HIGH PERFORMANCE SIMULATION OF THE MAGNETIZATION REVERSAL PHENOMENON IN THE φ_{0}-JOSEPHSON JUNCTION

M.V. Bashashin ${ }^{1,2}$, E.V. Zemlyanaya ${ }^{1,2}$, Yu. M. Shukrinov ${ }^{1,2}$, I.R.
${ }^{1}$ Joint Institute for Nuclear Research, Dubna
${ }^{2}$ Dubna State University, Dubna
${ }^{3}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria
${ }^{4}$ Umarov Physical and Technical Institute, TAS, Dushanbe, Tajikistan

This work was supported by grants FP17-FMI-008 (Bulgaria), a grant from the JINR-Bulgaria Cooperation Program and grants from the Russian Foundation for Basic Research 17-01-00661, 18-02-00318.

Introduction

- In the superconductor-ferromagnetic-superconductor (SFS) structures, the spinorbit coupling in ferromagnetic layer without inversion symmetry provides a mechanism for a direct (linear) coupling between the magnetic moment and the superconducting current. Such Josephson junctions are called φ_{0}-junction. The possibility of controlling the magnetic properties by means of the superconducting current, and as well the effect of magnetic dynamics on the superconducting current attracts an intensive attention.

■ Using implicit two-stage Gauss-Legendre method for numerical solution of a respective system of differential equations, one can obtain a detailed pictures representing the intervals of the damping parameter, relation of Josephson to magnetic energy and spin-orbit coupling parameter where the full magnetization reversal occurs.

Theoretical model

The dynamics of the magnetization in ferromagnetic layer in the φ_{σ}-Josephson junctions is described by the Landau-Lifshitz-Gilbert equation.

$$
\begin{equation*}
\frac{d \vec{m}}{d t}=-\frac{\omega_{F}}{1+M \alpha^{2}}([\vec{m} \times \vec{H}]+\alpha \vec{m}(\vec{m} \cdot \vec{H})-\vec{H}) \tag{1}
\end{equation*}
$$

where α is damping parameter, ω_{F} is normalized frequency of ferromagnetic resonance. Here \vec{H} is effective magnetic field with the components

$$
\left\{\begin{array}{l}
H_{x}=0 \tag{2}\\
H_{y}=G r \sin \left(\varphi(t)-r m_{y}(t)\right) \\
H_{z}=m_{z}(t)
\end{array}\right.
$$

where G - relation of Josephson energy to energy of magnetic anisotropy, r - the spin-orbit coupling parameter, $m_{x, y, z}$ is x, y, z-component of magnetic moment \vec{m}. Initial conditions:
$m_{x}(0)=0, m_{\curlywedge}(0)=0, m_{z}(0)=1$.

Theoretical model

The Josephson phase difference φ can be found using equation

$$
\begin{equation*}
\frac{d \varphi}{d t}=\frac{1}{\omega}\left(I_{p u l s e}(t)-\sin \left(\varphi-r m_{y}\right)\right) \tag{3}
\end{equation*}
$$

where the pulse current is given by

$$
I_{\text {pulse }}=\left\{\begin{array}{cc}
A_{S}, & {\left[t_{0}-1 / 2 \Delta t, t_{0}+1 / 2 \Delta t,\right]} \tag{4}\\
0 & \text { otherwise }
\end{array}\right.
$$

Here A_{s} is the amplitude of the pulse current, and Δt is the time interval, in which the pulse current is applied, t_{0} is the time point the maximal amplitude.

Thus, the system of equations (1) with effective field (2),(3) and with the pulse current (4) describes the dynamics of the φ_{0}-junction.

Magnetic reversal

Magnetic reversal is an effect when m_{z}-component of the magnetic field changes the sign and takes the value -1 for a given initial value of +1 . The pictures show the time dependence of m_{z}-component:

$\alpha=0.1, G=15, G=35, G=60, G=70$.
Magnetic reversal occurs for $G=15$ and 70.

$\alpha=0.01, G=15, G=30, G=45, G=55$. Magnetic reversal occurs for $G=15$ and 45.

Magnetic reversal

- The simulations have been performed in the time-interval [$0, T_{\text {max }}$] where $T_{\max }=2000$.
- At each pair of values of parameters the magnetic reversal was indicated by means of condition $\left|m_{z}+1\right|<\varepsilon$.

Intervals of complete magnetization reversal at (α, G)-plane. The results are obtained with G-stepsize $\Delta G=1, \alpha$-stepsize $\Delta \alpha=0.01$ at A_{s} = 1.5; $r=0.1 ; t_{0}=25 ; \Delta t=6 ; \omega_{F}=1 ; h=$ 0.01

Intervals of complete magnetization reversal at (r, G)-plane. The results are obtained with G stepsize $\Delta G=1$ and r-stepsize $\Delta r=0.01$ at $A_{s}=$ 1.5; $\alpha=0.5 ; t_{0}=25 ; \Delta t=6 ; \omega_{F}=1 ; h=0.01$.

Parallel implementation

For the numerical solution of the system of equations, the implicit two-step Gauss Legendre method was used using the method of successive approximations at each time step.

The execution time of a serial C++ program of modeling magnetization reversal in the (r, G)-plane is 28 minutes.

For mass calculations in a wide range of parameter changes, the implementation in C++ using MPI technology for organizing calculations in parallel mode is more effective.

The parallelization process is based on the distribution of the points of the (r, G)-plane between parallel MPI-processes. For the convenience of the MPI-exchange, a new data type was constructed. The values of r, G where the condition $\left|m_{z}\left(T_{\max }\right)+1\right|<\varepsilon$ is satisfied, are saved and then joined in one process for writing to the output file.

The same parallelization scheme was used in case of simulations at the (α, G)-plane.

Parallel implementation

Speedup of calculations depending on the number of MPI-processes.
Calculations performed on HybriLIT platform
This part of the work was done at the expense of the Russian Science Foundation grant No 18-7110095

Conclusions

■ A parallel MPI program has been developed that provides highperformance studies of the spintronics model in a wide range of parameters.

- Maximal speedup of the MPI version is about 30 times.
- In the wide range of parameters of the phase coupling G, dissipation α and spin-orbit coupling r, domains are obtained where the magnetic moment is reversed.

■ Periodic structure of the magnetic reversal domains is established. Further analysis in this field is required to explain this phenomenon.

THANKS FOR ATTENTION

