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I. What is graphene ?

. Graphene is a monolayer carbon crystalline
material with the hexagonal honeycomb lattice with
two interpenetrating triangular sublattices A and B
sites.
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a = 1.42 A is the distance
between nearest carbon atoms. ®—=<



II. Why is graphene ?

Graphene is an actual perspective material for
microelectronics: minimal thickness (monoatomic layer),
dynamical strength, high thermal and electro-conductivity
|Geim, Castro Neto, Guinea, Peres, Novoselov].

However, it is important an others thing: graphene is
rather simple model of the standard QED and allows
experimental verification of theoretical predictions.

This circumstance increases confidence in correctness
of the standard QED in one or other extremal conditions,
that where experimental proof meets with large difficulties.

As an example, it can point up to the strong field QED,
where the vacuum creation of e~e™ plasma was predicte
In the region of critical electric fields with strength E~E,. =
m?c? /eh~101® V/m (for electrons) [Sauter; Heisenberg,
Euler; Schwinger].




III. In which respects are simplifications ?

If to consider graphene as D=2+1 QFT, the spin
degrees of freedom can not be realized and number of
equation of motion decreases greatly. All other specific
features of the standard QED survive.

The new element is demand of massless of the
electrons in the low-momentum approximation around
two inequivalent “Dirac points” corresponding to valleys
of the first Brillouin zone.

So graphene as QFT is massless D=2+1 QED.

Such picture is well-founded [Neto, Guinea, Peres,
Novoselov, Geim; Gusynin, Sharapov, Carbotte;
Vozmediano, Katsnelson, Guinea]




Dirac points

Structure of the Brillouin zone in the materials with
“relativistic” dispersion laws in the low-momentum
regions; vy is the Fermi velocity which plays a part of
the light velocity; points K, K in the momentum space
are the Dirac points; m, is effective mass.



Dirac points

Absence of the carries masses in graphene brings
to strong response of graphene under action of any
weak electric field. It reflects on nulling of the critical
field E. = 0. So, any electric field is strong.

IV. Statement of problem

We will consider excitation of eh-plasma in
graphene under action of a semiclassical spatially
homogeneous external electric field with arbitrary
polarization and time dependence. The corresponding

vector potential A4,,(t) is given in the Hamiltonian
gauge A°(t) = 0, i.e. Ag,(t) = (0, Ag,(t), A% (t)).



IV. Statement of problem

The aim is construction of kinetic theory of eh-
plasma excitation in such fields with taken into
account of the internal (plasma) electric fields ,
generated by eh-currents (back reaction).

It results to some new effects: partial
suppression of the external field and creation of
eh-plasma as result of back action of the plasma
field and also to radiation of electromagnetic field
from specimen of graphene on the frequencies of
eh-plasma oscillations. The corresponding currents
and radiation are accessible to experiment
verification



V. Equation of motion and Hamiltonian

Bellow it will be consider the low-momentum model
(the formalism allows generalization on the case of the
tight bindings model of nearest neighbour interaction of
the carbon atoms [Neto, Guinea, Peres, Novoselov, Geim;
Gusynin,  Sharapov,  Carbotte; Kao, Lewkowicz,
Rosenstein].

In the continuum limit the Dirac-type equation for the
low-energy excitations in graphene in a time dependent
electric field described above is

ihW(Z,t) = v PGV (E, 1), ($)
where P, = —ihV, — (E) A, (t) is the quasi-momentum (k =

1, 2) and o, are the Pauli matrices corresponding to the
pseudospin structure of graphene.



V. Equation of motion and Hamiltonian

The Hamiltonian of the theory,
h : .
H() =5 [ d2x [ 0G0 — ¥ (3, 0, )

is the 00 component of the corresponding energy-
momentum tensor and it can be transformed with help
of the equation of motion to the form

H(t) = vp [ d2x WH (%, )PP (X, t).

Here we dropped the spin indices.



V. Equation of motion and Hamiltonian

The wave function here is a two-component spinor
permitting the decomposition

VT = o [ @2 (V500,99 @) e,

which translates the Hamiltonian function to the
momentum representation.




VI. Quasiparticle representation (QPR)

Now we use analogy with the standard QED and
pass to the QPR [Grib, Mamaev, Mostepanenko] that
allows to describe the problem of vacuum generation of
charged particles in vivid physical terms.

Idea of the QPR is based on natural writing of the
energy density on of excited eh-pairs in presence of a
semiclassical field

e(t) =2N; [d*pe@,O)f (D, 1),

where s(p,t) = \/ m2 + P2 is quasienergy of the carries
with the quasimomentum P = 5 — =4, and




VI. Quasiparticle representation (QPR)

f(@,t) =<inla* (@, t)a(@, t)]in >

is the distribution function of quasiparticles, |[in> is in-
vacuum state at t > —o , a*(p,t) anda(p,t) are
creation and annihilation operators of quasielectrons.
Finally, N is the number of flavors of carries: in the
case of a single-layer graphene N,= 2 - 2 = 4 (two Dirac
points in the Brillouin zone, two “pseudospin” number,
corresponding to a fermion with two spin projections).
Factor 2 corresponds to equal contributions of electrons
and holes.

Transition to the QPR can be realized with help of
an unitary transformation W(t) = U(t)®(t), U)U*(t)
=1, conserving norm of the vector, |[¥(t)| ? = |®(t)] 2.



VI. Quasiparticle representation (QPR)

As it was shown in the work [Dora, Moessner], this
is achieved with the unitary transformation

Ut (OvpP3U(t) = e(B,)as = H5(b), ($$)
and ® = Ut¥ with unitary matrix

1 (exp(—iic/Z) exp(—iic/Z)).

Ut) = vz \ exp(ik/2) —exp(ix/2)

The function x is defined by the condition ($$), cor-
responding to tank = P%2/P!, where Pk = pk —%Ak(t).

The quasienergy <(p,t) in ($$) is determined by the
dispersion relation in the vicinity of the Dirac points.

e(p,t) = veVPZ = vp./(P1)2 + (P2)2.




VI. Quasiparticle representation (QPR)
Equation ($) transforms then to the form
ihd = Hy(t)® + - Aho, @, ($%)
where H;(t) is defined by Equation ($$) and

S N . _ eVE[E1P,—E;P1] 4
A(pr t) = K = Ez(ﬁ,t) " ( )

Introducing the notation

. .~ | a@t)
the Hamiltonian function can be rewritten in the
quasiparticle form H(t) = [[dp] (P, t)®* (P, t) o3P (p, t)

= [[dp] @, )[a* (@B, t)a(p,t) — b(—p, t) bt (—p, t)],



VI. Quasiparticle representation (QPR)

where the abbreviation [dp] = [ d“p has been used.

Apparently, the realization of the unitary
transformation in the explicit form in both the low-
energy and the tight-binding models is a result of the
fact that these models belong to the class of massless
field theories.

At this stage one can go over to the occupation
number representation and replace the
amplitudes a*(t),a(t) and b*(t),b(t) by the
corresponding creation and annihilation operators for
electrons and holes considered as quasiparticles. These
operators are defined on the in-vacuum state |in> with

vector potential 4,,



VI. Quasiparticle representation (QPR)

and satisfy the canonical anti-commutation relation
{a@ t),a* (@, O} = {b(B, 1), b (@, )} = Cm)?5(B — p)-
Other elementary anti-commutators are equal to zero.
From Equations ($), ($$) and ($$$) it follows the
equations of motion of the Heisenberg type for the

description of the unitary evolution of the creation and
annihilation operators, e.g.,

a(p,t) == [H(®),a(, )] =5 2B, Db (=5, 1) = = [Heoe (8), a(F, )], (**)
b(B,t) =+ [H(), b(—p,0] +3 A, )a* (B,6) = 1 [Heoe (£), b(—p, )], (**)

where the amplitude of the transitions between states
with the positive and negative energies of the
quasiparticles is defined by Equation (*).

|~ |~



VI. Quasiparticle representation (QPR)

From Equations ($*), (**) and (***) it follows that
evolution of the system is unitary. The Fock space is
constructed on the time dependent vacuum state. In

Equations (**) and (***) H,,, = H + H,,; , Where

h
Hpﬂ[ = E [ [dp])l,(ﬁ, t) [a-l_(ﬁr t)b-l- (_ﬁ! t) _ b(_ﬁr t){l(ﬁ, t)]

describes the dynamics of vacuum polarization.



VI. Quasiparticle representation (QPR)

Let us mark, hat this unitary transformation in
graphene can be realized in an explicit form, in contrast
to the massive D=3+1 QED [Grib, Mamaey,
Mostepanenko].

The QPR is not “uniquely true theory” in strong field
QED. It connects with the fact that the notion of the
quasiparticle energy in the point of time is relative.
This shortcoming of QPR was noted in literature (e.q.,
[Birrell, Davies]). However, other formalism with
habitual physical meaning is absent (e.g., [Unger, Dong,
Flores, Su, Grobe]).



VII. Kinetic equations (KE)

The distribution function f(p,t) =< in|a™*(p,t)a(p,t)|in > is
the main object of kinetic theory. This function satisfies the
kinetic equation , that can be obtained with help of the
equations of motion for the operators a™ (p,t),a(p,t).

Such Kkinetics in graphene was constructed in
[Smolyansky, Panferov, Blaschke, Gevorgyan] by analogy
with the standard QED [Marinov, Trunov; Bialynicky-Birula,
Gornicki, Rafelski; Schmidt, Blaschke, Smolyansky,
Toneev].

The corresponding KE can be written in QPR in the

integro-differential form
t

. 1
f(p,t) = Eﬂ(ﬁ, t) | dt'A(p,t)[1—2f(p,t)]cosO(t,t")

to



VII. Kinetic equations (KE)

or in the form of equivalent system of ODE’s
2¢&

.1 . B 2 . _2¢
f=-M, u=A(1-2f) ~V, V=—u

Here
t

2
o(t,t") = > dt" e(p,t'")
t!

is the dynamical phase.
The same KE's can obtain from the twelve system of
KE’s in the standard QED for arbitrary polarization of an

external electric field [Alexandrov, Dmitriev,
Smolyansky].



VIII. Currents

The nuclear problem is experimental verification of the
theory.

One possibility is related with measurement of currents.

According to definition [Schwinger], the current
densities
OH(t)

6A(t)
Results of calculations can be represented in the form
jie(@®) = jEm@) + 5% ()
where  jfo"(t) = 8 [[dp] vi(B, )f (B, 0),

jPON®) = 4 [[dp] @B, OB, Hu (B, t),
where vq (p,t) = P/e(p, t)

Je(t) = —e



VIII. Currents
and [;(p,t) = 6A(p,t)/SE! is defined by the components

evlz;-Pz ev%-Pl

ll(ﬁ!t): &2 IZZ(ﬁ!t): 2

At present, direct comparison of experimental currents
with theory was curried only for constant electric field, for
example, E! = E, = const, E* =0, that corresponds to
two models of electric field: A* = —E,t (t-representation)
or A% = —E,x (X-representation).

In the last field model the I-V-characteristic can be
calculated also in the different realizations of the tunnel
Zener-Klein approach in the x-representation. (see
[Smolyansky, Panferov, Blaschke, Gevorgyan]) or in the
framework of the exact solution of the task [Gavriloy,
Gitman].




VIII. Currents =
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of I-V — characteristics on the bases of the considered
exact kinetic approach (t-representation) and

approximate Zener-Klein method (x-representation)
[Smolyansky, Panferov, Blaschke, Gevorgyan].



VIII. Currents

This picture demonstrate satisfactory agreement of
two approaches between them and experiment
[Vandecasteele, Barreiro, Lazzeri, Bachtold, Mauri] in
the region of sufficiently small constant electric fields.
Difference increases with growth of the field strength.
However, the kinetic approach pretends on more exact
prediction. Besides that, kinetic approach is unique
instrument in the case of fast oscillating fields.

Represented I-V curves show the law [~V3/2~F3/2
l.e. dependence I(E) is nonanalytic in region E = 0 and
hence the standard perturbation theory here is not
applicable.




IX. Back reaction problem

Hard core of the problem is that the inner currents
of eh-plasma in turn generates corresponding internal
plasma field EX (t), which is found in antiphase to
external field and hence it relaxes the action of an
external field and intensity of the eh-production.

In the standard QED this problem was investigated
in [Cooper, Kluger; Mottola, Eisenberg, Svetitsky,
Cooper, Mottola; Brout, Massar, Parentani, Popescu;
Bloch, Miserny, Prozorkevich, Roberts, Schmidt,
Smolyansky, Vinnik].

In the some other approach this problem was
analyzed in the framework of the theory of cascade
process [Narozhny, Fedotov].




IX. Back reaction problem

Internal field can be found from Maxwell equation

Ef (1) = —j ().

This Maxwell equation is written in the model D=2+1
Space-time, k = 1,2.

Effectiveness of the back reaction can estimate, for
example, with help of the exhaustion coefficient,

Efn(t)
Rexh (t) — B2 (1)



X. Radiation

There are two groups of processes, where D=2+1
massless QED is insufficient for description of real
existent phenomena in graphene and where necessity
arises in widening of the theory up to D=3 space-time.
It is the spin phenomena (in D=2+1 graphene QED the
real existing spin degrees of freedom reflects on the
degeneracy flavor factor 2 only) [Werner, Trauzettel,
Kashuba] and radiation from graphene [Yokomizo,
Baudish at al]. The back-reaction problem belongs to
this enumeration also.

So, the question is about the charge confinement
problem of D=2 graphene plane in the real D=3+1
space-time.



X. Radiation

There are two sources of radiation in graphene:
quasiclassical radiation of plasma motions (collective
mechanism, Sect. 9) and quantum radiation as result

of annihilation of eh-pairs (a) and spontaneous
radiation of electrons (b) and holes (c):

N

(a) (b) " (c)
a‘e/\hnN\/\Mv AN h/ﬂ



X. Radiation

In the case of radiation of plasma field, it can use
the well know approach [Abbott, Griffiths] for
description of radiation of the electrically neutral infinite

plane currents induced by linearly polarized electric
field,

Eqce(t) = Eex(t —x/c) — %Cﬂoj(t —x/c),

where E,..(t) is acting field and x is distance from
graphene plane. Neglecting by retardation, one obtain

Eqce(t) = Egp (t) — %Cﬂoj (t).



X. Radiation

Results of theoretical simulation and experiments in
the optical diapason are presented on the figure taken
from the work [Baudisch et al].

a C
R B u; 100 15/ \ 1>1001s | \ >1ps 25 _
10°
=
© =
“f\/\f ek :
— 4 o | -t
> 1 8 w9
= ] o £
5 1.5 $ o
@ 1 "E‘ @
b = 4 f E 10—| w a
0.03 : s} 1 % o
£ e
o { %
9 0.5 | é
o i
2. 0.0
s

10° 1072107 VIt Ay, Electric field

s AN I | I| 1 l
! bl If ||I"| TLLL "I
|| i | |
i Induced currem

—100 -50 D 50 TOG 150 20{)
Time (fs)




X. Radiation

Main conclusions:

a) strong nonlinear response

b) large widening of each harmonic

c) presence of the odd harmonics only

d) visible role of polarization phenomena (residual
currents [Panferov, Smolyansky, Blaschke])

e) excellent qualitative agreement theoretical
simulations and experiment

Theory of quantum radiation from vacuum plasma
takes now the first steps [Brout, Massar, Parentani,
Popescu; Smolyansky, Panferov, Fedotov; Yokomizu].




XI. Conclusion

We showed that the QED model of graphene is
rather simple in comparison with the D=3+1 standard
QED, where verification is laboured over very large
value of critical field strength E_, and, in the same time,
this model allows direct experimental examination.
Specific of graphene is reflected in absence of critical
field that leads to noticeable generation of the eh-
plasma already in rather small electric fields. On the
other hand, graphene QED is nonanalitical in the
neighborhood E =0 , as the standard QED. It forces to
use nonperturbative methods of calculations of
observed values.




XI. Conclusion

Such kind approach was presented was presented
above. But it is nonunique. For example, in the
graphene QED, Ishikawa method is known. This
approach is formulated without QPR. In the present
review we showed in the graphene QED an alternative
method, which is effective in other regions of physics:
strong field QED, heavy ion physics and cosmology.

List of actual problems, connected with confinement
of the graphene plane in D=3 space:

= spin physics

= back reaction problem

= radiation of plasma oscillations
= quantum radiation
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