Характеристики δ электронов от пучков ядер Нуклотрона.

Руфанов И.А. 1 февраля 2019

	d	$^{12}_{6}C$				C(SRC)	$^{40}_{18}Ar$	$^{84}_{36} Kr$		
T(AGeV)	4	3.5	4	4.5	5.14	3.17	3.2	2.3	2.6	2.94
I(kA)	1.6	1.2				1.8	1.25		1.15	
Wmax(MeV)	27.22	21.85	27.28	33.31	41.86	18.57	18.86	11.15	13.52	16.45

Таблица 1: Энергия пучка, ток SP-41, Wmax - максимальная кин. энергия б-электрона.

Таблица 2: Пробег электрона в Si (H.Bichsel NIM A 562 (2006) 154-197). При Range=300 μ m T=300 keV. По двум последним точкам можно посчитать потери mip-а в 300 μ m Si: (1000-700)/(1520-960)*300=161 keV.

$$\frac{d^2N}{dTdx} = \frac{1}{2}Kz^2\frac{Z}{A}\frac{1}{\beta^2}\frac{F(T)}{T^2}, \qquad F(T) = (1 - \beta^2 T/W_{max}) \quad (spin - 0 \quad C, Ar, Kr)$$

K=0.307075 MeV mol⁻¹ cm²; A - atomic mass of absorber (g mol⁻¹).

Рис. 1: Количество δ , рожденных с кин. энергией $T > T_m$, ионами C, Ar и Kr при прохождении 300 μ m Si. Полярный угол θ вылета δ в зависимости от T.

Рис. 2: Поле вдоль оси пучка при токе SP-41 1250 A, как в сенсе на Ar. 1- мишень; 2-4 - Si станции; 5-10 - GEMs. Траектории δ электронов с T= 0.5 и 1 MeV от пучка Ar 3.2 AGeV (θ =53 и 45.3⁰).

Рис. 3: Импульс и радиус вращения δ в зависимости от T.

Рис. 5: Вероятность нахождения кластера в слое косых стрипов, перекрывающегося с данным X кластером, положение которого в локальных координатах модуля показано по оси x. Амплитуда X кластера больше 1000 ch. Run 4648.