widly using, large community ;
- Don`t reinvent the bicycle!

