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|. Physical content
1.1 Aims and terminology

* The PHDOM was initially formulated to describe in a semi-
microscopic way together the structure and damping of a great
variety of high-energy (p-h)-type excitations (including giant
resonances (GRs)) in medium-heavy closed-shell nuclei.

* The term “PHDOM” appears in view of similarity of microscopically-
based formulations of the PHDOM and single-quasiparticle dispersive
optical model (SQDOM). Both models are formulated in terms of the
energy-averaged s-g and p-h Fermi-system Green functions (GFs),
which obey, respectively, to the Dyson- and Bethe-Goldstone-type
equations, having the respective self-energy term (U., PRC 13, EPJ
WoC 18)



1.2 Relaxation modes

Within the model the main relaxation modes of mentioned excitations
are together taken into account. These modes are:

i. distribution of the p-h strength, or Landau damping (a
result of shell structure of nuclei);

ii. coupling (p-h)-type states to the single-particle (s-p)
continuum (nuclei are open Fermi-systems);

iii. coupling (p-h)-type states to many-quasiparticle (chaotic)
configurations, or the spreading effect (high excitation energy).



1.3 Physical content

* The PHDOM is a semi-microscopic model, in which Landau damping
and coupling (p-h)-type states to the s-p continuum are described
microscopically (in terms of a mean field and p-h interaction
responsible for long-range correlations), while the spreading effect is
treated phenomenologically and in average over the energy (in terms
of the specific p-h interaction, or the respective p-h self-energy term).

* The PHDOM can be called as “the model of interacting independently
damping quasiparticles”.



1.4 Unique features

The unique features of the PHDOM are concerned with its ability to
describe:

i. the energy-averaged double transition density and, therefore,

various strength functions at arbitrary (but high-enough) excitation
energy;

ii. direct one-nucleon decays of (p-h)-type states, including the direct
+ semi-direct (DSD) reactions induced by a s-p external field;

iii. the spreading (dispersive) shift of the energy of resonance-like
structures related to (p-h)-type states.



Il. Lines of formulation (schematically)
2.1 Continuum-RPA

* The PHDOM is a microscopically-based extension of the continuum-
RPA (cRPA) versions on taking into account the spreading effect. The
standard cRPA version (Shlomo, Bertsch, NPA'75) is formulated in
terms the p-h Green function (GF), A°kPA (x, x', w) (w is the
excitation energy), which obeys the Bethe-Goldstone-type equation
and determines the strength function, SIC};PA (w), related to a s-p

external field V5 (x):

ACRPA — A(C)RPA + A(C)RPA FACRPA. S;I(?)PA (w) = — % Im Var ACRPA Vo.

Here, ASRP4 is the free propagator, F(x, x") is the p-h interaction
responsible for long-range correlations (e.g. for formation of GRs).



* Formulation of ASRPA in terms of GFs of the s-p Schrodinger equation

allows one to take exactly the s-p continuum into account. The non-
standard cRPA version (U., NPA'08) is formulated in terms of the effective

field V(x, w), which is defined by the integral reIationship,ACRPAVO
ASRPAV, and obeys the well-known integral equation:
V = Vo + FASPAV.

* In the continuum region, the strength function can be expressed in terms
of the squared DSD-reaction amplitudes, or partial one-nucleon-escape

strength functions:
2
SCRPA — Ll ytacRPA Y =y MDSD, cRPA‘ Z SCRPA T
T C Vorc Vo.c
The amplltudes are proportional to the effective-field matrix elements taken

between the bound and continuum s-p states (c is the set of decay-channel
guantum numbers).




2.2 Discrete PHDOM version

 Similarly to the ordinary (single-quasiparticle) optical model
(formulated by energy averaging the Dyson equation for the single-
quasiparticle GF), the PHDOM is formulated by energy averaging the
Bethe-Goldstone-type equation for the (generally, non-local) p-h GF
A(x, xq, x', x"{,w). Along with the interaction F(x, x'), the equation
for A contains a specific p-h interaction (the energy-averaged p-h
self-energy term II(x, xq, x', x'{,w) responsible for the spreading
effect):

A = AO + A()FA; AO — A{)?PA +A§PAHA0.

Here, the auxiliary quantity A is the “free” p-h propagator.



The phenomenological quantity Il is properly parameterized to satisfy the
statistical assumption: after energy averaging different p-h configurations
(with the same quantum numbers) are “decaying” into chaotic states
independently of one another. In such a case, the equation for the

propagator Ay (which corresponds to the model non-interacting
independently damping quasiparticles) can be approximately solved. Using a
mean-field discrete basis (s-p energies €, wave functions ¢ ;) one gets the
expression for the A expansion elements in a closed form:

n,l—nu
e1—€u—w+(my—n, ) [IW (@) —P(@)]If 2f

AO,/lu (w) =

Here, n, , are the occupation numbers, W(w) and P(w) are respectively

imaginary and real parts of the strength of the energy-averaged p-h self-
energy term, [, is the diagonal matrix element of the Woods-Saxon function

f(x).



Being taken in the local limit, i.e. Ag(x, x',w) =
Ag(x =x1,x" =x"{, w), the “free” p-h propagator

Ag (xx",w) =2, Ao (W) (x) P (x) P35 (x") P, (x)

is the key quantity of the discrete PHDOM version.



2.3 Continuum PHDOM version

The continuum PHDOM version (the basic one) follows from the
approximate transformation of the “free” p-h propagator to the form,
in which the GFs of the Schrodinger equations, having the addition to
the mean field [—iW (w) + P(w)] f,f(x) (v . = u, 1), are used. (Within
the cRPA, i.e. in neglecting the spreading effect, this transformation is
exact). One from these equations determines also the continuum-state

- (£)
wave functions ¢E:Eﬂ+w>0(x). In such a way, there appears an

effective optical-model potential, whose imaginary part was found (e.
g., from the description of the total width of various GRs) is noticeably
less, than the imaginary part of the “ordinary” OM potential taken at
the corresponding energy. W (w) is a specific (phenomenological)
guantity of the model



2.4 Dispersive relationship

The dispersive relationship, which determines P(w) via W(w), is
obtained after energy averaging the spectral expansion of the p-h self-
energy term. This expansion is similar to that of the 2p-2h GF. (2p-2h
configurations are the doorway-states for the spreading effect).

The simplest version of the dispersive relationship

2 o0 / ' 1 /
P (w) =;P.V.f0 W(w ){wz(ﬁw,z +E}da)

is adopted to satisfy the condition: P (w — 0) — 0.

In current implementations of the PHDOM, a more sophisticated
version of the dispersive relationship is used.



2.5 Main PHDOM equations

Most of the main PHDOM equations, namely, the equations for the
energy-averaged p-h GF A(x, x', w), the strength function Sv, (w), the

effective field V(x, w) look similar to the respective cRPA equations (p.
2.1) after the substitution:

ASRPA (xx" ) = Ag (x,x",w).
The difference is concerned with the double transition density
p(xx',w) = —%ImA (x,x",w).

Due to taking the spreading effect into account, this quantity can't be
factorized in terms of one-body transition density. (The latter can't be

defined).



Since existing computer codes for calculation of the inelastic hadron-
nucleus scattering accompanied by excitation of a given GR exploit only

one-body transition density, we suggest using for these codes the
respective “projected” density:

pg(xw) = Jp(xx' ) Vog(x') dx'S;;gz, SVog = (Var,gpg)z.

Here, Vo 4 - specific for excitation of a given GR the external field.



The squared amplitude of the one-nucleon DSD reaction induced by a
s-p external field V/j(x) and accompanied by excitation of one-hole

state ,u_l of the product nucleus is expressed in terms of the effective
field (U., PRC'13; Gorelik et al., NPA'18)

MP2(@)|* = (#2200 @) 8,) (917 @) 82 1 )|

Here, ¢ is a set of the reaction-channel quantum numbers, which
includes the quantum numbers of the one-hole state and considered
(p-h)-type excitation, and € =€, + w > 0.



The squared partial amplitudes, which can be called as the partial
one-nucleon escape strength functions STVO (w), determine the partial
,C

branching ratios for direct one-nucleon decay from a certain excitation-
energy interval o:

bl (8) = f@sTVO,C (w) da)/f(d)SVO(w) dw.
The total one-nucleon-decay branching ratio
blor (8) =3 bi(6).

determines the branching ratlio for statiTsticaI (mainly, neutron) decay:
b — 1 - btot.

Within the cRPA (i.e. in neglecting the spreading effect), b - 0.



All the main PHDOM relationships are valid at arbitrary (but high-
enough) excitation energies. Only in case of using the specific for a
given GR external field (probing operator) Vo4 to define the

“projected” one-body transition density, the energy interval is limited
by a vicinity of this GR.



2.6 Unitarity violations

The methods used within the model for describing the spreading effect
lead to weak violations of model unitarity. These violations are due to:

i. an energy dependence of the averaged p-h self-energy term (takes
place for any type of p-h excitations);

ii. the use of an approximate spectral expansion for the optical-
model-like GF (takes place only for isoscalar monopole (ISM)
excitations).



Violation of the first type is approximately eliminated by using the
modified “free” p-h propagator A7 (a))

A (@) = Ag 5, @) (1= (na=n) 5 S )

2
(the contributions proportional to (Ccll—val)/) might be neglected). Then

the continuum PHDOM version is formulated using the properly
modified optical-model-like GFs and continuum-state wave functions.



In the description of ISM excitations within the PHDOM, the respective
probing operator V (r) Yo should be also modified to avoid spurious
excitations caused by the unit external field:

Vo(r) = Vo (r)—(Vy)
where averaging (...) is performed over the ground-state density.

As a result, the unitary version of the PHDOM was formulated, and
weak unitarity violations were found. An example is given below.



2.7 Related approaches

Many attempts have been undertaken in past to describe the spreading
effect on GR properties. We mention two of them, which seem to us more
advanced.

* The approaches, in which the spreading effect is described in terms of
coupling (p-h)-type states to a number of 2p-2h configurations, are related
to microscopic approaches (see, e.g., Kamerdzhiev et al. Phys.Rep. 04).
Being only the doorway-states for the spreading effect, these
configurations do not correspond to real nuclear states at high excitation
energies, and their level density is much lower than the real one described
by the statistical model. As a result, a rather artificial "smearing procedure”
is used to get the quantities available for a comparison with exp. data

For these reasons the mentioned approaches seem not fully adequate to
real ohvsical situation. Also. the description of direct-decav nroperties of GRs



* In past, we actively exploited the so-called semi-microscopic
approach, in which the spreading effect is phenomenologically taken
into account by means the substitution

w = + [iW(w)-P(w)]f(x)

directly in the cRPA equations (U., NPA'08). The approach can be
considered as a “pole” approximation of the PHDOM. However, it is
not valid at distant “tails” of GRs. The approach looked as a reasonable
prescription, but was not microscopically justified.



Ill. Recent implementations
3.1 Input quantities

In current implementations of the PHDOM (published in 2018), a rather
simple set of input quantities is used. It includes the Landau-Migdal p-h
interaction and a (realistic) partially self-consistent mean field. This
field contains a phenomenological isoscalar (Woods-Saxon type) part
(including the spin-orbit term), while the symmetry potential and mean
Coulomb field are calculated self-consistently. It means that the
isovector Landau-Migdal parameter f’ belongs to the set of mean-field
parameters, which are found from the description of observable single-
qguasiparticle spectra in doubly-closed-shell parent nuclei.




Specific for the model phenomenological quantity, the energy-dependent
intensity of the imaginary part of the energy-averaged p-h self-energy term
W (w), is parameterized as follows:

2
W (w>A) =a— 20" 2 (w <A) =0.
(>0 =ar Tagge W@=24

Here, a~ 0.1 MeV1 is the adjustable parameter, while the “gap” parameter
A = 3 MeV and “saturation” parameter B = 7 MeV are used, as the
universal quantities. The real part, P(w), is determined by the proper

dispersive relationship. The parameter «ais adjusted to reproduce the
observed total width of the given GR in the calculated strength function.
Then, the double transition density, DSD-reaction amplitudes, direct-decay
branching ratios are evaluated without the use of any free parameters.



3.2 Properties of ISM excitations

Investigations of ISM excitations are popular due to the possibility of
determining the nuclear matter incompressibility coefficient, which depends
on the mean ISGMR energy.

Within the initial and unitary PHDOM versions, we study the ISM relative
energy-weighted strength functions

Vg (w) = WSy, (W)/EWSRy,

related to the probing operators Vg1 = %Y 40 and Vo2 = r2(r? —n)Y 0
(1 is an adjustable parameter), which lead to excitation of the ISGMR and its
overtone (ISGMR?2), respectively. The strength functions calculated for

08pp within the initial (solid line) and unitary (dotted line) PHDOM versions
are shown in Figs.1. (Gorelik et al.,, NPA'18).
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Usually, the properly normalized (one-body, energy-independent) collective-model
transition density of the ISGMR, p, 1 ~ (3 + r%)n(r) with n(r) being the

ground-state density, is used within the DWBA-analysis of (a,a')-scattering at
small angles.

We compare the squared microscopically corrected collective (energy-dependent)
radial transition density defined as follows

SVO,l(w)

(Pc,1Vo,1)2

pc,l (r,a)) — A%/Z (w) pc,l (7”); Al (w) —

the squared “projected” radial transition density, pg (r, w), and the “diagonal”

radial ISM double transition density, p(r = 1, w), in a vicinity of the ISGMR in
208pp, (Fig. 2). Differences at the ISGMR “tails” are clearly seen.
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Within the PHDOM, the "full analysis" of properties of an arbitrary GR,
having the "normal isospin”, includes the description of the strength
function, projected transition density, partial and total probabilities of
direct one-nucleon decay. In applying to the multipole (L = 0 — 3)

isoscalar giant resonances in 2%Pb, such an analysis is supposed to be
presented at this Workshop by M.L. Gorelik.



3.3 Simplest photo-nuclear reactions

The first intensive implementation of the PHDOM has been concerned
with photo-absorption cross section and DSD (y,n)- and (n,y)-
reaction cross sections accompanied by excitation of the isovector
dipole and quadrupole giant resonances (IVGDR and ISVGQR),
respectively) (Tulupov, U., PRC14). In this consideration, the
calculation scheme was extended by inclusion of the isovector velocity-
dependent forces taken in a simplest (separable) form (with the
dimensionless strengths k7 and k).



Here, we present new results (Tulupov, U., EPJ WoC 18) concerned
with quantitative estimation of the partial and total branching ratios
for direct one-neutron decay of the IVGDR in “Ca. Namely, the value

b} &P = 39 + 59 for the excitation-energy interval § = 11-25 MeV is
available for this nucleus. As before, we first evaluate within the model
the E1-photo-absorption cross section, which is proportional to the
energy-weighted strength function S (w) related the external field

Vo1(x) = (—1/2)1)yy,,
0451 (@) =CwSq1(w)
where C = 16n3ez/hc, w is the y-quantum energy. From the

comparison with the experimental data (Fig. 3), two adjustable
parameters a (in MeV?) and k7 are found.



Then, the partial cross section of the DSD (¥, n)-reaction accompanied
by population of the certain one-hole state u~ ! in 4’Ca

2
oot (©) = COZ ;) MDD, (@)

is evaluated without the use of free parameters (Fig. 5). (1) = j,l are
the quantum numbers of the optical-model-like wave function of
escaped neutron, having the energy € =€, + w). The calculated total

DSD (y, n)-reaction cross section is shown in Fig. 4. The total branching
ratio defined as the ratio

tht (5) Z f(é*) Q%Dl (w) dw /(U/f(5) O-a,El ((U) dw/w

that then evaluated (b}’ (6) =35.3%) and found in a reasonable
agreement with the corresponding experimental value.
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3.4 Damping parameters of charge-exchange monopole
excitations (Kolomiytsev et al., EPJ A'2018, EPJ WoC 18)

These excitations include the Isobaric Analog Resonance (lIAR), its overone
(the Isovector Giant Monopole Resonance in the 8(7)- channel (IVGMR")),
the isobaric partner of IVGMR" - IVGMR™. Properties of IAR are closely
related to the approximate isospin-symmetry conservation in nuclei. This
point allows us to reproduce a combined approach, in which the "Coulomb
description” of the isospin-forbidden processes (Gorelik, U., PRC01) is
incorporated into PHDOM. Within the combined approach, the main
damping parameters of the resonances are determined by the Coulomb

strength functions Sg) (w), S(C;/)’T, sGHT related to the external fields

Cm
v = (Uc(r) —w, +%FA) P,

Here, U () is the mean Coulomb field, w4 and I' 4 are, respectively, the IAR
excitation energy and total width.



In particular, for the IAR total, one-proton-escape and spreading widths one
gets:

-),T
I‘A——S( )(a) W 4); F —Z—HS(C’V) (‘U:“)A)?Fil =1y _ZVFL,V

The IAR Fermi strength § 4 = SAO and energy w, = w4 can be found from
the Fermi strength function SFO (w) (related to the probing operator V( ) =

(= )) evaluated within the cRPA. One can say, that the mentioned IAR W|dths
are determined by distant low- energy "tail" of the IVGMR" in Coulomb
strength functions S( )(a)) and S( ) (w). Being taken at the vicinity of the
IVGMR") these strength functlons determine the partial and total branching

ratios for direct one-proton decay of this resonance. A similar statement is
valid for direct one-neutron decay of the IVGMR™



Such a program is realized for the 208Pb parent nucleus (Tables 1-3). In
Figs. 6 and 7 the strength functions S(C_) (w), S(C_O) (w) and S(C+) (w),

S(ero) (w) are shown.

Single adjustable parameter &« = 0.07 MeV! is adopted to reproduce in
calculations of S(C_) (w) the observable IVGMR") total width (Table 1).

The calculated value Fﬁl = 60 keV is in acceptable agreement with the

corresponding experimental value Fjl’exp = 78 + 8 keV. Similar
statement is related to the partial one-proton-escape widths I‘L .

(Table 3).
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Table 1. Energies and widths of the IVGMR" based on 2%Pb ground
state in comparison with experimental data (Errel et al., PRC 86)

exp exp
GR W Wy, [ 'y s

IVGMR"™ | 42.1 | 37.0+35 | 164 | 15.0+6.0
IVGMR™ | 16.6 | 120+28 | 435 | 11.6 = 7.1

Table 2. Branching ratios of IVGMR!™ based on 2°®Pb ground state

[VGMR"™ IVGMR™
v | b (cRPA), % | BT (PHDOM), % | =« | b3 (cRPA), % | b3 (PHDOM), %
3pis 4.1 g2 351/ 75 2,1
2]‘52 10,1 3.1 2(7'3{.-‘3 16,7 3.6
3/)3;‘2 79 4,3 1)’?| 1/2 49,7 09
Ltz 20,5 10,7 2ds)7 13.2 4.0
21112 13,0 6,5 1g7/> 3.1 2.9
1/1@);2 91 4.4 lgc)j-'j 2] 1,5
35172 2D 1,0 2p1)2 0.4 0.3
Lhiy 10,4 5.2 2p3)2 .7 0,5
Others 22.6 10,4 Others 1,6 1,2
Total 100,0 499 Total 100,0 26,1




Table 3. Escape-proton energies, partial direct one-proton decay
widths and experimental data (Whitten, PRC'69; Reiter et al, Z. Phys.

A’90) for the IAR based on 2°®Pb ground state

v | &4y, MeV MeV | T keV | T keV | ThS7 keV
3pip | 1L 11,5 54,7 76 | 519+ 16
2fs;p | 10,2 10,9 11,4 243 | 264+20
P32 10,1 10,6 49,5 864 | 64.7+34
113/2 9,1 9.7 <0,1 0.1 _
f7/2 1) 9.2 0.5 7,0 42 + 0.6
ho/a 6,8 8.0 <0.,1 <0.1 =




V. Conclusive remarks

* In conclusion, the newly developed semi-microscopic model, PHDOM,
is briefly presented. Within the model , the structure and main
relaxation modes of high-energy (p-h)-type excitations (including
GRs) in closed-shell nuclei are together described. Some recent
implementations of the model are also shown.

* The lines of further development might be new implementations and
the use of more advanced versions of the mean field and p-h
interaction. An extension of PHDOM to open-shell spherical nuclei is
also in order.
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