Разработка магнитов для ускорителей заряженных частиц и физических установок

Обзорный семинар

(в связи с перевыборами на должность старшего научного сотрудника)

А.С. Ворожцов

List of projects 2013-2018

- Compact Linear Collider (CLIC)
- New H- linear accelerator LINAC 4
- High resolution spectrometer DIRAC
- MedAustron centre for ion-therapy and research
- Proton Synchrotron (PS) transfer line upgrade
- AWAKE- plasma wakefield acceleration
- Watt balance Mark II Experiment
- 3GeV ring upgrade of Synchrotron Light Source, MAX IV Lab
- ATLAS upgrade

Magnets for accelerators

Iron dominated (Dipoles, Quadrupoles, Sextupoles, Combined Function Magnets etc.)

NC Electromagnets

Permanent magnets

Hybrid magnets

Field of expertise:

- Magnet design: 2D/3D FEM modeling, engineering parameters(electric, hydraulic etc.)
- Cost estimate
- Documentation for tender (Technical Specification, Spec. Drawings, Technical questionnaire, etc.)
- Control of the manufacturing process (Contract follow up)
- Acceptance tests / Magnetic measurements

Plasma Wakefield Acceleration Experiment (AWAKE)

The <u>AWAKE collaboration at CERN</u> successfully accelerated electrons for the first time using a wakefield generated by protons zipping through a plasma. The electrons were accelerated by a factor of around 100 over a length of 10 metres: they were externally injected into AWAKE at an energy of around 19 MeV and attained an energy of almost 2 GeV (200 MV/m). Aim is 1 GV/m.

Design & Production follow up

- H/V correctors
- Quadrupole
- Dipole

06/02/2019

А.С. Ворожцов

An example of a magnet design/ follow-up /tests : Quadrupole magnet

Functional specification (requirements and constrains)

- Beam Optics
- Vacuum
- Power Supply
- Alignment /Support / Installation

Units to be produced	11 + (1)	Installed + (spare)
Electron beam energy range	10 - 20	MeV
Full aperture Ø	≥ 70	mm
Integrated field gradient range	0.01(10% margin) – 0.18(20% margin)	Т
Effective length	70	mm
Good field region radius	20	mm
Integrated field gradient quality $\Delta \int Gdz / \int G_{(0,0,z)} dz$	<±40	units
Operational mode	DC	
Overall magnet length	≤ 200	mm
Overall magnet width x height	< 400	mm
Power converter current / voltage	< 10 / < 10	A / V

Electromagnetic design / FEM modeling / preliminary mechanical design

- Aperture R=35 mm, Leff=70 mm \Rightarrow B'(0)=(0.14 2.57) \Rightarrow NI,
- Coil (water / air cooled)=> Copper conductor(VonRoll) => Nw/pole (Current, Voltage)
- Yoke material low Hc(residual field, Bpole(min)=50 Gauss) / (solid / laminated)
- Yoke length

06/02/2019

3D modelling / optimization

3D modelling :

- Integrated field / field gradient
- Pole ends chamfer profile optimization-
- Harmonic analysis(integrated field)
- Magnetic length
- Update of the electrical parameters

А.С. Ворожцов

From Electromagnetic design => Mechanical design / Technical Specification

Main Parameters / Mechanical Tolerances / 3D mechanical model => Specification drawings=> Technical Specification

Parameter	Value	Unit
BASIC		
Number of magnets	12	
Nominal field gradient	2.54	T/m
Aperture diameter	70	mm
FIELD QUALITY (for information only)		
Integrated field gradient range JGdl	0.01-0.18	Т
Magnetic length	71.8	mm
Good field region diameter	40	mm
Integrated gradient homogeneity	< ± 5·10 ⁻⁴	
∆∫Gdl / ∫Gdl		
ELECTRICAL PARAMETERS		
Nominal current I _{nom}	9.3	А
Maximum current I _{max}	10	А
Current density at I _{max}	1.2	A/mm ²
Dissipated DC power at I _{nom}	34	W
Resistance at 20°C	391	mΩ
Inductance	48.1	mH
Voltage on magnet U _{nom} (DC)	3.64	V
COOLING		
Cooling method	Air, natural convection	
DIMENSIONS AND WEIGHT		
Yoke length	40	mm
Overall length	~156	mm
Overall width	~395	mm
Overall height	~342	mm
Total magnet mass	~ 23	kg

Parameter	Value	Unit
Number of coils per magnet	4	
Number of pancakes per coil	1	
Number of turns per coil	138	
Conductor length per coil	~43	m
Conductor size on copper	3.0 × 2.8	mm × mm
Conductor edge rounding radius	0.5	mm
Min. conductor insulation thickness	0.06	mm
Max. conductor size with insulation	3.2 × 3.0	mm × mm
Ground insulation thickness	1.5	mm
Electrical resistance per coil at 20°C	98 ± 1	mΩ

Technical Specification

Contents of the Technical requirements

TECHNICA	AL REQUIREMENTS	7
3.2	Pre-series magnet	8
3.3	Materials (Specific Material Requirements)	9
3.3.1	Copper	9
3.3.2	Glass-fibre tape	10
3.3.3	Epoxy resin	10
3.3.4	Anodized aluminium	10
3.3.5	Bronze CuSn8	10
3.3.6	Bronze CuSn12	10
3.3.7	Plastics and non-metallic materials	10
3.3.8	Cable insulation materials	10
3.4	Yoke manufacture	11
3.4.1	Steel sheet supply	11
3.4.2	Stamping of the laminations	11
3.4.3	Stacking of the yoke quadrants	12
3.4.4	Measurements on the stacked yoke quadrants	12
3.4.5	Identification of the yoke quadrants	13
3.4.6	Pre-assembly of the magnet yoke	13
3.4.7	Pole-end shimming	13
3.4.8	Tests of the pre-assembled magnet yoke	13
3.4.9	Protection of the yoke quadrants	14
3.4.10	Handling, transport and storage of the yoke at the contractor's premises	14
3.5	Excitation coils	15
3.5.1	Coil characteristics	15
3.5.2	Manufacture/Assembly	15
3.5.3	Handling, Transport and Storage	17
3.5.4	Inspection and test requirements	17
3.6	Magnet assembly	18

Technical Specification *Content of the Technical requirements*

3.6.1	Mounting of the coils onto the yoke quadrants	18
3.6.2	Assembling of the magnet	18
3.6.3	Electrical connections	19
3.6.4	Grounding bolt	19
3.6.5	Thermal protection and interlock	19
3.6.6	Alignment system interface	19
3.6.7	Magnet support	19
3.6.8	Lifting interface	19
3.6.9	Protection covers	20
3.6.10	Magnet identification	20
3.6.11	Tests on the complete magnet	20
3.7	List of samples	21
3.7.1	Lamination samples	21
3.7.2	Bond strength samples	21
3.7.3	Insulation samples	21
3.8	Information and Documentation	21
3.8.1	Documentation Format	21
3.8.2	Preliminary Design Report (PDR)	22
3.8.3	Final Design Report (FDR)	22
3.8.4	Fabrication and Test Schedule	22
3.8.5	Subcontractors	22
3.8.6	Quality Control Records (QCR)	22
3.8.7	Drawings	23
3.8.8	Manufacturing File (MF)	23
3.8.9	Information to be provided before starting the magnet manufacturing	23
3.8.10	Non-conformity report (NCR)	24
3.8.11	User's manual	24
3.8.12	Magnet safety sheet	24

Production follow-up Quality Control Record (Coils)

	TESTS BEFORE IMPREGNATION				COIL DIMESIONAL CONTROL BEFORE IMPREGNATION				
No	Test	Approval criteria	Passed / Result	Comment	No	Test	Approval criteria	Passed / Result	Comment
1	No of turns	137 turns	🗹 Yes 🗆 No		1	Dimension A		25.5	
2	Coil dimensional control, see page 2	Dimensions within tolerances	🗹 Yes 🗆 No		2	Dimension B	IMESIONAL CONTROL AFTER IMPREC	55 NATION	
3	Electrical resistance	Measured value at 20 °C	92.8 mΩ		No	Test	Approval criteria	Passed / Result	Comment
	D. 1	Corrected value at 20 °C	92.8mΩ		3	Dimension C	≤ 57 mm	56.85	
4	compared to 1 st coil	Resistance is within $\pm 1\%$ of the 1st coil (93.0 m Ω)	🗹 Yes 🗆 No		4	Dimension D	≤ 120.4 mm	120.3	
5	Coil inductance at Hz		1.419 mH		5	Dimension E	≤ 110.4 mm	110.3	
6	Inter turn insulation test	No signs of short circuit between	🗹 Yes 🗆 No		6	Dimension F	$63.2 \pm 0.1 \text{ mm}$	63.2	
	1250 V peak	TESTS AFTER IMPREGNATION			7	Dimension G	$53.2 \pm 0.1 \text{ mm}$	53.2	
No	Test	Approval criteria	Passed / Result	Comment	8	Symmetry to A		OK	
	Coil serial No	SPMQAWANC01-SD- 07			9	Symmetry to B	= 0.2 B	OK	
-		Correct serial number	🗹 Yes 🗆 No]				
	Coil identification label	Readable	🗹 Yes 🗆 No						А
		Label beneath epoxy	🗹 Yes 🗆 No						
8	Coil dimensional control, see page 2	Dimensions within tolerances	🗹 Yes 🗆 No]				
		Coil free from:			1				
		Voids	🗹 Yes 🗆 No				U U		
9	Visual inspection	Cracks	🗹 Yes 🗆 No						
		Dry spots	🗹 Yes 🗆 No						atta I
		Other defects	🗹 Yes 🗆 No						
10	Electrical resistance	Measured value at 20 °C	<u>92.6</u> mΩ		1	D			
	Desistance at 2000	Corrected value at 20 °C	<u>92.6</u> mΩ		= 0.2			the second second second	
11	compared to 1 st coil	coil (93.0 m Ω)	🗹 Yes 🗆 No			- F	-+ A	1	
12	Thermal cycling test	The coil shows no degradation after thermal cycling (10 repetitions of 70 °C to ambient temperature)	🗆 Yes 💋 No	On 1st coil only				1	
		5 kV DC, I< 5 μA	🗹 Yes 🗆 No						
13	Ground insulation test, coil immersed in tap water	After 0 hours	0.0203 μA				10 miles		
	initiation in the mater	After 8 hour	0.0084 μA				ы		
		5k VAC , one minute	🗹 Yes 🗆 No]				
14	Dielectric test, coil	5kV DC, I< 5 μA	🗹 Yes 🗆 No						
	minerseu in tap water	After 8 hours	0.0035 µA			$\langle \diamond \rangle$			
15	Inter turn insulation test: Capacitor discharge method, 1250 V peak	No signs of short circuit between turns	🗹 Yes 🗆 No		1	\checkmark	= 0.2 B		

06/02/2019

А.С. Ворожцов

Production follow-up Quality Control Record (YOKE)

Na	Test	TES	IS ON PRE-ASS	EMBLE	Passed /	E Result		C (1)	
NO	Test	Ар	proval criteria	1	Positic 2	on No	3	Comment	
1	Inscribed diameter A	70 ±	: 0.05 mm	70.022	70.0	33	70.028		
2	Pole distance B0	25.4	$6 \pm 0.05 \text{ mm}$	25.457	25.4	159	25.450		
3	Pole distance B1	25.4	$6 \pm 0.05 \text{ mm}$	25.482	25.4	77	25.469		
4	Pole distance B2	25.4	$6 \pm 0.05 \text{ mm}$	25.445	25.4	150	25.447		
5	Pole distance B3	25.4	$6 \pm 0.05 \text{ mm}$	25.460	25.4	182	25.467		
6	Yoke length C	40_{-0}^{+0}	^{.5} mm		40.106				
7	Side A		0.03		0.027				
8	Side B		D.2 A		0.198				
	Con between the metting	· · · ·		Gap No					
9	Gap between the matting	< 0.	02 mm	0	1	2	3		
	surfaces of the quadrants			<0.02	<002	<0.02	<0.02		
	TEST	FS AI	TER END CHA	MFERS	MACH	INING			
			Approval		Re	sult			
No	Test		criteria		Yoke qu	adrant N	0	Comment	
			criteria	1-1	1-2	1-3	1-4		
1	End chamfer dimension Sid	e A	$6 \times 6 \pm 0.025 \text{ mm}$	5.977	5.978	5.987	6.004		
2	End chamfer dimension Sid	e B 0.05 CZ A		0.001	0	0.011	0.003		
3	End chamfers offset Side A		± 0.025 mm	0.016					
4	End chamfers offset Side B		± 0.025 mm	0.015					

	surface B
	40
	O Y
surface	
	BB

No	TEST	Approval criteria/		Passed / Result				
	TEST	value	Quadrant No: 1-1	Quadrant No: 1-2	Quadrant No: 1-3	Quadrant No: 1-4	Comment	
1	Dimension AA	115 mm	115	115	115	115		
2	Dimension BB	115 mm	115	115	115	115		
3	Surface (Side A)	0.02	0.01	0.01	0.01	0.01		
4	Surface (Cide A1)	// 0.1 A	0.01	0.01	0.01	0.01		
5	Surface (Side A1)	1 0.1 B C	0.01	0	0.02	0.01		
6	Surface B	10.04 A	0	0.02	0.03	0.03		
7	Surface C	10.04 A B	0.01	0.01	0.01	0.01		
8	Pole surface from X to Y	0.04 A B A-B	0	0	0.01	0		
9	Packing Factor	> 97%	95.5%	95.5%	95.5%	95.5%		
10	Packing Factor with respect to the nominal value:(PF of the 1 st stack)	$95.5~\% \pm 0.2\%$	🗆 Yes 🗆 No	🗹 Yes 🗆 No	🗹 Yes 🗆 No	🗹 Yes 🗆 No		
		105	POINT No	POINT No	POINT No	POINT No		
11	Yoke length L	$40^{+0.5}_{-0}$ mm	1 2 3 4 40.103 40.102 40.095 40.107	1 2 3 4 40.100 40.106 40.100 40.106	1 2 3 4 40.099 40.092 40.107 40.096	1 2 3 4 40.091 40.088 40.097 40.097		
12	Yoke length with respect to the length of the 1 st yoke quadrant	$\pm 0.1 \text{ mm}$	□ Yes □ No	🗹 Yes 🗆 No	🗹 Yes 🗆 No	🗹 Yes 🗆 No		

Production follow-up Quality Control Record (MAGNET)

Description:		Quadrupole serial No: SPMQAWANAP-SD-0000 1 Yoke quadrants serial No:						
AWA	AWAKE SPSMOAAWA0001			1-1	1-2	1-3	1-4	
quad	Irupole	51 551 QAA WA0001			Coils seria	No:		
	SPN		SPMQA	WANC01-SD- 07	SPMQAWANC01-SD- 09 SP	MQAWANC01-SD- 18	SPMQAWANC01-SD- 19	
Docu	ment pre	mared by:	Date:	Docum	ent approved by:	Date:	Revision No	
MR GIN	ESTET	parea oy:	12/12/20	016	an approved oy.		iterision ite	
No		Test		Арр	roval criteria	Passed / Rest	ult Comment	
1	Visual	inspection	1	No faults or the magnet	damage on any part o	f 🗹 Yes 🗆 N	No	
2	Magne	et data plate	1	Plate present		🗆 Yes 💋 N	No Atlanta proposition CERN	
3	Diment to Qua Dimen	nsional control accordir adrupole Yoke nsional Control templa	ig ite	Dimensions	within tolerances	🗆 Yes 💋 N	No cat america cua - 2m	
4	Magne	et resistance	1	Measured va Corrected va	lue at <u>14</u> °C lue at 20 °C	<u>363.344</u> m 371.9 m	nΩ nΩ	
	Magne	et resistance at 20°C ared to the sum of the	1	Magnet resis the sum of co	tance is within 2% of bil resistances	🗹 Yes 🗆 N	No	
5	resista	nces of the coils No:		Sum of coil r	resistances at 20°C	<u>370.8</u> n	nΩ	
	07,	09 , 18 , 19	1	Magnet resis	tance at 20°C	<u>371.9</u> n	nΩ	
6	Magne	et inductance at 50 Hz				40.192 n	nH	
7	Magne the no of the	et inductance compared minal value (inductand pre-series magnet)	to ce	Inductance is nominal valu	within ±2% of the e	🗆 Yes 💋	No aimant prototype	
8	Coils-	to-yoke insulation test		5 kV DC for measured val	two minutes, I< 5 µA	Ø Yes □ 1	No uA	
9	Tempo on the	coil surface	nt 1	At Inon=9.3 A temperature	A, until a stable is reached (~ 1 hour)	T _{Ambient} = 20 T _{Coil Surface} = 37.6 Time = 3 hou	°C 10A Ir	
10	Therm	to switch test	i	After temper increase curr thermal swite	ature rise measurement ent slowly until ches switch off	$\begin{array}{c} T_{TS1}{=}\;61 \ ^{\circ}C\\ T_{TS2}{=}\;61 \ ^{\circ}C\\ T_{TS3}{=}\;61 \ ^{\circ}C\\ T_{TS4}{=}\;61 \ ^{\circ}C\end{array}$	±1°	

Compact Linear Collider (CLIC)

Compact Linear Collider (CLIC) -electron-positron linear collider project.

Max. energy - 3 TeV. Accelerating gradient of 100 MV/m.

Two-beam acceleration concept: the 12 GHz RF power is generated by (Drive Beam).

Drive Beam is decelerated in special Power Extraction and Transfer Structures (PETS), generated RF power is transferred to the Main Beam.

More than 60'000 "warm" magnets of 100 different types

The biggest families : MBQ – 4'000 units DBQ - 40'000 units

Compact Linear Collider (CLIC)

Design/Production of the following magnet prototypes

- Main Beam Quadrupole(Electromagnet)
- Drive Beam Quadrupole(Electromagnet)
- Final Focusing Quadrupole (Hybrid)

Preliminary design / cost estimate of all warm magnets "Magnets Catalogue"

- Main Beam Quadrupole (200 T/m, ø=10 mm, GL= 70/170/270/370 T, Max. yoke length 2 m)
- Drive beam Quadrupole (Gmax=81.2 T/m, ø=26 mm, GL=1.2 T 12 T)

CLIC Final Focusing Quadrupole QD0

In order to produce a useful interaction rate with the maximum centre-of-mass energy, extremely small transverse beam dimensions at the collision point are required. This can be achieved with a final focus optics based on very strong magnetic quadrupoles. The most important focusing element is the last quadrupole (QD0) before the interaction point. This quadrupole shall be capable of producing a very strong field gradient to provide the required vertical beam size in the interaction point.

TABLE I REQU	UIREMENTS FO	r the Final	FOCUS QU	UADRUPOLE
--------------	--------------	-------------	----------	-----------

CLIC Final Focusing Quadrupole QD0

"Halbach" type Super Strong "Halbach" type + CoFe poles CoFe "Permendur" -Fixed grad. value only PM R=3.8 [mm] (no R=4.125 [mm] chamber) Grad=2*Br*(1/Ri-1/Rf), (*Ri= 4.125mm*) Material Sm_2Co_1 Nd_2Fe_{14} Sm_2Co_{17} Nd₂Fe₁ Grad(Rfinal), Rini=4.125 [mm] B ₄B 7 70**0** 35 650 600 Grad [T/m] 450 593 409 540 550 "Halbach" 500 Gradient [T/m] 450 400 Grad [T/m] "Super 564 678 512 615 350 300 Strong" 250 200 - SmCo5, Br=0.865[T 150 Sm2Co17, Br=1.1[T] 100 - Nd2Fe14B, Br=1.4[7 50 0 5 10 15 20 25 30 35 40 45 55 65 0 50 60 70 Rfinal [mm]

CLIC Final Focusing Quadrupole QD0

Electromagnet

CLIC Final Focusing Quadrupole QD0 <u>Hybrid magnet</u>

- A conventional iron dominated quadrupole is at the basis
- Rare earth permanent magnet material placed between the iron poles.
- The magnetic flux due to the permanent magnets is directed to cancel the part of flux produced by the coils which does not contribute to the field gradient in the magnet aperture
- Reduces the saturation effects in the iron pole
- Max. field gradient ~ 35 % larger than in a conventional quadrupole.

Hybrid QD0 Final version

The presence of the "ring" decrease slightly the Grad (by 15-20 T/m) but will assure a more precise and stiff assembly

100 mm Prototype QD0

In order to verify the conceptual design, tolerances on integrated field strength and to study the assembling procedure, a prototype model with full-scale cross-section, working at nominal conditions, but with much shorter yoke length of 100 mm has been built. The hybrid quadrupole prototype needs four permanent magnet assemblies of 100 mm length; each consists of four permanent blocks of 50 mm length glued together. The permanent magnets blocks made of VACOMAX 225HR (Sm_2Co_{17}) and VACODYM 655HR ($Nd_2Fe_{14}B$) were supplied by Vacuumschmelze, Germany. The permendur part of the quadrupole structure was machined by wire EDM to a tolerance of ± 25 µm. The selected material for this part was VACOFLUX 50 by Vacuumschmelze.

06/02/2019

А.С. Ворожцов

Results of the magnetic measurements on QD0 proto

LINAC 4

As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H⁻ linear accelerator, Linac4, to replace the ageing Linac2 as injector to the PS Booster.

H/V corrector field quality optimization

10% Tunable permanent magnet

High resolution spectrometer for DIRAC

THE one of the aim of the DIRAC experiment is the observation of the long-lived $\pi^+\pi^-$ atoms, using the proton beam of the CERN Proton Synchrotron. The dipole magnet will be used to identify the long-lived atoms on the high level background of $\pi^+\pi^-$ pairs produced simultaneously with $\pi^+\pi^-$ atoms.

New PM Dipole BL=2 mTm based on Sm2Co17

Table 1: Requirements for the dipole magnet						
Parameter	Units					
Overall length	mm	< 66				
Overall width × height	mm × mm	170 × 130				
Yoke length	mm	< 60				
Horizontal full aperture	mm	60				
Integrated field strength $\int B_{\times(0,0,Z)} dz$	T×m	0.02				
Good Field Region(GFR) X \times Y	mm × mm	20 × 30				
Integrated field quality $\Delta {\int} B_{\times} dz / {\int} B_{\times (0,0,Z)} dz$ inside GFR	%	< ± 2				

Reference:

Design, manufacture and measurements of permanent dipole magnets for DIRAC, DIRAC-NOTE-2013-04 <u>https://cds.cern.ch/record/1622178?ln=sv</u>. Vorozhtsov, A (Dubna, JINR) ; Buzio, M (CERN) ; Kasaei, S (Inst. Stud. Theor. Phys. Math, Iran) ; Solodko, E (Dubna, JINR) ; Thonet, P A (CERN) ; Tommasini, D (CERN)

06/02/2019

PM Dipole Sm2Co17

MedAustron - centre for ion-therapy and research

The centre comprises an accelerator facility based on a synchrotron, for the delivery of protons and light ions to irradiation stations, for cancer treatment and for clinical and non-clinical research. The accelerator complex consists of the injector with ion sources and an ion linac that will accelerate particles up to the synchrotron injection energy of 7 MeV/u. This is followed by a synchrotron capable of accelerating particles to the planned extraction energy, ranging from 60 MeV to 250 MeV for protons and 120 MeV/u to 400 MeV/u for carbon ions, suitable for the medical application.

EM design / Production follow up / 2D and 3D modelling, Coupled EM / Stress analysis

- H/V corrector MCX-B
- Scanning magnets MSH/V-E
- Main Synchrotron Dipole MBH-C (final design)
- High Energy Beam Transfer Line (MBH-E)
- 90° dipole MBV-F
- Betatron Core
- Gantry magnets (quadrupoles, 58° dipole)

06/02/2019

А.С. Ворожцов

Watt balance Mark II Experiment

Watt balance: establish a link between electrical and mechanical quantities via power equivalencestatic phase / weighing modedynamic phase / velocity mode

Using the expressions from quantum physics (QHE & JVS)

$$U = C_J \cdot U_J = C_J n_J \frac{h}{2e} f_J$$

$$R = C_H \cdot R_H = C_H \frac{h}{n_H e^2}$$

$$m = C \frac{f_{J1} f_{J2}}{g v} h$$

$$C = \frac{C_{J1} n_{J1} C_{J2} n_{J2} n_H}{4C_H}$$

courtesy of Blaise Jeanneret (METAS)

06/02/2019

А.С. Ворожцов

Watt balance Mark II Experiment

- 1. Permanent magnet (SmCoGd)
- 2. Coil (Cu) 3. External cylinder (Fe)
- 4. Top cover (Fe)
- 5. Pole (Fe)
- 6. Bottom cover (Fe)
- 7. Centering cylinder (Brass)
- 8. Saturable shunt (Fe-Ni)

•Sm2Co17Gd

Br=0.83 T, HcB=622 kA/m temperature coefficient $\alpha \approx -0.001\%$ / °C •The yoke - low carbon steel AISI 1010

•saturable shunt Ni30%Fe alloy, Curie temperature of 55 °C.

06/02/2019

ATLAS detector

- Calculation of the field perturbation due to the magnetic materials => Field reconstruction
- Protection(shielding) of the equipment, sensitive to the magnetic field

0003 0003

жкэ

0000

-200010

• Prepare the LS2 (2019), JD disc / Small Wheel upgrade /New HUB

Total field on JD surface & JD forces

06/02/2019

А.С. Ворожцов

References

- Design, manufacture and measurements of permanent dipole magnets for DIRAC CERN-DIRAC-NOTE-2013-04 Vorozhtsov, A (Dubna, JINR); Buzio, M (CERN); Kasaei, S (Inst. Stud. Theor. Phys. Math, Iran); Solodko, E (Dubna, JINR); Thonet, P A (CERN); Tommasini, D (CERN), 2013
- Design of Normal-Conducting Quadrupole Magnets for Linac4 at CERN Vanherpe, L. ; Crettiez, O. ; Vorozhtsov, A. ; Zickler, T., IEEE transactions on applied superconductivity, ISSN:1051-8223, eISSN:1558-2515, Изд:IEEE / Institute of Electrical and Electronics Engineers Incorporated, VOL. 24, NO. 3, JUNE 2014
- Performances of the Main Beam Quadrupole Type1 Prototypes for CLIC
 M. Modena, A. Bartalesi, J. Garcia Perez, R. Leuxe, G. Perrin-Bonnet, C. Petrone, M. Struik, and A. Vorozhtsov, IEEE transactions on applied superconductivity, ISSN:1051-8223, eISSN:1558-2515, Изд:IEEE / Institute of Electrical and Electronics Engineers Incorporated, VOL. 24, NO. 3, JUNE 2014
- The Ultra-Stable Magnet of the Mark II Experiment
 D. Tommasini, H. Baumann, A. Eichenberger, and A. Vorozhtsov, IEEE transactions on applied superconductivity ISSN:1051-8223, eISSN:1558-2515, Изд:IEEE / Institute of Electrical and Electronics Engineers Incorporated, VOL. 26, NO. 4, JUNE 2016
- Status of the proton and electron transfer lines for the AWAKE Experiment at CERN
 J.S. Schmidt, J. Bauche, B. Biskup, C. Bracco, S. Doebert, B. Goddard, E. Gschwendtner, L.K. Jensen, O.R. Jones, S. Mazzoni, M. Meddahi, K. Pepitone, A. Petrenko, F.M. Velotti, A. Vorozhtsov, Nuclear Instruments and Methods in Physics Research A, Volume 829, September 2016, Pages 58-62
- 6. Design and Manufacture of a Main Beam Quadrupole Model for CLIC . Alexey Vorozhtsov and Michele Modena. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 22, NO. 3, JUNE 2012
- 7. Design and Manufacture of a Hybrid Final Focus Quadrupole Model for CLIC Alexey Vorozhtsov, Michele Modena, and Davide Tommasini.
- 8. 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources (FLS2018), Shanghai, China, 5 9 March, 2018. Design Study of the High Gradient Magnets for a Future Diffraction Limited Light Source at MAX IV, A.S. Vorozhtsov P.F. Tavares, 2018

Extra slides

High gradient magnets for the synchrotron light source MAX IV

3 GeV ring lattice: 20 achromats, "magnet block"

courtesy of M. Johansson

06/02/2019

А.С. Ворожцов

3 GeV ring upgrade

Existing lattice: 7-bend achromat:

- Achromat length = 26.4 m
- Ring circumference = 26.4 x 20 = 528 m

[1] Future Development Plans for the MAX IV Light Source: pushing further towards higher brightness and coherence. Pedro Fernandes Tavares, Johan Bengtsson and Åke Andersson. MAV IV Laboratory, Sweden

"Magnet block" concept 3 GeV Ring

- The main structural parts of the magnet blocks are the yoke bottom and yoke top halves. Material: Armco low carbon steel.
- Gradient dipole pole, quad. and corrector pole roots machined out of the block, pole tips mounted over the coil ends.
- 6pole and 8pole magnet halves mounted into guiding slots in yoke block.
- Half-yoke cross section = 350 x 128 mm
- Lengths = ~ 2.3 m (M1, M2), ~ 2.4 m (U1- U5), ~ 3.4 m (U3)
- Weights(half block) = ~450 kg (M1, M2), ~490 kg (U1,...), ~620kg (U3)
- Magnet aperture= Ø25 mm, total power consumption ~300 kW.

courtesy of M. Johansson

3 GeV ring magnets for the new lattice

А.С. Ворожцов

Matching cell:

Quadrupole	Magnetic Length [m]	Gradient [T/m]	Pole Tip Field [T]
QF	0.075	219	1.2
QM	0.15	183	1
QFE	0.1	234	1.29
QDE	0.1	-198	1.1
Sextupole	Magnetic Length [m]	Gradient [T/m ²]	Pole Tip Field [T] Rbore=5.5 mm
SF	0.1	33592	1
SD	0.1	19729	0.6

Gradient Dipole	Magnetic Length [m]	Bending angle	B ₀ [T]	G [T/m]
Unit cell	0.3333	1°	0.52	-70.1
Matching cell	0.16667	0.5°	0.52	-30

QFE quadrupole

Requirements and constrains

- Magnet aperture $\emptyset \ge 11 \text{ mm}$
- Field gradient = 234 T/m
- Pole field= 1.29 T (Max. value for the conventional quadrupole 1 T ÷ 1.1 T)
- Magnetic length =100 mm
- Tuning range: ± 3 %
- Good field region Ø= 6 mm
- Integrated Grad. Homogeneity $\Delta \int Gdz / \int Gdz$: < (± few units of 10⁻⁴)
- Overall magnet height × width: ≤ (256 × 350 existing magnet block dimensions)
- The top half-yoke shall be easy to demount to allow the installation of the vacuum chamber
- "Magnet block" concept similar to the existing MAX IV R3 ring

06/02/2019

QFE

magnet design options

× "Halbach " type Permanent Magnet Quadrupole

- Strength adjustment : Mechanical (double ring, etc.)
- Closed ring structure: issue with the synchrotron light extraction
- Not applicable for the "Magnet Block" concept

✓ Conventional electromagnet

 \checkmark Hybrid (Combination of the permanent magnet and trim coils)

Conventional electromagnet

Pressure drop

Temperature rise

Bar

Κ

1.6 8

Conventional electromagnet

06/02/2019

Electromagnet with Sm₂Co₁₇ inserts

06/02/2019

А.С. Ворожцов

Electromagnet with the Sm₂Co₁₇ inserts

•

- Reduce the saturation of the Pole tip &
 Pole root & Return yoke: give a possibility to decrease the overall dimensions of the magnet.
- Not efficient for CoFe Pole tip @234 T/m, but extend the linear part of the excitation curve, possible to achieve the higher level of the gradient
- Significant improvement for 1010 pole, but CoFe solution gives better result even without PM inserts
- Cost of the CoFe raw material ≤ cost of the Sm₂Co₁₇ PM blocks / magnet

					AISI 1010+PM(1	AISI 1010+PM(2	
Pole material&Configuration	CoFe	CoFe+PM(1side)	CoFe+PM(2 sides)	AISI 1010	side)	sides)	units
Number of turns / coil	21	21	21	21	21	21	
Nominal current I _{nom} @234 T/m	140	137	136	210	156	148	А
Current density @ I _{nom}	4.64	4.52	4.50	6.96	5.16	4.88	A/mm ²
Total power consumption	358	341	336	805	442	396	W
Magnet efficiency η	96.4	96.7	96.8	64	86	90.1	%

Pole profile study / Field quality

Harm. # Profile #1 Profile #2 2D Integrated 2D Integrated 0.05 0.02 0.03 0.1 4 -3.4 (pole chamfer required) 0.34 6 1.35 -2.5 10 -0.61 -0.6 -5.04 -4.7

Normal relative field components b_n [10⁻⁴] @R3 mm

5 mm - Min. vertical gap (Existing MAX IV R3 magnets)

- Profile #1 (V gap= 4.3 mm)
- ---- Profile #2 (V gap=5 mm)

QFE magnet design (Hybrid magnet)

QFE Hybrid magnet 2D & 3D modelling

Permanent magnet blocks at each end of the poles to

PM imperfections:

Direction of magnetization error ± 3%: 1.

The effect on a field quality / strength is negligible

Br & HcB variations from typical to min. values $Br(1.12 T \leftrightarrow 1.09 T)$, HcB (844 kA/m T \leftrightarrow 1. 820 kA/m):

Field strength variation of ± 1.5 % (25 % of the trim coils capability)

QFE Magnet design

Magnet type	Pros	Cons
Pure electromag net	 Less complicated manufacturing / assembly 	Large power consumption (running cost)Vibration induced by the water cooling
Hybrid magnet	 Low power consumption Compact solution ? 	 Assembly difficulties (magnetic forces) assuming the magnet block concept Large capital cost (permanent magnet material)

PS BOOSTER TL DIPOLE

<u>PSB-PS transfer line upgrade => proton beam to be transferred</u>

<u>at 1.4 GeV and 2 GeV</u>

The existing BTM.BHZ10 dipole:

- C-type, straight, bending magnet
- Total weight: 18 tonnes (<u>Crane capacity 10 tonnes</u>)
- Overall length: ~2760 mm
- Operates in PPM mode, energy range from 1 GeV to 1.4 GeV
- Conclusion on existing magnet:

unable to provide the required field strength new coils required unable to provide the required field quality of ±5 units in the field range from 1.0 T to 1.5 T

NEW magnet(Curved, H-type(2 half-yokes < 10 Tonnes each)

Units to be produced	$1 \pm (2 \text{ coils})$	Installed +
		(spare)
Bending angle A _{bend}	0.3499 (20.0478)	rad (degree)
Proton beam energy range	1.4 - 2.0	GeV
Beam rigidity B·ρ	7.144 / 9.288	T∙m
Integrated magnetic field BL _{nom}	2.5 ¹ / 3.25 ²	T∙m
Operational mode	$I_0 \leftrightarrow I_{nom}$ (ramp time=0.5 s)	
Operational mode	/ DC	
Full aperture height	≥ 98	mm
Overall magnet length	≤ 2781	mm
Crane capacity	< 10'000	kg

^[1] Corresponds to 1.4 GeV protons

^[2] Corresponds to 2.0 GeV protons

PS BOOSTER TL DIPOLE Pole profile

Excitation current [A]

2D model (Grain oriented steel)

Model #1.3 : 10 regions (0, 5,10,20,35,45,55,7	70,75,90 deg)
--	---------------

	Ву(0,	0) [T]	Errors	[units]
1 [4]	Model #1 Model #1.3		Model #1	Model #1.3
I [A]	Non GO steel	GO steel	Non GO steel	GO steel
640	1.0810	1.0786	± 1	± 1.25
850	1.4240	1.4300	± 6	± 2.1
900	1.5009	1.5100	± 10	± 5

06/02/2019

А.С. Ворожцов

Simplified straight 3D model

- To study and optimize the integrated field homogeneity
- To define the magnetic length and respectively the bending radius of the magnet

Avial note profile	L _{mag} [mm] at I=640	L _{mag} [mm] at I=846	ΔL_{mag} [mm]
	А	А	
Sharp edge	2393.6	2363.2	30.4
Chamfer 75 mm ×45 ^o	2315.5	2304.2	11.3
Rogowski profile	2305.6	2302.9	2.7
Arc R82, Aspan=65 ^o	2305.3	2302.5	2.7

Curved 3D model Field mapping & integrated field homogeneity=>Final design

