

Preliminary Test Beam Results for the Muon Range System Prototype

Alexander Verkheev (DLNP, JINR)

18 April 2019

PANDA/FAIR Setup

Topics of research: hadron structure and spectroscopy, strange and charm physics, hypernuclear physics with anti-proton beams.

- ppbar, pbarA collisions
 p = 1.5 15 GeV/c ,
 (√s from 2.25 up to 5.46 GeV)
- Luminosity up to 2·10³² cm⁻²s⁻¹
- Nearly 4π solid angle for large acceptance
- Tracking : ~50 µm vertex resolution
- Different PID techniques for π±, K±, e±, μ±, γ identification, good momentum resolution

Muon System indicated in blue

Muon System as PID

- PANDA/FAIR (SPD/NICA) Muon System based on range system technique is a good PID system for muon-to-hadron separation.
- It works in full energy range of secondary particles at PANDA (0.5 ÷ 10 GeV).
- It resolves muons and hadrons with ~ 100% efficiency (zero hadron contamination) above ~ 1 GeV by obviously different response pattern.
- Separation of muons vs pions (the main rival) below 1 GeV is less efficient and requires test beam measurements for calibration.
- Important feature of range system is possibility to be used as coarse sampling (30 mm to 60 mm of Fe in our case) hadron calorimeter – > very important for neutron registration!

Mini-Drift Tube (MDT) Detector as Basis for the Muon System

PANDA Range System Prototype

The absorber structure in horizontal position

PANDA Muon System Prototype @ PS/T9/CERN Beam Line

Event Examples (Run 822, P = 1 GeV/c)

Prev	805	Nex	et 🛛		805		Set	04-	05-201	18 21:4	0:10	(Pr	ev	97	Ne	xt		805		Set	04-	05-201	8 21:37:31
04-05-20	018 21:36:	51 <-> 0)4-05-2	2018 22	2:34:00	00.	.57.09		datanti	ikanikhi	Julu	04-0	5-2018	21:36:	51 <-> (04-05-2	018 22	2:34:00) 00	57.09		JANA MA	lamhhadana
E Profi	le B	iStrip		Wi	res		1 6	SILTOSS					ronie	J_ D	isaip		Wi	res			ILIOSS		
																					••••		
				···•·		·····					1	-		· · · · ·						(1
				•							2												2
											3			ļ	ļ	ļ			ļ				
											4 5							•					5
	1										6		 			·		•	·				6
	P										7				4			.					7
											8												b Q
											9 10							•					J 10
											11							•					11
											12												12
											13												13
											1.4			ļ				• · · · ·					
											14												10
											15												15
											16			1									16
				ļ	ļ		ļ	ļ	ļ		17				·								17
											18												
											10												19
	·····	1						<u></u>			19												
											20												20

Event Examples (Run 829, P = 5 GeV/c)

Prev	938 N	ext	Ş	938	9	Set	05-05-	-2018 14:55	i:40	Pre	v 2	2316	Next		2000		Set	05-0	05-2018	14:55:40
05-05-2018 14:55:39 <-> 05-05-2018 15:06:08 00.10.29							<u></u>	05-05-	-2018 1 อยีไอ	4:55:39	<-> 05-0	05-2018	15:06:08 ••	00.	10.29	Cross	\square			
			Wire	es		I BIL	.1088				•	j bist	μμ	w	'ires			101022		
		· [· · · ·							1											1
									2 3											
			•						4											4
									5											5 6
	p								7											7
	1			••					8											8
									9 1 N											
									11											11
									12											12
									13											13
									14											14
									15						•					15
			ļļ.						16						• • • • • • • • • • • • • • • • • • • •					16
									17											17
									18											18
									10											19
									19											20
									20	1										

Event Examples (Run 835, P = 10 GeV/c)

05-05-2018 18:40:49 <-> 05-05-2018 18:47:51 00.07.02 Profile BiStrip Wires BiCross 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	40:50
Profile BiStrip Wires BiCross BiCross BiCross BiCross	
2 3	· 1
3	2
	3
	- 5
	- 6
	7
8	8
	9
	11
	12
13	
14	14
	15
16	16
	17
18	18
19	19
20	20

10

Selection Criteria for protons and antiprotons

For Calorimetry we estimate the energy of protons (antiprotons) by measuring the number of hits in event

- 1) Two scintillation counters of the TOF system (up to 5 GeV/c)
- 2) Cherenkoff counters (> 5 GeV/c)
 Cher(A): 2 bar of CO₂ <-> reject electron/pion/muon
- 3) Beam entrance spot

Calorimetry: PANDA FRS Structure

Sampling: 60 mm / Fe Nuclear interaction length $\lambda_1 \approx 5.2$

Calorimetry: PANDA MF+EC Structure

Sampling: 60 mm / Fe Nuclear interaction length $\lambda_{l} \approx 3.4$

Calorimetry: PANDA Barrel Structure

Sampling: 30 mm / Fe Nuclear interaction length $\lambda_1 \approx 2.3$

Protons vs Antiprotons

PANDA FRS Structure, T = 3.1 GeV

Summary and Plans

• Calorimetry of PANDA Muon System Prototype for protons is performed using test beam data.

Plans:

- Developing 3D mechanical model of Muon System (detector geometry).
- Transferring the detector geometry from Computer-Aided Design system to particle transport Monte Carlo code like GEANT4 / ROOT.
- Digitization / pattern recognition of hadrons and muons.
- Calibration of the SPD system's response to the different particles and energies.
- Test of algorithms for μ/π separation (at low energies ~0.5 GeV).