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I. Physical content1.1 Aims and terminology
• The PHDOM was initially formulated to describe in a semi-microscopic way together the structure and damping of a greatvariety of high-energy (p-h)-type excitations (including giantresonances (GRs)) in medium-heavy closed-shell nuclei.
• The term “PHDOM” appears in view of similarity of microscopically-based formulations of the PHDOM and single-quasiparticle dispersiveoptical model (SQDOM). Both models are formulated in terms of theenergy-averaged s-q and p-h Fermi-system Green functions (GFs),which obey, respectively, to the Dyson- and Bethe-Goldstone-typeequations, having the respective self-energy term (U., PRC`13, EPJWoC`18)



1.2 Relaxation modes
Within the model the main relaxation modes of mentioned excitationsare together taken into account. These modes are:
i. distribution of the p-h strength, or Landau damping (aresult of shell structure of nuclei);
ii. coupling (p-h)-type states to the single-particle (s-p)continuum (nuclei are open Fermi-systems);
iii. coupling (p-h)-type states to many-quasiparticle (chaotic)configurations, or the spreading effect (high excitation energy).



1.3 Physical content
• The PHDOM is a semi-microscopic model, in which Landau dampingand coupling (p-h)-type states to the s-p continuum are describedmicroscopically (in terms of a mean field and p-h interactionresponsible for long-range correlations), while the spreading effect istreated phenomenologically and in average over the energy (in termsof the specific p-h interaction, or the respective p-h self-energy term).
• The PHDOM can be called as “the model of interacting independentlydamping quasiparticles”.



1.4 Unique features
The unique features of the PHDOM are concerned with its ability todescribe:
i. the energy-averaged double transition density and, therefore,various strength functions at arbitrary (but high-enough) excitationenergy;
ii. direct one-nucleon decays of (p-h)-type states, including the direct+ semi-direct (DSD) reactions induced by a s-p external field;
iii. the spreading (dispersive) shift of the energy of resonance-likestructures related to (p-h)-type states.



II. Lines of formulation (schematically)2.1 Continuum-RPA
• The PHDOM is a microscopically-based extension of the continuum-RPA (cRPA) versions on taking into account the spreading effect. Thestandard cRPA version (Shlomo, Bertsch, NPA`75) is formulated interms the p-h Green function (GF), 𝐴𝑐𝑅𝑃𝐴(𝑥, 𝑥′, 𝜔) (𝜔 is theexcitation energy), which obeys the Bethe-Goldstone-type equationand determines the strength function, 𝑆𝑐𝑅𝑃𝐴𝑉0 𝜔 , related to a s-p
external field 𝑉0(𝑥):
𝐴𝑐𝑅𝑃𝐴 =  𝐴𝑐𝑅𝑃𝐴0   + 𝐴𝑐𝑅𝑃𝐴0 𝐹𝐴𝑐𝑅𝑃𝐴;𝑆𝑐𝑅𝑃𝐴𝑉0 𝜔 = − 1

𝜋 Im 𝑉+0 𝐴𝑐𝑅𝑃𝐴𝑉0 .
Here, 𝐴𝑐𝑅𝑃𝐴0 is the free propagator, 𝐹(𝑥, 𝑥′) is the p-h interactionresponsible for long-range correlations (e.g. for formation of GRs).



• Formulation of 𝐴𝑐𝑅𝑃𝐴0 in terms of GFs of the s-p Schrodinger equation
allows one to take exactly the s-p continuum into account. The non-standard cRPA version (U., NPA`08) is formulated in terms of the effective
field 𝑉(𝑥, 𝜔), which is defined by the integral relationship, 𝐴𝑐𝑅𝑃𝐴𝑉0   =𝐴𝑐𝑅𝑃𝐴0 𝑉, and obeys the well-known integral equation:

𝑉  =  𝑉0   +  𝐹𝐴𝑐𝑅𝑃𝐴0 𝑉.
• In the continuum region, the strength function can be expressed in termsof the squared DSD-reaction amplitudes, or partial one-nucleon-escapestrength functions:

𝑆𝑐𝑅𝑃𝐴𝑉0 = − 1
𝜋 Im 𝑉+𝐴𝑐𝑅𝑃𝐴  𝑉 =∑𝑐 𝑀𝐷𝑆𝐷,𝑐𝑅𝑃𝐴𝑉0,𝑐

2 ≡∑𝑐 𝑆𝑐𝑅𝑃𝐴,↑𝑉0,𝑐 .
The amplitudes are proportional to the effective-field matrix elements takenbetween the bound and continuum s-p states (𝑐 is the set of decay-channelquantum numbers).



2.2 Discrete PHDOM version
• Similarly to the ordinary (single-quasiparticle) optical model(formulated by energy averaging the Dyson equation for the single-quasiparticle GF), the PHDOM is formulated by energy averaging theBethe-Goldstone-type equation for the (generally, non-local) p-h GF𝐴(𝑥, 𝑥1 , 𝑥′, 𝑥′1 ,𝜔). Along with the interaction 𝐹(𝑥, 𝑥′), the equationfor 𝐴 contains a specific p-h interaction (the energy-averaged p-hself-energy term Π(𝑥, 𝑥1 , 𝑥′, 𝑥′1 ,𝜔) responsible for the spreadingeffect):

𝐴  =  𝐴0   +  𝐴0𝐹𝐴;    𝐴0   =  𝐴𝑅𝑃𝐴0   + 𝐴𝑅𝑃𝐴0 Π𝐴0.
Here, the auxiliary quantity 𝐴0 is the “free” p-h propagator.



The phenomenological quantity Π is properly parameterized to satisfy thestatistical assumption: after energy averaging different p-h configurations(with the same quantum numbers) are “decaying” into chaotic statesindependently of one another. In such a case, the equation for thepropagator 𝐴0 (which corresponds to the model non-interactingindependently damping quasiparticles) can be approximately solved. Using amean-field discrete basis (s-p energies 𝜖𝜆, wave functions 𝜙𝜆) one gets theexpression for the 𝐴0 expansion elements in a closed form:
𝐴0,𝜆𝜇 𝜔 = 𝑛𝜆−𝑛𝜇

𝜖𝜆−𝜖𝜇−𝜔+ 𝑛𝜆−𝑛𝜇 𝑖𝑊 𝜔 −𝑃 𝜔 𝑓𝜆𝑓𝜇 .
Here, 𝑛𝜆,𝜇 are the occupation numbers, 𝑊(𝜔) and 𝑃(𝜔) are respectivelyimaginary and real parts of the strength of the energy-averaged p-h self-energy term, 𝑓𝜆  is the diagonal matrix element of the Woods-Saxon function𝑓(𝑥).



Being taken in the local limit, i.e. 𝐴0(𝑥, 𝑥′,𝜔)  = 𝐴0 𝑥 = 𝑥1 ,𝑥′ = 𝑥′1 , 𝜔 , the “free” p-h propagator
𝐴0 𝑥,𝑥′,𝜔 =∑𝜆𝜇 𝐴0,𝜆𝜇 𝜔 𝜙∗𝜇 𝑥 𝜙𝜆 𝑥 𝜙∗𝜆(𝑥′)𝜙𝜇(𝑥′)

is the key quantity of the discrete PHDOM version.



2.3 Continuum PHDOM version
The continuum PHDOM version (the basic one) follows from theapproximate transformation of the “free” p-h propagator to the form,in which the GFs of the Schrodinger equations, having the addition tothe mean field −𝑖𝑊 𝜔 + 𝑃 𝜔 𝑓𝜈𝑓(𝑥) (𝜈  = 𝜇, 𝜆), are used. (Withinthe cRPA, i.e. in neglecting the spreading effect, this transformation isexact). One from these equations determines also the continuum-statewave functions 𝜙 ±𝜖 =𝜖𝜇+𝜔 > 0(𝑥). In such a way, there appears an
effective optical-model potential, whose imaginary part was found (e.g., from the description of the total width of various GRs) is noticeablyless, than the imaginary part of the “ordinary” OM potential taken atthe corresponding energy. 𝑊 𝜔 is a specific (phenomenological)quantity of the model



2.4 Dispersive relationship
The dispersive relationship, which determines 𝑃(𝜔) via 𝑊(𝜔), isobtained after energy averaging the spectral expansion of the p-h self-energy term. This expansion is similar to that of the 2p-2h GF. (2p-2hconfigurations are the doorway-states for the spreading effect).
The simplest version of the dispersive relationship
𝑃 𝜔 = 2

𝜋 𝑃.𝑉. ∫∞0 𝑊 𝜔′ 𝜔′
𝜔2−𝜔′2 + 1

𝜔′ 𝑑𝜔′
is adopted to satisfy the condition: 𝑃 𝜔 → 0 → 0.
In current implementations of the PHDOM, a more sophisticatedversion of the dispersive relationship is used.



2.5 Main PHDOM equations
Most of the main PHDOM equations, namely, the equations for theenergy-averaged p-h GF 𝐴(𝑥, 𝑥′, 𝜔), the strength function 𝑆𝑉0(𝜔), theeffective field 𝑉(𝑥, 𝜔) look similar to the respective cRPA equations (p.2.1) after the substitution:

𝐴𝑐𝑅𝑃𝐴0 𝑥,𝑥′,𝜔 → 𝐴0 𝑥,𝑥′,𝜔 .
The difference is concerned with the double transition density

𝜌 𝑥,𝑥′,𝜔 = − 1
𝜋 Im𝐴 𝑥,𝑥′,𝜔 .

Due to taking the spreading effect into account, this quantity can't befactorized in terms of one-body transition density. (The latter can't bedefined).



Since existing computer codes for calculation of the inelastic hadron-nucleus scattering accompanied by excitation of a given GR exploit onlyone-body transition density, we suggest using for these codes therespective “projected” density:
𝜌𝑔 𝑥,𝜔 = ∫𝜌 𝑥,𝑥′,𝜔 𝑉0,𝑔 𝑥′ 𝑑𝑥′𝑆−1/2𝑉0,𝑔 , 𝑆𝑉0,𝑔 = (𝑉+0,𝑔𝜌𝑔)2.

Here, 𝑉0,𝑔 - specific for excitation of a given GR the external field.



The squared amplitude of the one-nucleon DSD reaction induced by as-p external field 𝑉0(𝑥) and accompanied by excitation of one-holestate 𝜇−1 of the product nucleus is expressed in terms of the effectivefield (U., PRC`13; Gorelik et al., NPA`18)
𝑀𝐷𝑆𝐷𝑉0,𝑐 (𝜔) 2 = 𝑛𝜇 𝜙 − ∗𝜖=𝜖𝜇+𝜔𝑉 𝜔 𝜙𝜇 𝜙∗𝜇𝑉∗ 𝜔 𝜙 +𝜖=𝜖𝜇+𝜔

2.
Here, 𝑐 is a set of the reaction-channel quantum numbers, whichincludes the quantum numbers of the one-hole state and considered(p-h)-type excitation, and 𝜖 = 𝜖𝜇 + 𝜔 > 0.



The squared partial amplitudes, which can be called as the partialone-nucleon escape strength functions 𝑆↑𝑉0,𝑐(𝜔), determine the partial
branching ratios for direct one-nucleon decay from a certain excitation-energy interval 𝛿:

𝑏↑𝑐 𝛿 = ∫ 𝛿 𝑆↑𝑉0,𝑐 𝜔 𝑑𝜔 ∫ 𝛿 𝑆𝑉0 𝜔 𝑑𝜔 .
The total one-nucleon-decay branching ratio

𝑏↑𝑡𝑜𝑡 𝛿   =∑𝑐 𝑏↑𝑐(𝛿).
determines the branching ratio for statistical (mainly, neutron) decay:𝑏↓   =  1 – 𝑏↑𝑡𝑜𝑡.
Within the cRPA (i.e. in neglecting the spreading effect), 𝑏↓ → 0.



All the main PHDOM relationships are valid at arbitrary (but high-enough) excitation energies. Only in case of using the specific for agiven GR external field (probing operator) 𝑉0,𝑔 to define the“projected” one-body transition density, the energy interval is limitedby a vicinity of this GR.



2.6 Unitarity violations
The methods used within the model for describing the spreading effectlead to weak violations of model unitarity. These violations are due to:
i. an energy dependence of the averaged p-h self-energy term (takesplace for any type of p-h excitations);
ii. the use of an approximate spectral expansion for the optical-model-like GF (takes place only for isoscalar monopole (ISM)excitations).



Violation of the first type is approximately eliminated by using themodified “free” p-h propagator 𝐴𝑚𝜆𝜇(𝜔):
𝐴𝑚0,𝜆𝜇 𝜔 = 𝐴 0,𝜆𝜇 𝜔 1− 𝑛𝜆−𝑛𝜇 𝑑𝑃

𝑑𝜔 𝑓𝜆𝑓𝜇 .

(the contributions proportional to 𝑑𝑊
𝑑𝜔

2 might be neglected). Then
the continuum PHDOM version is formulated using the properlymodified optical-model-like GFs and continuum-state wave functions.



In the description of ISM excitations within the PHDOM, the respectiveprobing operator 𝑉0 𝑟 𝑌00  should be also modified to avoid spuriousexcitations caused by the unit external field:
𝑉0 𝑟 → 𝑉0 𝑟 −〈𝑉0〉
where averaging 〈…〉 is performed over the ground-state density.
As a result, the unitary version of the PHDOM was formulated, andweak unitarity violations were found. An example is given below.



2.7 Related approaches
Many attempts have been undertaken in past to describe the spreadingeffect on GR properties. We mention two of them, which seem to us moreadvanced.
• The approaches, in which the spreading effect is described in terms ofcoupling (p-h)-type states to a number of 2p-2h configurations, are relatedto microscopic approaches (see, e.g., Kamerdzhiev et al. Phys.Rep.`04).Being only the doorway-states for the spreading effect, theseconfigurations do not correspond to real nuclear states at high excitationenergies, and their level density is much lower than the real one describedby the statistical model. As a result, a rather artificial "smearing procedure"is used to get the quantities available for a comparison with exp. data
For these reasons the mentioned approaches seem not fully adequate toreal physical situation. Also, the description of direct-decay properties of GRsis, as a rule, out the scope of these approaches.



• In past, we actively exploited the so-called semi-microscopicapproach, in which the spreading effect is phenomenologically takeninto account by means the substitution
𝜔 → 𝜔  +  [𝑖𝑊(𝜔) – 𝑃(𝜔)]𝑓(𝑥)

directly in the cRPA equations (U., NPA`08). The approach can beconsidered as a “pole” approximation of the PHDOM. However, it isnot valid at distant “tails” of GRs. The approach looked as a reasonableprescription, but was not microscopically justified.



III. Recent implementations3.1 Input quantities
In current implementations of the PHDOM (published in 2018), a rathersimple set of input quantities is used. It includes the Landau-Migdal p-hinteraction and a (realistic) partially self-consistent mean field. Thisfield contains a phenomenological isoscalar (Woods-Saxon type) part(including the spin-orbit term), while the symmetry potential and meanCoulomb field are calculated self-consistently. It means that theisovector Landau-Migdal parameter 𝑓′ belongs to the set of mean-fieldparameters, which are found from the description of observable single-quasiparticle spectra in doubly-closed-shell parent nuclei.



Specific for the model phenomenological quantity, the energy-dependentintensity of the imaginary part of the energy-averaged p-h self-energy term𝑊(𝜔), is parameterized as follows:

2𝑊 𝜔 > Δ = 𝛼 𝜔−Δ 2
1+ 𝜔−Δ 2 𝐵2 ,  2𝑊 𝜔 ≤ Δ = 0.

Here, 𝛼~ 0.1 MeV-1 is the adjustable parameter, while the “gap” parameterΔ  =  3 MeV and “saturation” parameter 𝐵  =  7 MeV are used, as theuniversal quantities. The real part, 𝑃(𝜔), is determined by the properdispersive relationship. The parameter 𝛼 is adjusted to reproduce theobserved total width of the given GR in the calculated strength function.Then, the double transition density, DSD-reaction amplitudes, direct-decaybranching ratios are evaluated without the use of any free parameters.



3.2 Properties of ISM excitations
Investigations of ISM excitations are popular due to the possibility ofdetermining the nuclear matter incompressibility coefficient, which dependson the mean ISGMR energy.
Within the initial and unitary PHDOM versions, we study the ISM relativeenergy-weighted strength functions

𝑦𝑔 𝜔 = 𝜔𝑆𝑉0,𝑔(𝜔)/𝐸𝑊𝑆𝑅𝑉0,𝑔

related to the probing operators 𝑉0,1   =  𝑟2𝑌00 and 𝑉0,2 =  𝑟2( 𝑟2  −𝜂)𝑌00(𝜂 is an adjustable parameter), which lead to excitation of the ISGMR and itsovertone (ISGMR2), respectively. The strength functions calculated for 208Pb within the initial (solid line) and unitary (dotted line) PHDOM versionsare shown in Figs.1. (Gorelik et al., NPA`18).



Fig.1a Fig.1b



Usually, the properly normalized (one-body, energy-independent) collective-modeltransition density of the ISGMR, 𝜌𝑐, 1  ~  3  +  𝑟 𝑑
𝑑𝑟 𝑛(𝑟) with 𝑛(𝑟) being the

ground-state density, is used within the DWBA-analysis of 𝛼,𝛼′ -scattering atsmall angles.
We compare the squared microscopically corrected collective (energy-dependent)radial transition density defined as follows

𝜌𝑐,1 𝑟,𝜔 = Λ1 21 𝜔 𝜌𝑐,1 𝑟 ;  Λ1 𝜔 = 𝑆𝑉0,1 𝜔
𝜌𝑐,1𝑉0,1 2 ,

the squared “projected” radial transition density, 𝜌𝑔,1(𝑟, 𝜔), and the “diagonal”radial ISM double transition density, 𝜌(𝑟  =  𝑟′, 𝜔), in a vicinity of the ISGMR in 208Pb (Fig. 2). Differences at the ISGMR “tails” are clearly seen.



Fig.2

𝜔 = 10.8 MeV

𝜔 = 13.8 MeV

𝜔 = 16.8 MeV



Within the PHDOM, the "full analysis" of properties of an arbitrary GR,having the "normal isospin", includes the description of the strengthfunction, projected transition density, partial and total probabilities ofdirect one-nucleon decay. In applying to the multipole (𝐿 =  0 − 3)isoscalar giant resonances in 208Pb, such an analysis is supposed to bepresented at this Workshop by M.L. Gorelik.



3.3 Simplest photo-nuclear reactions
The first intensive implementation of the PHDOM has been concernedwith photo-absorption cross section and DSD (𝛾, 𝑛)- and (𝑛, 𝛾)-reaction cross sections accompanied by excitation of the isovectordipole and quadrupole giant resonances (IVGDR and ISVGQR),respectively) (Tulupov, U., PRC`14). In this consideration, thecalculation scheme was extended by inclusion of the isovector velocity-dependent forces taken in a simplest (separable) form (with thedimensionless strengths 𝑘′1 and 𝑘′2).



Here, we present new results (Tulupov, U., EPJ WoC`18) concernedwith quantitative estimation of the partial and total branching ratiosfor direct one-neutron decay of the IVGDR in 48Ca. Namely, the value𝑏↑, exp𝑡𝑜𝑡 = 39 ± 5% for the excitation-energy interval 𝛿 = 11–25 MeV isavailable for this nucleus. As before, we first evaluate within the modelthe 𝐸1-photo-absorption cross section, which is proportional to theenergy-weighted strength function 𝑆1 𝜔 related the external field𝑉0,1(𝑥)  =   − 1 2 𝜏 3 𝑌10,𝜎𝑎,𝐸1 𝜔 = 𝐶𝜔𝑆1 𝜔
where 𝐶  =  16𝜋3𝑒2/ℏ𝑐, 𝜔 is the 𝛾-quantum energy. From thecomparison with the experimental data (Fig. 3), two adjustableparameters 𝛼 (in MeV-1) and 𝑘′1 are found.



Then, the partial cross section of the DSD (𝛾, 𝑛)-reaction accompaniedby population of the certain one-hole state 𝜇−1 in 47Ca
𝜎𝐷𝑆𝐷𝜇,𝐸1 𝜔 = 𝐶𝜔∑ 𝜆 𝑀𝐷𝑆𝐷1, 𝜆 ,𝜇(𝜔) 2

is evaluated without the use of free parameters (Fig. 5). ((𝜆)  =  𝑗,𝑙 arethe quantum numbers of the optical-model-like wave function ofescaped neutron, having the energy 𝜖  = 𝜖𝜇   + 𝜔). The calculated total
DSD (𝛾, 𝑛)-reaction cross section is shown in Fig. 4. The total branchingratio defined as the ratio

𝑏𝑡𝑜𝑡𝐸1 𝛿 = ∑𝜇 ∫ 𝛿 𝜎𝐷𝑆𝐷𝜇,𝐸1 𝜔 𝑑𝜔 /𝜔 ∫ 𝛿 𝜎𝑎,𝐸1 𝜔 𝑑𝜔/𝜔
that then evaluated (𝑏𝑡𝑜𝑡𝐸1 𝛿 = 35.3%) and found in a reasonable
agreement with the corresponding experimental value.



Fig. 4a Fig. 4b



Fig.5



3.4 Damping parameters of charge-exchange monopoleexcitations (Kolomiytsev et al., EPJ A`2018, EPJ WoC`18)
These excitations include the Isobaric Analog Resonance (IAR), its overone(the Isovector Giant Monopole Resonance in the 𝛽 − - channel (IVGMR(-))),the isobaric partner of IVGMR(-) - IVGMR(+). Properties of IAR are closelyrelated to the approximate isospin-symmetry conservation in nuclei. Thispoint allows us to reproduce a combined approach, in which the "Coulombdescription" of the isospin-forbidden processes (Gorelik, U., PRC`01) isincorporated into PHDOM. Within the combined approach, the maindamping parameters of the resonances are determined by the Coulombstrength functions 𝑆 ∓𝐶 𝜔 , 𝑆 − ,↑𝐶,𝜈 , 𝑆 + ,↑𝐶,𝜋 , related to the external fields

𝑉(∓)𝐶 = 𝑈𝐶 𝑟 −𝜔𝐴 + 𝑖
2 Γ𝐴 𝜏 ∓ .

Here, 𝑈𝐶 𝑟 is the mean Coulomb field, 𝜔𝐴 and Γ𝐴 are, respectively, the IARexcitation energy and total width.



In particular, for the IAR total, one-proton-escape and spreading widths onegets:
Γ𝐴 = 2𝜋

𝑆𝐴 𝑆 −𝐶 𝜔 = 𝜔𝐴 ;  Γ↑𝐴, 𝜈 = 2𝜋
𝑆𝐴 𝑆 − ,↑𝐶,𝜈 𝜔 = 𝜔𝐴 ; Γ↓𝐴  = Γ𝐴  −∑𝜈 Γ↑𝐴 ,𝜈 .

The IAR Fermi strength 𝑆𝐴 ≃ 𝑆𝐴,0 and energy 𝜔𝐴 ≃ 𝜔𝐴,0 can be found from
the Fermi strength function 𝑆 −𝐹,0 𝜔 (related to the probing operator 𝑉(−)𝐹 =𝜏 − ) evaluated within the cRPA. One can say, that the mentioned IAR widthsare determined by distant low-energy "tail" of the IVGMR(-) in Coulombstrength functions 𝑆 −𝐶 𝜔 and 𝑆 − ,↑𝐶,𝜈 𝜔 . Being taken at the vicinity of theIVGMR(-), these strength functions determine the partial and total branchingratios for direct one-proton decay of this resonance. A similar statement isvalid for direct one-neutron decay of the IVGMR(+).



Such a program is realized for the 208Pb parent nucleus (Tables 1-3). InFigs. 6 and 7 the strength functions 𝑆 −𝐶 𝜔 , 𝑆 −𝐶,0 𝜔 and 𝑆 +𝐶 𝜔 ,𝑆 +𝐶,0 𝜔 are shown.
Single adjustable parameter 𝛼 = 0.07 MeV-1 is adopted to reproduce incalculations of 𝑆 −𝐶 𝜔 the observable IVGMR(-) total width (Table 1).The calculated value Γ↓𝐴 = 60 keV is in acceptable agreement with thecorresponding experimental value Γ↓,𝑒𝑥𝑝𝐴 = 78 ± 8 keV. Similarstatement is related to the partial one-proton-escape widths Γ↑𝐴 ,𝜈(Table 3).



Fig.6



Fig.6



Table 1. Energies and widths of the IVGMR(∓) based on 208Pb groundstate in comparison with experimental data (Errel et al., PRC`86)

Table 2. Branching ratios of IVGMR(∓) based on 208Pb ground state



Table 3. Escape-proton energies, partial direct one-proton decaywidths and experimental data (Whitten, PRC`69; Reiter et al, Z. Phys.A`90) for the IAR based on 208Pb ground state



IV. Conclusive remarks
• In conclusion, the newly developed semi-microscopic model, PHDOM,is briefly presented. Within the model , the structure and mainrelaxation modes of high-energy (p-h)-type excitations (includingGRs) in closed-shell nuclei are together described. Some recentimplementations of the model are also shown.
• The lines of further development might be new implementations andthe use of more advanced versions of the mean field and p-hinteraction. An extension of PHDOM to open-shell spherical nuclei isalso in order.
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