First Order Phase Transition From Hyper Nuclear Matter to Deconfined Quark Matter

Mahboubeh Shahrbaf Motlagh
Collaborators: David Blaschke, Ana Gabriela Grunfeld, Hamid Reza Moshfegh

Helmholtz International Summer School (HISS 2019)
«Quantum Field Theory at the Limits: From Strong Fields to Heavy Quarks»
25 Jul. 2019 - JINR-Dubna
The number of nucleons is supposed to be infinite.

Coulomb interaction is disregarded because of the strong interaction between nucleons.

The density of nuclear matter is supposed to be finite:

\[\rho = \lim_{N,V \to \infty} \frac{N}{V} \]

<table>
<thead>
<tr>
<th>$\rho_0 (fm^{-3})$</th>
<th>0.1748</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_0/A (MeV)$</td>
<td>-15.58</td>
</tr>
<tr>
<td>$E_{sym} (MeV)$</td>
<td>39.9</td>
</tr>
<tr>
<td>K_0</td>
<td>295.77</td>
</tr>
</tbody>
</table>
For PSRJ0740+6620

\[M_{\text{max}} = 2.17^{+0.11}_{-0.10} M_\odot \]

for the binary neutron star merger GW170817

\[R(1.6 M_\odot) > 10.7 \text{ km} \]

&

\[R(1.4 M_\odot) < 13.6 \text{ km} \]
Hyperon Puzzle
Phase Transition From Hyper Nuclear Matter to Deconfined Quark Matter as a Solution to the Hyperon Puzzle

Initiation of a new collaboration that joins different domains of state-of-the-art expertise

LOCV
For hadronic phase

nl-NJL
For quark phase
Hamiltonian of nuclear matter:

\[H = \sum_i \frac{p_i^2}{2m_i} + \sum_{i \neq j} V(ij) \]

Trial wave function:

\[\Psi(1 \ldots A) = F(1 \ldots A)\Phi(1 \ldots A) \]

\[E = \langle H \rangle = \frac{1}{N} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = E_1 + E_{MB} \cong E_1 + E_2 \]

LOCV method
Lowest Order Constrained Variational method

Characteristics

- A pure variational method in configuration space
- Generalized to finite temperature
- Calculation of correlation functions
- Using both central and tensor correlation functions
- Energy per baryon and correlation functions are state-dependent
- Using normalization condition as the only constraint
Nonlocal Nambu–Jona-Lasinio model (nl-NJL model)

- Nonlocal covariant extension of the NJL model
- Quark fields interact via nonlocal (momentum dependent) vertices
- Nonlocal interactions regularize the model in such a way there is not need to introduce sharp cutoffs

Characteristics:
- Constant coefficients (model A)
- Density-dependent coefficients (model B)

First Order Phase Transition (PT) by a Maxwell construction

\[\mu_H = \mu_Q = \mu_c \]
\[T_H = T_Q = T_c \]
\[P_H(\mu_B, \mu_e) = P_H(\mu_B, \mu_e) = p_c \]
Model A
Model B
Main results:

1. Model A: PT in Symmetric matter for $\eta<0.09$ while for this cases there is no PT in CS matter.
2. Model B: PT in both CS matter and symmetric matter for set 1.
3. We have a large difference in critical density for the onset of deconfinement in CS matter and symmetric matter. Onset density for CS matter lies at $n=0.38 \text{ fm}^{-3}$ while for symmetric matter it is at $n=0.95 \text{ fm}^{-3}$.

![Graphs showing pressure versus chemical potential for different models and densities.](image_url)
Thank you
LOCV Method: Lowest Order Constrained Variational Method

\[f(ij) = \sum_{\alpha p=1}^{3} f_{\alpha}^{p}(ij) O_{\alpha}^{p}(ij) \]

\[\alpha = \{J, L, S, T, T_z\} \]

\[O_{\alpha}^{p}(ij) = 1, \quad \frac{1}{6} (S_{12} + 4P_t), \quad \frac{1}{6} (2P_t - S_{12}) \]

\[S_{12} = 3(\mathbf{\sigma}_1 \cdot \mathbf{\hat{r}})(\mathbf{\sigma}_2 \cdot \mathbf{\hat{r}}) - \mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2 \]

\[p=1 \text{ for } s=0 \]

\[p=2,3 \text{ for } s=1 \text{ with } L=J \]

\[p=2,3 \text{ for } s=1 \text{ with } J=L\pm1 \]
\[|ij\rangle = |k_1, 1/2, m_{\sigma_1}, 1/2, m_{\tau_1}, k_2, 1/2, m_{\sigma_2}, 1/2, m_{\tau_2}\rangle \]

\[\langle \Psi | \Psi \rangle = 1 - \sum_{ij} \langle ij | F_p^2 - F^2 | ij - ji \rangle \quad : \quad \chi = \frac{1}{N} \sum_{ij} \langle ij | F_p^2 - F^2 | ij - ji \rangle = 0 \]

\[F_p = \begin{cases} \left(1 - \frac{9}{2} \left(\frac{I_I(Kf)}{Kfr} \right)^2 \right)^{-1/2} & T_z = \pm 1 \\ 1 & T_z = 0 \end{cases} \]

\[E_2 = \int dr \left[G \left(f'^2 (r) \right) + S(f(r)) - \lambda(f(r)) \right] = \int dr L(f'(r), f(r)), \delta E_2 = 0 \]

\[\frac{\partial L}{\partial f} - \frac{\partial}{\partial r} \frac{\partial L}{\partial f'} = 0 \]

The only constraint in LOCV method is renormalization condition of wave functions