Heavy quark baryons Hadronic molecules as exotic candidates — P_c

Atsushi Hosaka RCNP/Osaka & JAEA/Tokai & RIKEN

Japan and Osaka

Instant noodle is from Osaka in 1958 Ikeda city Next to the OU campus

Chicken ramen (noodle) Cup noodle

World eats: 8.5×10^{10} eats/year ~12 eats/person/year

Facilities in Japan

Physics Department, Osaka University

- H. Nagaoka (Atom: nucleus + electron)
 - Firtst president
- H. Yagi (Yagi antenna)
 First chairman

- Electron diffraction
- H. Yukawa (First Nobel Laurite)

 Meson theory
- Y. Nambu (Special professor) SSB chiral symmetry

Heavy quark baryons Hadronic molecules as exotic candidates — P_c

Atsushi Hosaka RCNP/Osaka & JAEA/Tokai & RIKEN

- 1. Hadrons Standard and beyond, exotics
- 2. New data P_c from LHC
- 3. Interpretation
 - hadronic *molecule* with *tensor force* —
- (4. Other exotics Doubly heavy)
- 5. Summary

Heavy and chiral dynamics result in molecules HISS/DIAS-TH international school, July 21-30, 2019, Dubna

1.Hadrons Standard and beyond, exotics

Standard (minimal) structure

• Successful for ground state properties; masses, magnetic moments...

Exotics

Beyond the standard: $qq\bar{q}\bar{q}$ mesons, $qqqq\bar{q}$ baryons and more *Multiquarks*

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations ($\bar{q}qq$), ($\bar{q}qqq\bar{q}$), etc., while mesons are made out of ($q\bar{q}$), ($qq\bar{q}\bar{q}\bar{q}$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the represen-

Where and how??

Discussions started by Θ^+ and X(3872)

uudds

Exotic anti-decuplet of Baryons: Prediction by the chiral Solitons

Z.Phys. A359 (1997) 305-314

D. Diakonov in Osaka

LEPS experiment@SPring-8

Originally designed for ϕ production with A.I. Titov

Discussions started by Θ^+ and X(3872)

Belle@KEK, PRL91, 262001 (2003)

Exotic signals

More in the **heavy** flavor sectors near the **thresholds**

The relevant questions:

Do they exist? If they do, which ones? What is their internal structure? How best to look for them? Marek Karliner, QNP proceedings, 2018@Tsukuba

Studying heavy exotic hadrons is somewhat similar to investigating the social life of heavy quarks:

- (a) Who with whom?
- (b) For how long?
- (c) A short episode? or
- (d) "Till Death Us Do Part"?

Marek Karliner

Where and how

Molecular charmonium

Molecular Charmonium: A New Spectroscopy?*

PRL37,317,1977

A. De Rújula, Howard Georgi, † and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 23 November 1976)

Recent data compel us to interpret several peaks in the cross section of e^-e^+ annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in e^-e^+ annihilation.

$\Lambda(1405)$

POSSIBLE RESONANT STATE IN PION-HYPERON SCATTERING^{*}

R. H. Dalitz and S. F. Tuan

Enrico Fermi Institute for Nuclear Studies and Department of Physics, University of Chicago, Chicago, Illinois (Received April 27, 1959)

. . . .

. . . .

PhysRevLett.2.425

will be pointed out here that this situation makes it quite probable that there should exist a resonant state for pion-hyperon scattering at an energy of about 20 Mev below the $K^- - p$ (c.m.) threshold energy. In the present discussion, charge-

2. New data from LHC For baryons

New Pc's from LHC

HISS/DIAS-TH international school, July 21-30, 2019, Dubna

3. Interpretation

Particle channels	Threshold masses	Possible spins
${\Sigma_{ m c}}^{*}D^{*}$	4520	1/2, 3/2, 5/2
$\Sigma_{ m c}D^*$	4460	1/2, 3/2
$\Sigma_{ m c}^{*}D$	4385	1/2, 3/2
$\Sigma_{ m c} D$	4310	1/2

There are seven near threshold states

Interactions

Dormant Heavy quark and active Chiral

Between hadrons, color force is suppressed => Meson exchange force for light quarks

Pion exchange force

HISS/DIAS-TH international school, July 21-30, 2019, Dubna

Tensor force of OPEP $S_{12}(\hat{q}) = \vec{s}_1 \cdot \hat{q} \ \vec{s}_2 \cdot \hat{q} - \frac{1}{3}\vec{s}_1 \cdot \vec{s}_2$

Tensor operator flips the orbital angular momentum $\Delta L = 2$

S-waves may couple to D-waves $[\Sigma_c D]^{1/2}$, $[\Sigma_c D^*]^{1/2}$, $[\Sigma_c D^*]^{3/2}$, $[\Sigma_c^* D^*]^{1/2}$, $[\Sigma_c^* D^*]^{3/2}$, $[\Sigma_c^* D^*]^{3/2}$, $[\Sigma_c^* D^*]^{5/2}$

Coupled channels
$${}^{2s+1}L_J$$

 $J = 1/2$: $\Sigma_c \overline{D} ({}^2S_{1/2}) - \Sigma_c \overline{D}^* ({}^2S_{1/2}) - \Sigma_c \overline{D}^* ({}^4D_{1/2})$
 $J = 1/2$: $\Sigma_c \overline{D} ({}^2S_{1/2}) - \Sigma_c \overline{D}^* ({}^2S_{1/2}) - \Sigma_c \overline{D}^* ({}^4D_{1/2})$
 $J = 3/2$: $\Sigma_c \overline{D}^* ({}^4S_{3/2}) - \Sigma_c \overline{D}^* ({}^2D_{3/2}) - \Sigma_c \overline{D}^* ({}^4D_{3/2})$

* J = 3/2 state has more D-wave couplings

2nd order nature

$$\langle \Sigma_{c} D^{*}(^{4}S_{3/2}) | T | \Sigma_{c} D^{*}(^{4}S_{3/2}) \rangle$$

$$\sim \langle \Sigma_{c} D^{*}(^{4}S_{3/2}) | V | \Sigma_{c} D^{*}(^{4}D_{3/2}) \rangle \frac{1}{E_{S} - E_{D}} \langle \Sigma_{c} D^{*}(^{4}D_{3/2}) | V | \Sigma_{c} D^{*}(^{4}S_{3/2}) \rangle$$

$$\sim \frac{|\langle \Sigma_{c} D^{*}(^{4}S_{3/2}) | V | \Sigma_{c} D^{*} \rangle|^{2}}{E_{S} - E_{D}} < 0 \quad \text{Attractive!}$$

$$\Sigma_{c} D^{*}(^{4}S_{3/2}) \quad \Sigma_{c} D^{*}(^{4}D_{3/2}) \quad \Sigma_{c} D^{*}(^{4}S_{3/2})$$

$$V \quad V \quad V$$

Model calculation

Yasuhiro Yamaguchi, Alessandro Giachino, Atsushi Hosaka, Elena Santopinto, Sachiko Takeuchi, Makoto Takizawa. arXiv:1709.00819 [hep-ph]. Phys.Rev. D96 (2017) no.11, 114031.

Yasuhiro Yamaguchi, Hugo Garcia-Tecocoatzi, Alessandro Giachino, Atsushi Hosaka, Elena Santopinto, Sachiko Takeuchi, Makoto Takizawa. arXiv:1907.04684 [hep-ph]

Hadronic molecule with OPEP + 5q core

Coupled channels of MB and 5q

$$H^{MB}\psi^{MB} + V\psi^{5q} = E\psi^{MB},$$
$$V^{\dagger}\psi^{MB} + H^{5q}\psi^{5q} = E\psi^{5q}.$$

5q states are eliminated

Solving this equation, eigenstates (resonances), phase shits, ...

One parameter V

Actual coupled channels of MB

E(J = 3/2) < E(J = 1/2)

This contradicts with naive expectation of spin-spin interaction

$E(\uparrow\uparrow) > E(\uparrow\downarrow)$

Determination of the spin is very important

Seven states under HQSS

Ming-Zhu Liu, Ya-Wen Pan, Fang-Zheng Peng, Mario Sánchez Sánchez, Li-Sheng Geng, Atsushi Hosaka, Manuel Pavon Valderrama. arXiv:1903.11560 [hep-ph]. Phys.Rev.Lett. 122 (2019) no.24, 242001.

Masses of seven states
are determined by two parameters
$$L = C_a Tr[H_c^{\dagger}H_c]S_c \cdot S_c^{\dagger} + C_b \sum_{i=1}^3 Tr[H_c^{\dagger}\sigma_iH_c]S_c \cdot (J_iS_c^{\dagger})$$
$$H_c = \frac{1}{\sqrt{2}}(D + \vec{D}^*\vec{\sigma}) \qquad S_c = \frac{1}{\sqrt{3}}(\Sigma_c\vec{\sigma} + \vec{\Sigma}_c^*)$$

	Scenario	Molecule J	I^{P} B (MeV)	M (MeV)		
	A	$\bar{D}\Sigma_c = \frac{1}{2}$	$\frac{1}{2}^{-}$ 13.1 – 14.5	4306.3 - 4307.7		
	Α	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$ 13.6 – 14.8	4370.5 - 4371.7		
$M_I = 3/2 < M_I = 1$	/2 4	$ar{D}^*\Sigma_c$ $\frac{1}{2}$	$\frac{1}{2}^{-}$ Input	4457.3		
	A	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$ Input	4440.3		
	A	$ar{D}^*\Sigma_c^*$ $\frac{1}{2}$	$\frac{1}{2}^{-}$ 3.1 – 3.5	4523.2 - 4523.6		
	Α	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$ 10.1 – 10.2	4516.5 - 4516.6		
	Α	$\bar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$ 25.7 – 26.5	4500.2 - 4501.0		
	В	$\bar{D}\Sigma_c = \frac{1}{2}$	$\frac{1}{2}^{-}$ 7.8 – 9.0	4311.8 - 4313.0		
$M_J = 3/2 > M_J = 1$	В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$ 8.3 – 9.2	4376.1 - 4377.0		
	3	$\bar{D}^*\Sigma_c$ $\frac{1}{2}$	<u>1</u> Input	4440.3		
	/ 2 3	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$ Input	4457.3		
	В	$ar{D}^*\Sigma_c^*$ $rac{1}{2}$	$\frac{1}{2}^{-}$ 25.7 – 26.5	4500.2 - 4501.0		
	В	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$ 15.9 – 16.1	4510.6 - 4510.8		
	В	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$ 3.2 – 3.5	4523.3 - 4523.6		
HISS/DIAS-TH international school, July 21-30, 2019, Dubna						

34/37

4. Other exotics — Doubly heavy Hidden heavy $Q\overline{Q}$ Strong $V = Q\overline{Q}$ Coulomb attraction ~ M_Q

4. Other exotics — Doubly heavy $Q\bar{Q}\bar{q}\bar{q}$ $QQ\bar{q}\bar{q}$

Summary

- Hadronic molecule is formed for hidden heavy system.
- Recent LHCb's finding could be a good example.
- Heavy and chiral interplay: Suppression of kinetic energy Interaction between light quarks
- The spin doublet J = 1/2, 3/2 is the unique system to test the tensor force, first example.
- Doubly heavy quark system may exist absolutely stable.

From quarks of QCD to hadrons

New Data from LHC

Dalitz plots for $m(\bar{K}p)$, $m(J/\psi p)$

2019 nine times more statistics \rightarrow 2015 ²⁶ ²⁶ ²⁴ ²² ²² m2 1/ψ GeV² 57 10² LHCb LHCb 22 10 20 20 18 18 16 16<u>×</u> $6 m_{Kp}^2 [\text{GeV}^2]$ 2 3 5 4 5.5 6 6. m²_{Kp} [GeV²] 2.5 3.5 4.5 6.5 3 5

Deuteron

Coupled channels of N(s=1/2), N(s=1/2)

J=0
$$NN(L=0)$$
, but no $NN(L=2)$
 $J=1$ $NN(L=0)$, $NN(L=2)$
 ${}^{3}S_{1}$ ${}^{3}D_{1}$

Deuteron channel has attraction due to the second order of the tensor force

$$L = 0 \qquad \pi \quad L = 2 \qquad \pi \quad L = 0$$