

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Model

3FD Phys. Input 3FD vorticity

Summary

Vorticity and Particle Polarization in Relativistic Heavy-Ion Collisions

Multi-Fluid Dynamics

Yuri B. Ivanov, V. D. Toneev, A. A. Soldatov BLTP JINR/MEPhI/Kurchatov Institute

"Finite and infinite Fermi systems", 20-22 March 2019, JINR BLTP

Vorticitical motion of nuclear matter

Vorticity

BITP JINB 20.03.2019

Vorticity

Relativistic nuclear collision

Large angular momentum

Vortical motion: $\vec{\omega} = (1/2)\vec{\nabla} \times \vec{v}$ = Vorticity

Relativistic Kinematic Vorticity

$$\omega_{\mu\nu} = \frac{1}{2} (\partial_{\nu} u_{\mu} - \partial_{\mu} u_{\nu})$$

where u_{μ} = collective local 4-velocity of the matter

Observation of vorticitical motion

Vorticity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Mode 3FD Phys. Input

Phys. Input 3FD vorticity

Summary

• Vorticity induces alignment of particle spin along its direction

This global polarization is analog of Barnett effect (1915): magnetization by rotation

a fraction of orbital momentum of body rotation is transformed into spin angular momentum

Reverse effect: Einstein-de Haas effect (1915):

rotation by magnetization

Global \wedge and $\overline{\wedge}$ polarization

Vorticity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Model

3FD Phys. Input 3FD vorticity

Summary

• Due to parity violating weak decays $\Lambda \longrightarrow p + \pi^-$ and $\bar{\Lambda} \longrightarrow \bar{p} + \pi^+$,

Λ and $\bar{\Lambda}$ hyperons are self-analyzing

 $p(\bar{p})$ direction is associated with $\Lambda(\bar{\Lambda})$ spin in its rest frame

$$\frac{dN}{d\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\Lambda} \mathbf{P}^*_{\Lambda} \cos\theta^*)$$

* means Λ 's rest frame, $\alpha_{\Lambda} = 0.642$ is Λ 's decay constant

 Global Λ and Λ polarization was
measured by STAR collaboration [Nature 548, 62 (2017)]

Thermodynamic approach to A polarization

Vorticity

BLTP JINR 20.03.2019

Relativistic Thermal Vorticity

Vorticity

Polarization

3FD Model

3FD Phys. Input 3FD vorticity

where
$$\hat{\beta}_{\mu} = \hbar \beta_{\mu}$$
 and $\beta_{\mu} = u_{\nu}/T$ with T = the local temperature ϖ is dimensionless.

 $\varpi_{\mu\nu} = \frac{1}{2} (\partial_{\nu} \hat{\beta}_{\mu} - \partial_{\mu} \hat{\beta}_{\nu}),$

Summary

 ϖ is related to **mean spin vector**, $\Pi^{\mu}(p)$, of a spin 1/2 particle in a relativistic fluid [F. Becattini, et al., Annals Phys. **338**, 32 (2013)]

$$\Pi^{\mu}(\boldsymbol{p}) = \frac{1}{8m} \frac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} \boldsymbol{p}^{\lambda} n_{F} (1 - n_{F}) \, \boldsymbol{p}_{\sigma} \epsilon^{\mu\nu\rho\sigma} \partial_{\nu} \beta_{\rho}}{\int_{\Sigma} \Sigma_{\lambda} \boldsymbol{p}^{\lambda} \, n_{F}},$$

where n_F is the Fermi-Dirac-Juttner distribution function, the integration runs over the freeze-out hypersurface Σ .

Results of thermodynamic $\Lambda(\overline{\Lambda})$ **polarization**

Vorticity

BITP JINB 20.03.2019

Vorticity

Polarization

3ED

Summary

PHSD Model

AMPT model

F Kolomeitsev, F D. X. Wei, W. T. Deng V Toneev D and and X. G. Huang, Phys. V. Voronyuk, Phys. Rev. C Rev. C 99, no. 1. 97. no. 6. 064902 (2018) 014905 (2019)

Global Λ polarization is consistent with our understanding of collision dynamics

Au+Au, 20-50%

However

AMPT primary + feed-dos

- Problem with $\overline{\Lambda}$ polarization at 7.7 GeV, if any
- There are other approaches

Polarization due to axial vortical effect

Vorticity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Model

3FD Phys. Input 3FD vorticity

Summary

 $u_{\mu} =$ collective local 4-velocity of the matter,

is relevant to the axial vortical effect

[O. Rogachevsky, A. Sorin and O. Teryaev, Phys. Rev. C 82, 054910 (2010)]

 μ_s = chemical potential of s-quark, T = temperature,

 κ = a variable parameter,

 $p_y = \Lambda$'s momentum transverse to reaction plane

M. Baznat, K. Gudima, A. Sorin and O. Teryaev,

s_{NN}^{1/2}, GeV

50 60

Phys. Rev. C 97, no. 4, 041902 (2018)

20

Walecka-like spin-orbital interaction

Vorticity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Mode 3FD Phys. Input 3FD vorticity

Summary

L. P. Csernai, J. I. Kapusta and T. Welle, Phys. Rev. C 99, no. 2, 021901 (2019)

- Nuclear spin-orbit interaction as it is in Walecka model
- No real simulations just an idea
- Applied to explain the difference in polarizations of Λ 's and $\bar{\Lambda}$'s measured by STAR

just an estimate

Three-Fluid Dynamics (3FD)

Vorticity

BLTP JINR 20.03.2019

Vorticity

3FD Model 3ED

Summary

Polarization is even higher

at NICA/FAIR energies

Prediction:

STAR polarization was measured in **midrapidity** region

Further discussion is within the 3FD model

while angular momentum increases?

Y. B. Ivanov, V. N. Russkikh and V. D. Toneev, Phys. Rev. C 73, 044904 (2006)

3FD Equations of Motion

Total energy-momentum conservation: $\partial_{\mu}(T_{\rho}^{\mu\nu} + T_{t}^{\mu\nu} + T_{t}^{\mu\nu}) = 0$

BITP JINB 20.03.2019

Baryon current:

Vorticity

3ED

Phys. Input Summary

$J^{\mu}_{\alpha} = n_{\alpha} u^{\mu}_{\alpha}$

 n_{α} = baryon density of α -fluid

 u^{μ}_{α} = 4-velocity of α -fluid

Energy-momentum tensor:

 $T^{\mu\nu}_{\alpha} = (\varepsilon_{\alpha} + P_{\alpha}) u^{\mu}_{\alpha} u^{\nu}_{\alpha} - g_{\mu\nu} P_{\alpha}$ ε_{α} = energy density P_{α} = pressure

+ Equation of state:

 $P = P(n,\varepsilon)$

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Model

3FD Phys. Input

Summary

• Equation of State

crossover EoS and 1st-order-phase-transition (1PT) EoS [Khvorostukhin, Skokov, Redlich, Toneev, (2006)]

Friction

calculated in hadronic phase (Satarov, SJNP 1990) fitted to reproduce the baryon stopping in QGP phase

Freeze-out

When system becomes dilute, hydro has to be stopped

Freeze-out energy density $\varepsilon_{frz} = 0.4 \text{ GeV/fm}^3$

Below we consider Au+Au collisions

vorticity in reaction plane at $\sqrt{s_{NN}} =$ 7.7 GeV

Vorticity

fluid unification measure = $1 - (n_p + n_p)/n_B$ [= 0 if p and t fluids are unified]

Vorticity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Mode 3FD Phys. Input 3FD vorticity

Summary

Vorticity reaches peak values at the participant-spectator border

- the vorticity in the participant bulk gradually dissolves in the course of time
- Conclusion: relative polarization of Λ hyperons should be higher in the fragmentation regions than in the midrapidity region

Ring-like structure in

fragmentation regions

Midrapidity and Total Polarization

Vorticity

with the energy $\sqrt{s_{\rm NN}}$ rise

- the vorticity is stronger pushed out to the fragmentation regions
- the vorticity in the midrapidity dissolves even more
- (a) therefore, the midrapidity polarization decreases
- (b) while the total polarization increases
- this increase is because of stronger polarization in fragmentation regions
- votex rings in fragmentation regions become more pronounced

Votex rings

Central (b = 2 fm) Au+Au at $\sqrt{s_{NN}} = 39$ GeV

at high energies strong votex rings are formed

longitudinal space-time rapidity

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Mode 3FD Phys. Input 3FD vorticity

Summary

- Particle polarization gives us access to new degrees of freedom in heavy-ion collisions
- Global A polarization is consistent with our understanding of collision dynamics
- Prediction: the \land polarization should be stronger at peripheral rapidities corresponding to the participant-spectator border, than that in the midrapidity region
- Prediction: at high collision energies, strong votex rings are formed in fragmentation regions

BLTP JINR 20.03.2019

Vorticity

Polarization

3FD Model 3FD Phys. Input 3FD vorticity

Summary

ThankСПАСИБОЗА ВНИМАНИЕfor attention