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We don’t know all physics up to infinitely high energies
(or down to infinitely small distances)
All our theories are effective low-energy (or large-distance)
theories

(except The Theory of Everything if such a thing
exists)
There is a high energy scale M where an effective theory
breaks down. Its Lagrangian describes light particles
(mi �M) and their interactions at pi �M (distances
� 1/M); physics at distances . 1/M produces local
interactions of these light fields.
The Lagrangian contains all possible operators (allowed by
symmetries). Coefficients of operators of dimension n+ 4
contain 1/Mn. If M is much larger than energies we are
interested in, we can retain only renormalizable terms
(dimension 4), and, maybe, a power correction or two.
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Photonia

Here physicists have high-intensity sources and excellent
detectors of low-energy photons, but they have no electrons
and don’t know that such a particle exists.

We indignantly refuse to discuss the question “What the
experimantalists and their apparata are made of?” as
irrelevant.
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Quantum PhotoDynamics (QPD)

L = −1

4
FµνF

µν

+ c1O1 + c2O2

O1 = (FµνF
µν)2 O2 = FµνF

ναFαβF
βµ c1,2 ∼ 1/M4
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Photonia

We work at the order 1/M4, there can be only 1 4-photon
vertex

No corrections to the photon propagator

= 0

No renormalization of the photon field

No corrections to the 4-photon vertex
No renormalization of the operators O1,2 and the couplings
c1,2



Qedland

Physicists in the neighboring Qedland are more advanced:
in addition to photons, they know electrons and positrons,
and investigate their interactions at energies E ∼M . They
have constructed a nice theory, QED, which describes their
experimental results.

They don’t know muons, but this is another story.

They understand that QPD (constructed in Photonia) is
just a low-energy approximation to QED.
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Matching
c1,2 can be found by matching S-matrix elements

=

k

n

=
1

iπd/2

∫
ddk

Dn
= Md−2nV (n)

D = M2 − k2 − i0

V (n) =
Γ
(
n− d

2

)
Γ(n)
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Matching

T µ1µ2ν1ν2 =
e40M

−4−2ε

(4π)d/2
Γ(ε)

(d− 4)(d− 6)

2880

× (−5T µ1µ2ν1ν21 + 14T µ1µ2ν1ν22 )

Heisengerg–Euler Lagrangian

L1 =
πα2

180M4
(−5O1 + 14O2)
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Wilson line

Physicists in Photonia have some classical (infinitely heavy)
charged particles and can manipulate them.

Sint = e

∫
l

dxµAµ(x)

Feynman path integral: exp(iS) contains

Wl = exp

(
ie

∫
l

dxµAµ(x)

)
The vacuum-to-vacuum transition amplitude is the vacuum
average of the Wilson lines



Potential
Charges e and −e stay at some distance ~r during a large
time T : the vacuum amplitude e−iU(~r)T

T � r

0 ~r

T

= e−iU(~r )T

Coulomb gauge

D00(q) = − 1

~q 2

Dij(q) =
1

q2 + i0

(
δij − qiqj

~q 2

)
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Wilson line

= 0

0 ~r

T

τ

τ + t
= −i e2 T

∫
D00(t, ~r) dt

= −i e2 T
∫

dd−1~q

(2π)d−1
D00(0, ~q) ei ~q·~r
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Coulomb potential

U(~q ) = e2D00(0, ~q ) = − e
2

~q 2

U(~r ) = −α
r

No corrections
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Contact interaction

In the presence of sources

Lc = c (∂µFλµ)
(
∂νF

λν
)

q q

µ ν
= 2icq2

(
q2gµν − qµqν

)
Uc(~r ) = 2cδ(~r )
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Qedland

D00(~q) = − 1

~q2
1

1− Π(−~q2)
U(~q) = e20D

00(~q)

In macroscopic measurements ~q → 0

U(~q)→ −e
2
0

~q2
1

1− Π(0)
= −e

2
os

~q2

On-shell renormalization scheme

e0 = [Zos
α ]1/2 eos A0 = [Zos

A ]1/2Aos

D00(~q) = Zos
AD

00
os (~q) D00

os (~q)→ −
1

~q2

Zos
α = [Zos

A ]−1 = 1− Π(0)
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MS renormalization scheme

Dimensional regularization d = 4− 2ε

e0 = Z1/2
α (α(µ))e(µ) A0 = Z

1/2
A (α(µ))A(µ)

Zi(α) = 1 +
z1
ε

α

4π
+
(z22
ε2

+
z21
ε

)( α
4π

)2
+ · · ·

D00(~q) = ZAD
00(~q;µ) D00(~q;µ) = finite

U(~q) = e2(µ)D00(~q;µ)ZαZA = finite Zα = Z−1A
α(µ)

4π
=
e2(µ)µ−2ε

(4π)d/2
e−γε



RG equations

d logα(µ)

d log µ
= −2ε− 2β(α(µ))

β(α(µ)) =
1

2

d logZα(α(µ))

d log µ
β(α) = β0

α

4π
+ β1

( α
4π

)2
+ · · ·

dA(µ)

d log µ
= −1

2
γA(α(µ))A(µ)

γA =
d logZA(α(µ))

d log µ
γA(α) = γA0

α

4π
+ γA1

( α
4π

)2
+ · · ·

QED β(α) = −1

2
γA(α)



Charge decoupling

QPD
e′0 = e′os = e′(µ)

Macroscopically measured charge is the same in QED and
QPD

eos = e′os

e0 =
[
ζ0α
]−1/2

e′0 ζ0α = [Zos
α ]−1

e(µ) = [ζα(µ)]−1/2 e′(µ) ζα(µ) = Zαζ
0
α =

Zα
Zos
α
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1 loop

k

k + q

µ ν
= i
(
q2gµν − qµqν

)
Π(q2)

Π(q2) = −4

3

e20M
−2ε
0

(4π)d/2
Γ(ε)

(
1− d− 4

10

q2

M2
0

+ · · ·
)



1 loop

Zos
α = 1 +

4

3

e20M
−2ε
0

(4π)d/2
Γ(ε) + · · ·

[ζα(µ)]−1 =
Zos
α

Zα
= finite

Zα = 1 +
4

3

α

4πε
+ · · · β0 = −4

3

[ζα(µ)]−1 = 1 +
4

3

[(
µ

M(µ)

)2ε

eγεΓ(1 + ε)− 1

]
α(µ)

4πε
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→ 1 +
4

3

α(µ)

4π
L L = 2 log

µ

M(µ)
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2 loops

k1

k2

k1 − k2
n1

n2

n3

Γ
(
d
2
− n3

)
Γ
(
n1 + n3 − d

2

)
Γ
(
n2 + n3 − d

2

)
Γ(n1 + n2 + n3 − d)

Γ
(
d
2

)
Γ(n1)Γ(n2)Γ(n1 + n2 + 2n3 − d)

A. Vladimirov (1980)
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2 loops

ζ0A =
[
ζ0α
]−1

= 1− Π(0) = 1 +
4

3

e20M
−2ε
0

(4π)d/2
Γ(ε)

+
2

3

(d− 4)(5d2 − 33d+ 34)

d(d− 5)

(
e20M

−2ε
0

(4π)d/2
Γ(ε)

)2

= 1 +
4

3

α(µ)

4πε
eLε
(

1 +
π2

12
ε2 + · · ·

)
Zα(α(µ))Z−2εm (α(µ))

− ε
(

6− 13

3
ε+ · · ·

)(
α(µ)

4πε

)2

e2Lε

Zα = Z−1A = 1 +
4

3

α(µ)

4πε
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Mass renormalization

M0 = Zm(α(µ))M(µ) = Zos
mMos

On-shell

M(n1, n2) =
Γ(d− n1 − 2n2)Γ

(
n1 + n2 − d

2

)
Γ(n1)Γ(d− n1 − n2)

Zos
m = 1− d− 1

d− 3

e20M
−2ε
0

(4π)d/2
Γ(ε) + · · ·

MS
Both Mos and M(µ) are finite at ε→ 0

Zm(α) = 1− 3
α

4πε
+ · · ·
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2 loops

ζA = ZAζ
0
A = finite

ZA = Z−1α = 1− 4

3

α(µ)

4πε
− 2ε

(
α(µ)

4πε

)2

ζA(µ) = ζ−1α (µ) = 1 +
4

3

[
L+

(
L2

2
+
π2

12

)
ε

]
α(µ)

4π

+

(
−4L+

13

3

)(
α(µ)

4π

)2

Define M(M̄) = M̄, then L = 0

ζA(M̄) = ζ−1α (M̄) = 1 +
π2

9
ε
α(M̄)

4π
+

13

3

(
α(M̄)

4π

)2
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2 loops

Alternatively use Mos

M(µ)

Mos

= 1− 6

(
log

µ

Mos

+
2

3

)
α

4π
L = 8

α

4π

ζA(Mos) = ζ−1α (Mos) = 1 +
π2

9
ε
α(Mos)

4π
+ 15

(
α(Mos)

4π

)2

For any µ = M(1 +O(α)), ζα = 1 +O(ε)α +O(α2)
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Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:

I increase the energy of e+e− colliders to produce pairs
of new particles

I performing high-precision experiments at low energies

We were lucky: the scale of new physics in QED is
M � me, loops of heavy particles also suppressed by αn.
µe agrees with QED without non-renormalizable
corrections to a good precision. Physicists expected the
same for proton. No luck here.



Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:

I increase the energy of e+e− colliders to produce pairs
of new particles

I performing high-precision experiments at low energies

We were lucky: the scale of new physics in QED is
M � me, loops of heavy particles also suppressed by αn.
µe agrees with QED without non-renormalizable
corrections to a good precision. Physicists expected the
same for proton. No luck here.



QCD

I QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

I QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with nf < 6 uses
an effective field theory (even if he does not know that
he speaks prose)

Full theory QCD with nl massless flavours
and 1 flavour of mass M

Effective theory QCD with nl massless flavours
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QCD decoupling

α(nl+1)
s (µ) = ζ−1α (µ)α(nl)

s (µ)

ζα(M̄) = 1−
(

13

3
CF −

32

9
CA

)
TF

(
αs(M̄)

4π

)2

+ · · ·

RG equation

d log ζα(µ)

d log µ
− 2β(nl+1)(α(nl+1)

s (µ)) + 2β(nl)(α(nl)
s (µ)) = 0



QCD

Mos
bMos

b − 0.5GeV Mos
b + 0.5GeV

0.21

0.215

0.22

0.225



In the past

Only renormalizable theories were considered well-defined:
they contain a finite number of parameters, which can be
extracted from a finite number of experimental results and
used to predict an infinite number of other potential
measurements. Non-renormalizable theories were rejected
because their renormalization at all orders in
non-renormalizable interactions involve infinitely many
parameters, so that such a theory has no predictive power.
This principle is absolutely correct, if we are impudent
enough to pretend that our theory describes the Nature up
to arbitrarily high energies (or arbitrarily small distances).



At present

We accept the fact that our theories only describe the
Nature at sufficiently low energies (or sufficiently large
distances). They are effective low-energy theories. Such
theories contain all operators (allowed by the relevant
symmetries) in their Lagrangians. They are necessarily
non-renormalizable. This does not prevent us from
obtaining definite predictions at any fixed order in the
expansion in E/M , where E is the characteristic energy and
M is the scale of new physics. Only if we are lucky and M
is many orders of magnitude larger than the energies we are
interested in, we can neglect higher-dimensional operators
in the Lagrangian and work with a renormalizable theory.



We can add higher-dimensional contributions to the
Lagrangian, with further unknown coefficients. To any
finite order in 1/M , the number of such coefficients is finite,
and the theory has predictive power.

For example, if we want to work at the order 1/M4, then
either a single 1/M4 (dimension 8) vertex or two 1/M2 ones
(dimension 6) can occur in a diagram. UV divergences
which appear in diagrams with two dimension 6 vertices are
compensated by renormalizing these 2 operators plus
dimension 8 counterterms. So, the theory can be
renormalized.

The usual arguments about non-renormalizability are based
on considering diagrams with arbitrarily many vertices of
nonrenormalizable interactions (operators of dimensions
> 4); this leads to infinitely many free parameters in the
theory.
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