Primary hit processing in cylindrical GEM tracker of the BESIII experiment

Igor Denisenko

iden@jinr.ru
Joint Institute for Nuclear Research
AYSS-2019

2004: start BEPCII construction
2008: test run of BEPCII
2009-now: BEPCII/BESIII data taking
Expected to operate for at least
next five years

Physical program:

- light hadron spectrosocopy,
- charm physics,
- XYZ states and charmonium,
- t-physics.

Tracking is essential for all its parts!

Main Drift Chamber (MDC)

MDC:

- 43 Layers (8 in the Inner Tracker)
- Resolution: $130 \mu \mathrm{~m}(\mathrm{r}-\varphi$) and $2 \mathrm{~mm}(z)$

Inner layers suffer from huge beam-related background.

MDC gain (JINST 12 (2017) no.07, C07038)

Inner part of MDC to be replaced with cylindrical GEM

Cyclindrical GEM (CGEM)

GEM: gas electron multipliers

Nucl.Instrum.Meth. A805 (2016) 2

Fig.: Mezzardi, FAIRNESS 2016

Fake hits

Hit is a reconstructed point where charged particle intersects the detector plane.

Strip detectors when determining 2D hit positions suffer from combinatorial ambiguities (fake hits).

For a high track number fake hits significantly complicate track reconstruction.

Tracking

Flow diagrams from "BESIII Cylindrical GEM Inner Tracker Conceptual Design Report", 2014

Available

Deep learning for track recognition

BM@N

The very recent neural networkbased approaches of arXiv:1812.03859 suggested for BM@N can be also adapted to BESIII.

The typical BESIII charged track multiplicity is relatively small, but events in the internal layers suffer from huge beam-related background.

arXiv:1812.03859

Clustering simulation

Cluster finding and X-,V-residues

Cluster (binary mode):

Simple digitization: projection to readout, that keeps φ and z constant.

Coordinates is taken as average of fired strips centers: $X=\left(\sum_{i} X_{i}\right) / N$

Z reconstruction and residues

Figure from Chin. Phys. C40 (2016)

$\mathrm{Z}=(V-X \cos \alpha) / \sin \alpha$

Example of a reconstructed event

$r-\phi$ plane

Fake hits \bigcirc and "real" hits \bigcirc in 3 CGEM layers

Fake hits are arranged along z-axis

Summary and outlook

We are able to simulate events in BESIII CGEM with a simplified model. Further work on simulation of beam-related background is needed.

Currently the simple and the least precise clustering algorithm is implemented. More advanced algorithms can be used, including the ones based on machine learning.

The next step is to resolve the problem of fake clusters will be addressed by adapting the algorithms of "deep tracking" developed for BM@N experiment. See talk by Pavel Goncharov tomorrow.

