HIGH PERFORMANCE SIMULATION OF THE MAGNETIZATION REVERSAL PHENOMENON IN THE ϕ_0 -JOSEPHSON JUNCTION

M.V. Bashashin^{1,2}, E.V. Zemlyanaya^{1,2}, Yu. M. Shukrinov^{1,2}, I.R. Rahmonov^{1,4}, P. Kh. Atanasova³, S.A. Panayotova³.

¹Joint Institute for Nuclear Research, Dubna

²Dubna State University, Dubna

³University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria

⁴Umarov Physical and Technical Institute, TAS, Dushanbe, Tajikistan

This work was supported by grants FP17-FMI-008 (Bulgaria), a grant from the JINR-Bulgaria Cooperation Program and grants from the Russian Foundation for Basic Research 17-01-00661, 18-02-00318.

Introduction

- In the superconductor–ferromagnetic–superconductor (SFS) structures, the spin-orbit coupling in ferromagnetic layer without inversion symmetry provides a mechanism for a direct (linear) coupling between the magnetic moment and the superconducting current. Such Josephson junctions are called ϕ_0 -junction. The possibility of controlling the magnetic properties by means of the superconducting current, and as well the effect of magnetic dynamics on the superconducting current attracts an intensive attention.
- Using implicit two-stage Gauss-Legendre method for numerical solution of a respective system of differential equations, one can obtain a detailed pictures representing the intervals of the damping parameter, relation of Josephson to magnetic energy and spin-orbit coupling parameter where the full magnetization reversal occurs.

Theoretical model

The dynamics of the magnetization in ferromagnetic layer in the φ_{σ} Josephson junctions is described by the Landau-Lifshitz-Gilbert equation.

$$\frac{d\vec{m}}{dt} = -\frac{\omega_F}{1 + M\alpha^2} ([\vec{m} \times \vec{H}] + \alpha \vec{m} (\vec{m} \cdot \vec{H}) - \vec{H}), \tag{1}$$

where α is damping parameter, ω_F is normalized frequency of ferromagnetic resonance. Here \vec{H} is effective magnetic field with the components

$$\begin{cases} H_{\chi} = 0 \\ H_{y} = Gr \sin \left(\varphi(t) - rm_{y}(t) \right) \\ H_{z} = m_{z}(t) \end{cases}$$
 (2)

where G – relation of Josephson energy to energy of magnetic anisotropy, r – the spin-orbit coupling parameter, $m_{x,y,z}$ is x,y,z-component of magnetic moment \overrightarrow{m} . Initial conditions:

$$m_{\chi}(0)=0, m_{\chi}(0)=0, m_{Z}(0)=1.$$

Theoretical model

The Josephson phase difference φ can be found using equation

$$\frac{d\varphi}{dt} = \frac{1}{\omega} \left(I_{pulse}(t) - \sin(\varphi - rm_y) \right),\tag{3}$$

where the pulse current is given by

$$I_{pulse} = \begin{cases} A_S, & [t_0 - 1/2\Delta t, t_0 + 1/2\Delta t,] \\ 0 & \text{otherwise} \end{cases}$$
(4)

Here A_s is the amplitude of the pulse current, and Δt is the time interval, in which the pulse current is applied, t_0 is the time point the maximal amplitude.

Thus, the system of equations (1) with effective field (2),(3) and with the pulse current (4) describes the dynamics of the φ_{σ} junction.

Magnetic reversal

Magnetic reversal is an effect when m_z -component of the magnetic field changes the sign and takes the value -1 for a given initial value of +1. The pictures show the time dependence of m_z -component:

 α =0.1, G=15, G=35, G=60, G=70. Magnetic reversal occurs for G=15 and 70.

 α =0.01, G=15, G=30, G=45, G=55. Magnetic reversal occurs for G=15 and 45.

Magnetic reversal

- The simulations have been performed in the time-interval $[0, T_{max}]$ where T_{max} =2000.
- At each pair of values of parameters the magnetic reversal was indicated by means of condition $|m_z+1|<\varepsilon$.

Intervals of complete magnetization reversal at (α, G) -plane. The results are obtained with G-stepsize ΔG =1, α -stepsize $\Delta \alpha$ =0.01 at A_s = 1.5; r = 0.1; t_o =25; Δt = 6; ω_F = 1; h = 0.01.

Intervals of complete magnetization reversal at (r, G)-plane. The results are obtained with G-stepsize $\Delta G = 1$ and r-stepsize $\Delta r = 0.01$ at $A_s = 1.5$; $\alpha = 0.5$; $t_0 = 25$; $\Delta t = 6$; $\omega_F = 1$; h = 0.01.

Parallel implementation

For the numerical solution of the system of equations, the implicit two-step Gauss – Legendre method was used using the method of successive approximations at each time step.

The execution time of a serial C++ program of modeling magnetization reversal in the (r,G)-plane is 28 minutes.

For mass calculations in a wide range of parameter changes, the implementation in C++ using MPI technology for organizing calculations in parallel mode is more effective.

The parallelization process is based on the distribution of the points of the (r,G)-plane between parallel MPI-processes. For the convenience of the MPI-exchange, a new data type was constructed. The values of r,G where the condition $|m_z(T_{max})+1|<\varepsilon$ is satisfied, are saved and then joined in one process for writing to the output file.

The same parallelization scheme was used in case of simulations at the (α, G) -plane.

Parallel implementation

Speedup of calculations depending on the number of MPI-processes.

Calculations performed on HybriLIT platform

This part of the work was done at the expense of the Russian Science Foundation grant No 18-71-10095

Conclusions

- A parallel MPI program has been developed that provides highperformance studies of the spintronics model in a wide range of parameters.
- Maximal speedup of the MPI version is about 30 times.
- In the wide range of parameters of the phase coupling G, dissipation α and spin-orbit coupling r, domains are obtained where the magnetic moment is reversed.
- Periodic structure of the magnetic reversal domains is established. Further analysis in this field is required to explain this phenomenon.

THANKS FOR ATTENTION