
Particle track reconstruction
with the TrackNETv2

Pavel Goncharov, Gennady Ososkov, Dmitriy Baranov

Sukhoi State Technical University of Gomel

kaliostrogoblin3@gmail.com

18.04.2019 P.Goncharov et al., TrackNETv2 1

18.04.2019 P.Goncharov et al., TrackNETv2 2

What is tracking?

Tracking or track finding is a process of reconstruction the particle’s trajectories in high-energy physics
detector by connecting the points – hits – that each particle leaves passing through detector’s planes.
Tracking includes track seeding and track building phases.

18.04.2019 P.Goncharov et al., TrackNETv2 3

NICA-MPD-SPD-BM@N

General view of the NICA complex with the experiments MPD, SPD, BM@N

We are here

18.04.2019 P.Goncharov et al., TrackNETv2 4

Baryonic Matter at Nuclotron (BM@N)

• Our problem is to reconstruct tracks registered by the GEM vertex detector with 6 GEM-stations
(RUN 6, spring 2017) inside the magnet.

• All data for further study was simulated in the BmnRoot framework with LAQGSM generator.

18.04.2019 P.Goncharov et al., TrackNETv2 5

Problems of microstrip gaseous chambers

Layer of vertical strips Layer of inclined strips Complete readout plane

The general schema of construction of any GEM-station

We can significantly
reduce the number of

observed fakes by adding
a stereo-angle between

layers of strips (15˚)

The main shortcoming is the appearance of
fake hits caused by extra spurious strip

crossings. For n real hits one gains n𝟐- n fakes

Although small angle between layers removes
a lot of fakes, pretty much of them are still left

However too high reducing of the angle increases the Y-coordinate error

18.04.2019 P.Goncharov et al., TrackNETv2 6

Initial Attempts. Two-step tracking
http://ceur-ws.org/Vol-2023/37-45-paper-6.pdf

1.Preprocessing by directed K-d tree search to find all possible track-candidates as clusters joining all
hits from adjacent GEM stations lying on a smooth curve.

2.Deep recurrent network trained on the big simulated dataset with 82 677 real tracks and 695 887
ghosts classifies track-candidates in two groups: true tracks and ghosts.

1) Directed K-d Tree Search 2) Deep Recurrent Neural Network Classifier

Bunch of
track-candidates

very imbalanced dataset

http://ceur-ws.org/Vol-2023/37-45-paper-6.pdf

18.04.2019 P.Goncharov et al., TrackNETv2 7

We introduced the regression part consisting of four neurons, two of which predict the point of the
center of ellipse on the next coordinate plane, where to search for track-candidate continuation and
another two – define the semiaxis of that ellipse.

M

t1

tM

GRU GRU

GRU GRU

X Y Z

PADDING

PADDING

...

σ

TRACK
or

GHOST

Classification
part

/

Regression
part

/

X-coord

Y-coord

Softplus

Linear

Sigmoid

R1
semiaxis

R2
semiaxis

GRU GRU

t2

Convolutional 2xGRU

Initial Attempts. TrackNETv1
https://www.epj-conferences.org/articles/epjconf/pdf/2019/06/epjconf_ayss18_05001.pdf

http://ceur-ws.org/Vol-2023/37-45-paper-6.pdf

18.04.2019 P.Goncharov et al., TrackNETv2 8

TrackNETv1 custom loss

𝐿 = max 𝜆1, 1 − 𝑝 𝐹𝐿 𝑝, 𝑝′ + 𝑝 𝜆2
𝑥 − 𝑥′

𝑅1

2

+
𝑦 − 𝑦′

𝑅2

2

+ 𝜆3𝑅1𝑅2

Classification error

Point in ellipse loss
Minimizes the

ellipse size

• p’ – the probability of track/ghost was predicted by deep RNN
• p – the label that indicates whether or not the set of points belongs to true track
• x’, y’ – the center of ellipse, predicted by network
• x, y – the next point of the true track segment
• R1, R2 – semiaxis of the ellipse
• max 𝜆1, 1 − 𝑝 , 𝑝 - coefficients that weights classification and regression parts, e.g. we don’t need to

search for the continuation of track candidate if it is a ghost
• 𝜆1−3 – weights for each part of equation

FL p, p′ = ቊ
−𝛼 1 − p′ 𝛾 log 𝑝′ if p = 1

− 1 − 𝛼 𝑝′𝛾 log 1 − 𝑝′ otherwise

FL is a balanced focal loss with a weighting factor 𝛼 ∈ 0, 1 – common method for addressing class
imbalance. We set 𝛼 = 0.95, The focusing parameter 𝛾 (we set it to 2)
smoothly adjusts the rate at which easy examples are down-weighted.

18.04.2019 P.Goncharov et al., TrackNETv2 9

TrackNETv1 thinking out loud
• The TrackNETv1 requires a labeled dataset with true and fake tracks, which may be obtained with

the help of the first stage of the two-step approach, i.e. directed spatial track-candidates search.
Preparing such a dataset takes a lot of efforts and time.

• We cannot use a single model to solve the tracking problems up to the hilt, because of the
cohabitation of the classification part and the regression part, in which one of each have to turn off
depending on the inputs’ length. Meaning that for seeds with two points we can’t set any label of
true track appearance and for seeds with the length of a number of stations we don’t know the next
hit.

• While dealing with great data imbalance, we invented the special loss function, which is fully
controlled by the set of five hyperparameters needed for careful tuning.

Taking into account the statements above, we found that we can drop the classification part at all
because the ellipse prediction comprises the track smoothness criterion by itself. By removing the
classification part we open the opportunity to train a single model end-to-end using only true tracks,
which can be accurately extracted from Monte-Carlo simulation. Also, by removing the classification part
we decrease the number of the loss hyperparameters to be optimized to two lambdas. The loss’
simplification brings more stability to the training process.

18.04.2019 P.Goncharov et al., TrackNETv2 10

Model Architecture

𝐿 = 𝜆1
𝑥 − 𝑥′

𝑅1

2

+
𝑦 − 𝑦′

𝑅2

2

+ 𝜆2𝑅1𝑅2

Loss

• x’, y’ – the center of ellipse, predicted by network
• x, y – the next point of the true track segment
• R1, R2 – semiaxis of the ellipse
• 𝜆1−2 – weights for each part of equation

We set up 𝝀𝟏 with 0.9 and 𝝀𝟐 with 0.1 values,
respectively.

TrackNETv2
https://github.com/Kaliostrogoblin/TrackNet_v2/tree/laqgsm_data

https://www.epj-conferences.org/articles/epjconf/pdf/2019/06/epjconf_ayss18_05001.pdf

18.04.2019 P.Goncharov et al., TrackNETv2 11

Training data preparation
To prepare the dataset, we were guided by the events of С+С interactions, specific for BM@N run 2017
1) Simulate 550k events with the energy of 4GeV using LAQGSM generator
2) Remove tracks containing less than 3 hits
3) Drop spinning tracks (more than 1 hit per station)
4) Label hits by seeking for the corresponding Monte-Carlo point
5) Take only true tracks for training from the 8 files with 50K events per file
6) For evaluation phase – 150K events

Eventually, we have three data sets for:
• Training - 1 405 556 tracks
• Validation – 351 388 tracks
• Evaluation – 150K events with fakes presence

18.04.2019 P.Goncharov et al., TrackNETv2 12

Problems we faced during data preparing
1) Events with an anomalous number of hits per station

Hits per station statistics (50K events)

mean 22.0760

std 103.7415

min 1.0000

25% 4.0000

50% 10.0000

75% 20.0000

max 9507.0000

2) Corrupted events, where the nearest hit is too far
from corresponding Monte-Carlo point

Solution: no work required

Solution: drop events where the distance between
some MC point and corresponding hit is > 1

3) Nearest neighbor search is too slow when a spatial
index is applied

Solution: vectorizing brute-force search

18.04.2019 P.Goncharov et al., TrackNETv2 13

Training setup
We trained separately three models depending on the presence of the vertex data:
1. model, which uses data with fixed vertex (0, 0, -21.9);
2. network with inputs, where each coordinate of the vertex in each sample is

randomly generated:
• X and Y coordinates were sampled from the normal distribution

[X, Y]~𝑁(0.0, 2.5)
• Z – from the uniform distribution 𝑍~𝑈(−21.0,−21.9)

3. and one, that has no prior knowledge about vertex location.

All three models were trained
• for 50 epochs
• with Adam optimizer
• with gradient clipping on 1
• and batch size = 256.

18.04.2019 P.Goncharov et al., TrackNETv2 14

Validation
As we have one single model, we can validate it by checking for how much of the tracks from validation
set (351 388) model can correctly predict the continuation starting from the two points to the last hit of
the track. For that purpose we have used only tracks with the length equals to the number of stations.

We measured:
• accuracy, i.e. fraction of the tracks, which model can reconstruct without being mistaken;
• hit accuracy – the proportion of the hits predicted correctly;
• processing speed – how much time elapsed before the model serves all tracks

Fixed vertex Sampled vertex No vertex

Accuracy 0.9593 0.9620 0.9870

Hit accuracy 0.9918 0.9923 0.9967

Processing speed (tracks/sec) 12128.59 12916.72 16903.92

Note: processing speed were measured on Intel Core i3-4005U @1.70 GHz with batch size = 512

18.04.2019 P.Goncharov et al., TrackNETv2 15

Data imbalance disclosure

Fixed vertex No vertex

We observed that our models performs poorly on «short» tracks with low energy, eventually, we found out
that the fraction of the «long» tracks is much higher than of the «short» ones.

18.04.2019 P.Goncharov et al., TrackNETv2 16

Conclusion and Outlook
We have improved the first version of the TrackNET and have presented the TrackNETv2, which is
• fully end-to-end trainable;
• does not require the tremendous fake tracks preparing via directed search;
• has a more stable training process
• and fewer parameters for tuning due to the lack of the classification part;
• memory cheaper because does not consist of three parts;
• can process around 16K tracks/sec ≈ 727 events/sec on a simple laptop

Now we are going to
• improve the efficiency for the tracks with low energy;
• try out convolutional structure instead of the recurrent;
• add more features to the input of the TrackNETv2;
• port the model and the code to a C++ package;
• expand the model’s powers to solve tracking in a collider environment.

18.04.2019 P.Goncharov et al., TrackNETv2 17

