ROLE OF GRAVITATION IN ELEMENTARY PARTICLE STRUCTURE

S. I. Manaenkov

NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute International Workshop INFINUM Dubna, March 20-22, 2019

Contents

- Gravitation and Particle Physics
- Reissner-Nordström Solution
- Uniform Coordinates
- Tetrad Representation for Gravitational Field
- Action for Gravitational and Electromagnetic Fields
- Superpotential and Total Energy-Momentum Pseudo-Tensor
- Classical Electron
- Discussion of Results
- Conclusions

Gravitation and Particle Physics

• Ratio of electrostatic and gravitational forces for two electrons

$$\frac{\mathcal{F}_{el}}{\mathcal{F}_{gr}} = \frac{e^2}{R^2} / \frac{km_e^2}{R^2} = \frac{e^2}{km_e^2} = 4.2 \cdot 10^{42}; \ \frac{e}{\sqrt{km_e}} = 2.05 \cdot 10^{21}$$

where $e = 4.8 \cdot 10^{-10}$ esu, $m_e = 9.11 \cdot 10^{-28}$ g, $k = 6.67 \cdot 10^{-8}$ cm³ g⁻¹ c⁻².

- The gravitation field does not play any role in the elementary particle structure! Nevertheless this statement could be wrong.
- Infinite electromagnetic mass of the electron

$$m_{em} = \frac{1}{c^2} \int \frac{\vec{E}^2}{8\pi} dV = \frac{1}{c^2} \int \frac{e^2}{8\pi R^4} 4\pi R^2 dR,$$

$$m_{em} c^2 = \int_{r_{cl}/2}^{\infty} \frac{e^2 dR}{2R^2} = \frac{e^2}{r_{cl}} = \frac{m_e c^2}{r_{cl}},$$

where $r_{el} = 2.8 \cdot 10^{-13}$ cm is the classical electron radius.

• Gravitational interaction in Newtonian physics

$$\begin{aligned} dU_{gr} &= -\frac{kdm_1dm_2}{R_{12}} = -\frac{e^4k}{(8\pi)^2c^4R_{12}}\frac{dV_1dV_2}{R_1^4} < 0. \\ U_{gr}/\mathcal{E}_{em} &\sim -r_e^2/R_c^2, & \text{where } r_e^2 = ke^2/c^4, r_e = 1.4 \cdot 10^{-34} \text{ cm.} \\ \end{aligned}$$

Gravitation can play important role in classic physics at $r \sim r_e$.

Reissner-Nordström (Reissner, Weyl, Nordström, Jeffery) Solution

• Gravitational field equations $R_{k}^{i} - \frac{1}{2}\delta_{k}^{i}R = \frac{8\pi k}{c^{4}}T_{k}^{i}, \quad T_{k}^{i} = \frac{1}{4\pi} \Big\{ -F^{il}F_{kl} + \frac{1}{4}\delta_{k}^{i}F_{lm}F^{lm} \Big\}.$ Reissner-Nordström (RN) solution Spherical coordinates: $(x^0, x^1, x^2, x^3) = (ct, r, \theta, \varphi)$ $F^{10} = -F^{01} = F_{10} = -F_{01} = E_r = \frac{e}{r^2},$ $T^{0}_{(em)0} = T^{1}_{(em)1} = -T^{2}_{(em)2} = -T^{3}_{(em)3} = \frac{e^{2}}{8\pi r^{4}}, \quad T^{j}_{(em)j} = 0.$ $g_{00} = 1/g^{00} = \Lambda \equiv 1 - \frac{2km}{c^2r} + \frac{ke^2}{c^4r^2} = 1 - \frac{r_g}{r} + \frac{(r_e)^2}{r^2},$ $r_g = \frac{2km}{c^2} = 1.35 \cdot 10^{-55} \text{cm}, \ R_{Pl} = \sqrt{\frac{\hbar k}{c^3}} = 1.6 \cdot 10^{-33} \text{cm},$ $r_e^2 = \frac{ke^2}{c^4}, \ r_e = 1.38 \cdot 10^{-34} \text{cm}, \ r_e \gg r_g, \ \mathsf{R}_{Pl} \gg r_e.$ $g_{rr} \equiv g_{11} = 1/g^{11} = -1/\Lambda = -\left[1 - \frac{2km}{c^2r} + \frac{ke^2}{c^4r^2}\right]^{-1},$ $g_{\theta\theta} \equiv g_{22} = 1/g^{22} = -r^2, \ g_{\varphi\varphi} = g_{33} = 1/g^{33} = -r^2 \sin^2 \theta.$ $ds^2 = \Lambda (dx^0)^2 - dr^2 / \Lambda - r^2 [d\theta^2 + \sin^2 \theta d\varphi^2]$

• Relation between radii r and ρ ($r \ge 0$, $\rho \ge \rho_{min}$) $r = \rho \mathcal{D}(\rho),$ $\mathcal{D}(\rho) = 1 + \frac{r_g}{2\rho} - \frac{r_0^2}{4\rho^2} \equiv \left[1 + \frac{r_g}{4\rho}\right]^2 - \frac{r_e^2}{4\rho^2},$ $\mathcal{N}(\rho) \equiv \frac{dr}{d\rho} = 1 + \frac{r_0^2}{4\rho^2} > 0, \ r_0^2 = r_e^2 - r_a^2/4.$ • Uniform coordinates $(\rho^0, \rho^1, \rho^2, \rho^3) = (ct, \rho_x, \rho_y, \rho_z)$ $\rho_x = \rho \sin \theta \cos \varphi, \quad \rho_y = \rho \sin \theta \sin \varphi, \quad \rho_z = \rho \cos \theta.$ • Spacetime interval for Reissner-Nordström (RN) solution $ds^2 = q_{ik} d\rho^i d\rho^k g_{00} = \frac{N^2}{D^2}, \ g_{\mu\mu} = -D^2, \mu = x, y, z.$ $= \frac{\mathcal{N}^2}{\mathcal{D}^2} (d\rho^0)^2 - \mathcal{D}^2 (d\rho_x^2 + d\rho_y^2 + d\rho_z^2).$ $\mathcal{D}(\rho) = 0, \ \rho = \rho_{min} = r_e/2 - r_q/4.$

Tetrad Representation for Gravitational Field

Definition of tetrads

Basis of four unit mutually orthogonal four-vectors $h_{(a)}^i$ defined in every point of spacetime;

a = 0, 1, 2, 3 is the counting number of the vector $h_{(a)}^i$,

 $i=0,\ 1,\ 2,\ 3$ denotes the spacetime component of the vector $h^i_{(a)}$: 0 - ct, 1 - x, 2 - y, 3 - z.

$$\begin{split} h_{(a)i} &= g_{ik} h_{(a)}^k, \quad h_{(a)}^i = g^{ik} h_{(a)k}, \quad h_{(a)i} h_{(b)}^i = \eta_{ab} \\ h^{(a)i} &= \eta^{ab} h_{(b)}^i, \quad h_{(a)}^i = \eta_{ab} h^{(b)i}, \\ \eta^{ab} &= \eta_{ab} = \text{diag}(1, -1, -1, -1). \end{split}$$

• Main properties of tetrads

$$\begin{aligned} h_{(a)i}h_k^{(a)} &= g_{ik}, \ h_{(a)}^i h^{(a)k} = g^{ik}. \\ g &\equiv \det[g_{ik}] = -|\mathbf{h}|^2, \ |\mathbf{h}| = \det[\mathbf{h}_{(a)i}]. \end{aligned}$$

Tetrad Representation for Gravitational Field

• Tetrads for Reissner-Nordström solution

Nonzero components of tetrad four-vectors $h_{(a) i}$ are:

$$\begin{split} h_{(0)0} &= \frac{\mathcal{N}}{\mathcal{D}}, \ h_{(1)1} = h_{(2)2} = h_{(3)3} = \mathcal{D}, \\ h_{(0)}^0 &= \frac{\mathcal{D}}{\mathcal{N}}, \ h_{(1)}^1 = h_{(2)}^2 = h_{(3)}^3 = -1/\mathcal{D}. \\ g_{ik} &= h_{(a)i}h_k^{(a)}, \ g_{00} = \frac{\mathcal{N}^2}{\mathcal{D}^2}, \ g_{xx} = g_{yy} = g_{zz} = -\mathcal{D}^2, \\ g_{ik} &= 0 \text{ if } i \neq k, \ |h| \equiv \det[\mathbf{h}_{(a)i}] = \mathcal{N}\mathcal{D}^2. \end{split}$$

• RN tetrads obey Euler-Lagrange equation

$$\frac{\partial \mathcal{L}_{tot}}{\partial h_p^{(c)}} = \frac{\partial}{\partial \rho^q} \left\{ \frac{\partial \mathcal{L}_{tot}}{\partial h_{p,q}^{(c)}} \right\}, \quad \text{where } h_{p,q}^{(c)} = \frac{\partial h_p^{(c)}}{\partial \rho^q}.$$

- Lagrangian density for gravitation field Einstein's theory: $\mathcal{L}_g = -\frac{R\sqrt{-g}}{2\kappa}, \ \kappa = \frac{8\pi k}{c^4}$. Since $R = -\kappa T^s_{(em)s} = 0$ the Hilbert-Einstein action $S_g = \frac{1}{c} \int \mathcal{L}_g d^4 x = 0$ if there are gravitational and electromagnetic fields only.
- Lagrangian density of electromagnetic field
 Electromagnetic field action

 $S_{em} = \frac{1}{c} \int \mathcal{L}_{em} d^4 x = -\frac{1}{16\pi c} \int F_{ik} F^{ik} \sqrt{-g} d^4 x.$ For Reissner-Nordström solution, $L_{em} = \frac{1}{8\pi} \int \vec{E}^2 dV = \infty, \quad S_{em} = \int L_{em} dt = \infty.$ The total action $S_{tot} = S_g + S_{em}$ is meaningless for RN solution in Einstein's theory.

- Lagrangian density \mathcal{L}_g in tetrad representation Møller's formula: $\mathcal{L}_g = \frac{|h|}{2\kappa} \left(h_{(a);l}^k h_{;k}^{(a)l} - h_{(a);k}^k h_{;l}^{(a)l} \right).$
- Total Lagrangian density $\mathcal{L}_{tot} = \mathcal{L}_g + \mathcal{L}_{em}$ for RN solution $\mathcal{L}_{tot} = \frac{r_0^2}{\kappa \rho^4}, \quad r_0^2 = r_e^2 - r_g^2/4, \quad r_e^2 = \frac{ke^2}{c^4}, \quad r_g = \frac{2km}{c^2}, \quad \kappa = \frac{8\pi k}{c^4}.$
- Total Lagrangian and action for RN solution

$$L_{tot} = \int_{\rho \ge \rho_{min}} \mathcal{L}_{tot} d^3 \rho = 4\pi \frac{r_0^2}{\kappa \rho_{min}}, \quad \rho_{min} = r_e/2 - r_g/4.$$

$$L_{tot} = \frac{|e|c^2}{\sqrt{k}} + mc^2, \quad S_{tot} = \left(\frac{|e|c^2}{\sqrt{k}} + mc^2\right)t.$$

Total Lagrangian and action are finite for RN solution in tetrad representation in spite of singularities of electromagnetic and gravitational fields at $\rho = \rho_{min} > 0$ (r = 0).

Superpotential and Total Energy-Momentum Pseudo-Tensor

- Total energy-momentum pseudo-tensor and superpotential $\mathcal{T}_i^k = \frac{\partial U_i^{\ kl}}{\partial o^l},$ $\mathsf{P}_i = \frac{1}{c} \int_V \mathcal{T}_i^0 d^3 \rho = \frac{1}{c} \int_\Sigma U_i^{0\lambda} k_\lambda d\sigma.$ $U_i^{kl} = \frac{|h|}{\kappa} \Big\{ h_{(a)}^k h_{;i}^{(a)l} + \Big(\delta_i^k h^{(a)l} - \delta_i^l h^{(a)k} \Big) h_{(a);s}^s \Big\}.$ (Møller) Superpotential for Reissner-Nordström solution $U_0^{\ 0\lambda} = -2\left(\frac{\rho^{\lambda}}{\kappa\rho}\right) \frac{\mathcal{N}(\rho)\mathcal{D}'(\rho)}{\mathcal{D}(\rho)}, \text{ where } \mathcal{D}'(\rho) \equiv \frac{d\mathcal{D}}{d\rho}(\rho)$ $U_{\mu}^{\ \mu\lambda} = \left(\frac{\rho_{\lambda}}{\kappa\rho}\right) \mathcal{N}', \quad \mathcal{N}' \equiv \frac{d\mathcal{N}}{d\rho}(\rho).$ Superpotential $U_0^{0\lambda}$ is infinite at $\rho = \rho_{min}$ since $\mathcal{D}(\rho) = 0$, hence expression for energy becomes meaningless for
 - $\rho_{min} > 0.$

Classical Electron

• Special case $r_0 = 0$ $\mathcal{D}(\rho) = 1 + \frac{r_g}{2\rho}, \ \mathcal{N} \equiv 1, \ \mathcal{N}' \equiv \frac{d\mathcal{N}}{d\rho}(\rho) \equiv 0.$ $r_e = r_g/2, \ \ \rho_{min} = 0, \ \ m = |e|/\sqrt{k} = m_{cl}.$ For $m = m_{cl}$, nonzero components of superpotential are $U_0^{\ 0\lambda} = \frac{m_{cl}c^2}{4\pi} \frac{n_\lambda}{\rho^2(1+r_c/\rho)}$, where $n_\lambda = \rho_\lambda/\rho$. $U_\mu^{\ \mu\lambda} = \frac{n_\lambda}{\kappa} \mathcal{N}' \equiv 0$. • Consequence for the energy-momentum pseudo-tensor $\mathcal{T}_{0}^{0} = \frac{\partial U_{0}^{0\lambda}}{\partial c^{\lambda}} = \frac{km_{cl}^{2}c^{2}}{4\pi} \frac{1}{c^{4}(1+r_{c}/c)^{2}} = \frac{e^{2}}{4\pi} \frac{1}{c^{2}(c+r_{c})^{2}}.$ $\mathcal{E} = \int_0^\infty \mathcal{T}_0^0 4\pi \rho^2 d\rho = \int_0^\infty \frac{e^2 dr}{(\rho + r_e)^2} = \frac{e^2}{r_e} = \frac{e^2}{\sqrt{ke^2}/c^2} = m_{cl}c^2.$ The integral is convergent. $\mathcal{E} \equiv m_{in}c^2 = \sqrt{\frac{e^2}{k}c^2}$. The stress-tensor $\mathcal{T}^{\mu}_{\lambda}$ is zero identically. There is no pressure of any part of electron on others.

Classical Electron

• Asymptotic behaviour at $\rho \to \infty$ $g_{00} \approx 1 - \frac{2km_{gr}}{c^2\rho}$. For RN solution $g_{00} = \frac{N^2}{D^2} \approx 1 - \frac{2km}{c^2\rho}$, therefore $m = m_{gr}$. • Equivalence principle

For $m = m_{cl}$ the mass m is the total inertial mass m_{in} of the electromegnetic and gravitation fields.

Since $m_{in} = m = m_{gr}$, then due to equivalence principle, there is no need in the contribution of a point-like particle with a bare mass $m_b > 0$ to the total inertial mass.

The classical electron is the system of the electromagnetic and gravitational fields having a singularity.

The total mass is $m_{cl} = |e|/\sqrt{k} = 1.86 \cdot 10^{-6}$ g, if the electric charge is chosen equal to $e = -4.8 \cdot 10^{-10}$ esu.

Lagrangian and lagrangian density

 $L_{tot} = 2m_{cl}c^2, \mathcal{L}_{tot} = 0.$ Paradox: $L_{tot} = \int \mathcal{L}_{tot} d^3 \rho.$

• Internal geometry

The distance between points with $\rho = \rho_1$ and $\rho = \rho_2$ is $l_{12} = \int_{\rho_1}^{\rho_2} \mathcal{D}(\rho) d\rho = \int_{\rho_1}^{\rho_2} d\rho (1 + r_e/\rho) = \rho_2 - \rho_1 + r_e \ln \left[\frac{\rho_2}{\rho_1}\right].$ For $\rho_1 \to 0$ $l_{12} \to \infty$.

The distance between any point with $\rho > 0$ and the singular point ($\rho = 0$) is infinite.

• Surface charge density Since $r = \rho + r_e$, the sphere of radius r_e corresponds to the point with $\rho = 0$. Surface area is $S = 4\pi r_e^2$. Surface charge density $\sigma = \frac{e}{4\pi r_e^2} = \frac{c^4}{4\pi ek}$.

 Contribution of gravitation to inertial mass Switch off gravitation: k = 0, $r_e = \frac{\sqrt{ke^2}}{c^2} = 0$, $\mathcal{T}_0^0 = \frac{e^2}{4\pi} \frac{1}{c^4}$. The total inertial mass is infinite Switch on gravitation: k > 0, $r_e > 0$. $\mathcal{T}_0^0 = \frac{e^2}{4\pi} \frac{1}{\rho^2(\rho + r_e)^2}, \ \mathcal{E} = \int \mathcal{T}_0^0 d^3 \rho = m_{cl} c^2 < \infty.$ The total inertial mass is finite and equal to the gravitational mass of the system of the electromagnetic and gravitational fields only. No contribution of point-charge. Classical electron is a black hole

 $r_g = 2r_e$, $r = \rho + r_e$, $g_{00} = \Lambda = (1 - \frac{r_e}{r})^2$. Sphere with $r = r_e$ is the event horizon ($g_{00} = 0$). The external observer cannot get any information from the region with $r < r_e$.

- Quantum effects: they start from Compton wavelength $\lambda_C = \hbar/(m_e c) \approx 3.9 \cdot 10^{-13} \text{ cm} \gg r_e = 1.4 \cdot 10^{-34} \text{ cm}.$ Divergence of self-energy graph in QED is $\int dr/r$, while the integral for energy in classical electrodynamics (CE) is divergent as $\int dr/r^2$ at small distances. The fractional contribution of gravitation to the inertial
 - mass of the electron in QED can be much less than in CE.
- Spin of electron: system of an electric charge and magnetic dipole can have the angular momentum $s=\hbar/2$.
- Leptons and quarks: It is not excluded that leptons are localized systems of the electromagnetic, weak-boson, and gravitational fields, while quarks are systems of the gluon, electromagnetic, weak-boson, and gravitational fields.

Conclusions

- Classical electron is a system of electromagnetic and gravitational fields localized in a space region of a range $r_e \sim 10^{-34}$ cm. It is described with the Reissner-Nordström solution in the tetrad representation with parameters e and m related with equation $m = \sqrt{e^2/k}$ where e is the experimental electrical charge of the electron.
- The total Lagrangian density of this system and action are finite for the tetrad representation.
- The total inertial mass of the electromagnetic and gravitational fields is equal to $\sqrt{e^2/k}$. It is equal to the gravitational mass of the classical electron.
- There is no need in an additional point-like particle having the charge *e* and any bare mass since the equivalence principle for the classical electron is fulfilled.
- There is no pressure of any part of electron on others. There is no need in non-electromagnetic and non-gravitational forces preventing the classical electron disintegration.

• Scalar curvature in tetrad representation

$$\begin{split} h_{(a)k;l;m} - h_{(a)k;m;l} &= h_{(a)s} R^{s}_{klm}, \\ R^{i}_{klm} &= h^{(a)i}(h_{(a)k;l;m} - h_{(a)k;m;l}), \\ R_{km} &= R^{i}_{kim} = h^{(a)i}(h_{(a)k;i;m} - h_{(a)k;m;i}), \\ R &= R^{m}_{m} = h^{(a)i}(h^{m}_{(a);i;m} - h^{m}_{(a);m;i}) = \\ (h^{(a)i}h^{m}_{(a);i})_{;m} - (h^{(a)i}h^{m}_{(a);m})_{;i} - h^{(a)i}_{;m}h^{m}_{(a);i} + h^{(a)i}_{;i}h^{m}_{(a);m}. \\ \text{Lagrangian density of gravitation field} \\ \mathcal{L}_{g} &= -\frac{R\sqrt{-g}}{2\kappa} = \frac{\sqrt{-g}}{2\kappa}(h^{(a)i}_{;m}h^{m}_{(a);i} - h^{(a)i}_{;i}h^{m}_{(a);m}) + \frac{\partial W^{i}}{\partial x^{i}} \\ \text{Since for any four-vector } B^{i} \sqrt{-g}B^{i}_{;i} = \frac{\partial(\sqrt{-g}B^{i})}{\partial x^{i}}, \\ \text{then } \sqrt{-g}(h^{(a)i}h^{m}_{(a);i})_{;m} = \frac{\partial(\sqrt{-g}(h^{(a)i}h^{m}_{(a);m}))}{\partial x^{i}}, \\ \sqrt{-g}(h^{(a)i}h^{m}_{(a);m})_{;i} = \frac{\partial(\sqrt{-g}(h^{(a)i}h^{m}_{(a);m})}{\partial x^{i}}. \end{split}$$

• Lagrangian density for gravitation field

Therefore
$$W^{i} = \frac{1}{2\kappa} [\sqrt{-g} (h^{(a)i} h^{m}_{(a);m} - h^{(a)m} h^{i}_{(a);m})]$$

= $\frac{\sqrt{-g}}{\kappa} h^{(a)i} h^{m}_{(a);m}$.

- Arbitrariness of tetrad choice
 - $$\begin{split} g_{ik} &= \eta_{ab} h_i^{(a)} h_k^{(b)}, \ \tilde{g}_{ik} = \eta_{ab} \tilde{h}_i^{(a)} \tilde{h}_k^{(b)}, \\ \tilde{h}_i^{(a)} &= M_c^a h_i^{(c)}, \ \tilde{g}_{ik} = \eta_{ab} M_c^a h_i^{(c)} M_g^b h_k^{(g)}. \\ \text{If } \eta_{ab} M_c^a M_g^b &= \eta_{cg}, \text{ then } \tilde{g}_{ik} = g_{ik}. \\ M_c^a \text{ is matrix of Lorentz transformations (six parameters).} \\ \text{If tetrad } h_i^{(a)} \text{ obeys Euler-Lagrange equations it is unique.} \end{split}$$