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f Vorticitical motion of nuclear matter
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Fig. from Becattini, et al., PRC 95, 54902 (2017)
Vortical motion: & = (1/2)V x V = Vorticity
Relativistic Kinematic Vorticity
1
Wy = E(E),,uu — Ouly)

where u,, = collective local 4-velocity of the matter
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Observation of vorticitical motion

This global polarization is analog of P
Barnett effect (1915):
magnetization by rotation

a fraction of orbital momentum of = ¥
body rotation is transformed into = * -
spin angular momentum

_l

Reverse effect:

1o
S e
Einstein-de Haas effect (1915): \L‘:‘Q i
@ rotation by magnetization 3
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@ Vorticity induces alignment of particle spin along its direction



% Global A and A polarization

Vorticity . . .
@ Due to parity violating weak decays
BLTP JINR

20.03.2019 N—p+r andA — p+n,
A and A hyperons are self-analyzing

p (p) direction is associated with A (A) spin in its rest frame

dN
dcos0*

x means A’s rest frame, ax = 0.642 is A’s decay constant

Polarization

= %(1 + apP}j cos6%)

— R

= ® Au+Au 20-50%

~—8r U * A this study =
e ® X this study

I % A PRC76 024915 (2007)

6 O X PRC76 024915 (2007) |

Global A and A polarization was ,_ il

@ measured by STAR collaboration
[Nature 548, 62 (2017)] 2 ## QH% % 1

10 10?
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Thermodynamic approach to A polarization

Relativistic Thermal Vorticity

1 N ~
Wy = é(auﬁu - 8/1,Bu)7

where 3, = hB, and 8, = u,/T with T = the local temperature.
w is dimensionless.

w is related to mean spin vector, MN*(p), of a spin 1/2 particle
in a relativistic fluid [F. Becattini, et al., Annals Phys. 338, 32 (2013)]

1 e QTR et~ 0F) poc 70,

B(p) —
i (p) 8m fZ Z)\p)‘ ne

where ng is the Fermi-Dirac-Juttner distribution function,
the integration runs over the freeze-out hypersurface X.



% Results of thermodynamic A(A) polarization
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Global A polarization is consistent
with our understanding of
collision dynamics

However

Problem with A polarization at 7.7
GeV, if any

There are other approaches
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Polarization due to axial vortical effect

Relativistic Kinematic Vorticity = w,,,, =

%(&,Uu — Oply)

u, = collective local 4-velocity of the matter,

is relevant to the axial vortical effect

[O. Rogachevsky, A. Sorin and O. Teryaev, Phys. Rev. C 82, 054910 (2010)]

T2 ‘
strange axial current = Jgg = Nc/d3x < ps + H) Py, 050,

€

polarization = (M") = <N ) N >
APy

s = chemical potential of s-quark, T = temperature,
K = a variable parameter,

py = N’'s momentum transverse to reaction plane

Aut Au, c=(20-50)%

* A Data STAR

=115
k=10

* A Data STAR
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Sy, GeV

M. Baznat, K. Gudima, A. Sorin and O. Teryaev,

Phys. Rev. C 97, no. 4, 041902 (2018)
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Walecka-like spin-orbital interaction

L. P. Csernai, J. |. Kapusta and T. Welle, Phys. Rev. C 99, no. 2, 021901 (2019)
@ Nuclear spin-orbit interaction as it is in Walecka model
@ No real simulations — just an idea

@ Applied to explain the difference in polarizations of A’s
and A’'s measured by STAR
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3FD Model

3FD

Three-Fluid Dynamics (3FD)

3FD model based on
the thermodynamic approach

o STAR polarization was
also reproduces A polarization

measured in midrapidity region

PROJECTILE

-
o

Au+Au (b=8 fm) midrapidity
8 [— crossover Eos| |
t-- 1PT EoS
N * ASTAR
n_«. 4 N * X STAR
2 e
c4 6 8 1b 20 40
Vsxn[GeV] Au+Au at b = 8 fm, crossover EoS
Prediction: ol total __|
Polarization is even higher — +  _— ==
at NICA/FAIR energies £ === participants
10% E
Why polarization decreases with \/Syn
while angular momentum increases? 1075 5 > = 2
Vs [GeV]

Further discussion is within the 3FD model
Y. B. Ivanov, V. N. Russkikh and V. D. Toneeyv, Phys. Rev. C 73, 044904 (2006)


yivanov
Oval

yivanov
Line


% 3FD Equations of Motion

Vorticity

target projectile

SOLBZsz Produced particles
populate mid-rapidity
= fireball fluid

fireball

distribution function

momentum along beam

-li id: H Hy
Target-like fluid: Oudy =0 OuTy™ =—Fp+ Ff
Leading particles carry bar. charge exchange/emission

H fla2li id- [ py
Projectile-like fluid: 9, J, =0, Oulp =—Fg + Fp
H - [ [ L =y Y v v v
Fireball fluid: ~ J/ =0, 0. T =Fiy + Fy—Fr, — F,

Baryon-free fluid Source term  Exchange
The source term is delayed due to a formation time =

Total energy-momentum conservation:
Ou(THy + T +T/")=0
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Baryon current: Energy-momentum tensor:
ij:nauéf Tguz(gaﬁLPa)Ugng*guVPa
n, = baryon density of a-fluid £qo = energy density

uly = 4-velocity of a-fluid P, = pressure

+ Equation of state:

P =P(n,e)
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Physical Input

@ Equation of State
crossover EoS and 1st-order-phase-transition (1PT) EoS

[Khvorostukhin, Skokov, Redlich, Toneeyv, (2006)]

@ Friction
calculated in hadronic phase (Satarov, SUNP 1990)

fitted to reproduce the baryon stopping in QGP phase

@ Freeze-out
When system becomes dilute, hydro has to be stopped

Freeze-out energy density ¢4, = 0.4 GeV/fm?®

Below we consider Au+Au collisions



ﬂ vorticity in reaction plane at /syy = 7.7 GeV

Vorticity
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fluid unification measure = 1 — (n, + np)/ne [= 0 if p and t fluids are unified]



M observations
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o Vorticity reaches peak values at the £, H’
articipant- el
p pant-spectator border i
» -4 2 0
z [fm]
@ the vorticity in the participant bulk gradually dissolves in
oy the course of time

@ Conclusion: relative polarization of A hyperons should
be higher in the fragmentation regions than in the
midrapidity region

D (_~ Projectile
_—
o g

R '
JTarget vortex ring

Ring-like structure in
@ fragmentation regions




M Midrapidity and Total Polarization
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Au+Au atb =8fm

N * ASTAR

= = 1st-order-tr. EoS|

<P[%]

- * X
. STAR
3FD vorticity 2 N i
0 3 —

10 ‘
midrapidity (a)
8 [— crossover Eos
.
.

total
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with the energy /sy rise
@ the vorticity is stronger pushed out

to the fragmentation regions

the vorticity in the midrapidity
dissolves even more

(a) therefore, the midrapidity
polarization decreases

(b) while the total polarization
increases

this increase is because of stronger
polarization in fragmentation regions

votex rings in fragmentation regions
become more pronounced



% \Votex rings
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3FD vorticity

kinematic zx vorticity [c/fm]
10 1fmlc

thermal zx vorticity
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s =35 t—z

longitudinal space-time rapidity

Central (b = 2 fm) Au+Au
at \/syv = 39 GeV

at high energies

strong votex rings are formed
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even in central collisions

because of transparency
of colliding nuclei



3 Summary
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Summary

@ Particle polarization gives us access to hew degrees
of freedom in heavy-ion collisions

@ Global A polarization is consistent with our
understanding of collision dynamics

@ Prediction: the A polarization should be stronger at
peripheral rapidities corresponding to the
participant-spectator border, than that in the midrapidity
region

@ Prediction: at high collision energies, strong votex
rings are formed in fragmentation regions



Vorticity |

CHACMBO
3A BHUMAHWE

mmmmmmm




	Vorticity
	Polarization
	3-Fluid Dynamics (3FD) 
	3FD Equations of Motion
	Physical Input
	3FD vorticity

	Summary

