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Introduction
• Quarkonium spectroscopy indicates that between valence quarks

inside hadrons, the potential on small scales has D = 3 Coulomb
form and at hadronic scales has D = 1 Coulomb one.

• We may form an effective potential in which at small scales
dominates D = 3 component and at hadronic scale - D = 1, the
Coulomb-plus-linear potential (the ”Cornell potential”):

V (r) = −k

r
+

r

a2
= µ(x − k

x
), µ = 1/a = 0.427GeV , x = µr ,

where k = 4
3αs = 0.52 = x20 , x0 = 0.72 and a = 2.34GeV−1 were

chosen to fit the quarkonium spectra [Eichten et al 1978].
• We consider the dimension D(r) of space of hadronic matter

dynamically changing with r and corresponding Coulomb potential

VD(r) ∼ r2−D(r),

where effective dimension of space D(r) changes from 3 at small r
to 1 at hadronic scales ∼ 1fm.
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Coulomb problem in D-dimensions

Poisson equation with point-like source in D-dimensional space,
∆ϕ = eδD(x), has the solution

ϕ(D, r) = − Γ(D/2)

2(D − 2)πD/2
er2−D ,

V (D, r) = eϕ(D, r) = −α(D)r2−D , α(D) =
e2Γ(D/2)

2(D − 2)πD/2
,

V (3, r) = −α(3)

r
= − e2

4πr
, V (4, r) = −α(4)

r2
= − e2

4π2r2
.

Indeed,∫
dDx∆ϕ = ΩDr

D−1 d

dr

aD
rD−2

= −(D−2)ΩDaD = e, aD = − e

(D − 2)ΩD
, a3 = − e

4π
,∫

dxDe−x
2

= (2π

∫ ∞
0

drre−r
2
)D/2 = πD/2 = ΩD

∫ ∞
0

drrD−1e−r
2

=
ΩD

2
Γ(D/2), ΩD =

2πD/2

Γ(D/2)
.
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Coulomb problem in D-dimensions

• As defined so far, the coupling constant has a mass dimension
de = (D − 3)/2 = −ε. To work with a dimensionless coupling
constant e, we introduce the mass scale µ.

• Then, the potential energy takes the following form

V (D, r) = − Γ(D/2)

2(D − 2)πD/2
e2µ2εr2−D

= −α(D)(µr)2ε/r

= −α(D)x2−Dµ.
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Dimension dynamics from Cornell potential

• Cornell potential contains QCD dynamics. We may compare it with
Coulomb potential with dynamical dimension. Let us define
dimension of space from the equality of V (r) = µ(x − k

x ) and
V (D, r) = −α(D)r2−D :

k − x2

x3−D
= α(D) =

e2Γ(D/2)

2(D − 2)πD/2
= αs

2Γ(D/2)

(D − 2)π(D−2)/2
, αs =

e2

4π
.

• For any values of x and D

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D − 2)α, α =

k − x2

x3−D
= (k − x2)xD−3 .

• At the point D = 1, x = x1,

αs(1, x1) =
1

2π

(
1− k

x21

)
, x21 > x20 = k .
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Hamiltonian formulation of space dimension dynamics

• Let us consider simplest Hamiltonian dynamics

ẋ1 = {H, x1},
ẋ2 = {H, x2},

for dynamical variables (phase space) (x1, x2), Hamiltonian H

H =
p2

2m
+ V (x) =

x21
2m

+ V (x2)

and Poisson structure

{A,B} = fnm
∂A

∂xn

∂B

∂xm
= f12

(
∂A

∂x1

∂B

∂x2
− ∂A

∂x2

∂B

∂x1

)
.

• Instead of solving the system of motion equations, we may solve
them in a semi-algebraic way: having one integral of motion -
Hamiltonian, we may find x1 from the Hamiltonian, insert it in the
motion equation for x2 and solve it.
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• The variables x ,D and α are nonnegative, so it is natural to
introduce, free from this restriction, variables:

t = ln x

x1 = lnαs

x2 = lnD

• Then we obtain the following Hamiltonian and motion equations

H(x1, x2, t) = x1 − V (x2, t)⇒ x1 = V (x2, t),

ẋ1 = f12
∂V

∂x2
,

ẋ2 = −f12, V (x2, t) = ln(
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D
).
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• We may also take x1 = α, then

x1 = V (t, x2) = (k−x2)xD−3 = (k−x2)xexp(x2)−3 = (k−e2t)et(e−t−3),

ẋ1 =
∂V

∂x2
= (k−x2)xe

x2−3 ln xex2 = (k−e2t)tet(e−t−3)e−t , f12 = 1,

α̇ = β = te−tα = β1α, β1 = ln
αe3t

k − e2t

ẋ2 = −1⇒ x2 = −t, D = 1/x

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D−2)

k − x2

x3−D
=
π(1/x−2)/2

2Γ(1/2x)
(1/x−2)

k − x2

x3−1/x

=
π(1/x−2)/2

2Γ(1/2x)
(1/x−2)(

√
k−x)

√
k + x

x3−1/x
.
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Figure: αs as a function of x = µr ∈ (0.01, 1.0)

9 of 23



1 2 3 4 5

x=μr

0.02

0.04

0.06

0.08

αs (x)

Figure: αs as a function of x = µr ∈ (0.72, 5)
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• Note that x > 0 and αs ≥ 0 when x < min(1/2,
√
k) = 1/2 or

x > max(1/2,
√
k) =

√
k = 0.72 and for 0.5 < x < 0.72, αs < 0,

see figures 1 and 2.

• For x1 = 1, we have from αs(1, x1)

αs =
1

2π
(1− k) =

0.48

2π
= 0.0764.

• We may exclude the negative values by using different values of µ:
x1 = rµ1 = 1/2, x2 = rµ2 = 0.72, µ2/µ1 = 1.44.
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Compactification and Dimension dynamics

Let us take one of the dimensions y as circle with radius R. This
corresponds to a periodic structure with a point charge sources at each
point yn = y + 2πRn, n = 0,±1,±2, ...

∆ϕ = e
∑
n

δD(x)δ(yn), ϕ(D, r , y) =
∑
n

ϕ(D, r , yn),

V (D, r , y) = −α(D + 1)
∞∑

n=−∞
(r2 + (2πRn + y)2)(1−D)/2.

When D = 3, the potential can be writen in a closed form [Bures,
Siegl 2014]

V (3, r , y) = −α(4)

2Rr

sinh(r/R)

cosh(r/R)− cos(y/R)
=

{
−α(4)/(2Rr), r � R

−α(4)/(r2 + y2), r , y � R
,

where α(4)/(2R) = α(3).
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Compactification and Dimension dynamics

Alternatively, we can rewrite the potential as

V (3, r , y) = −α(4)

4Rr

[
coth

(
r + iy

2R

)
+ coth

(
r − iy

2R

)]
,

or, using

A−α = 1/Γ(α)

∫ ∞
0

dttα−1e−tA,

by means of the Theta function as

V (3, r , y) = −α(4)

∫ ∞
0

dte−tr
2
∞∑
−∞

e−t(2πRn+y)2

= −α(4)

∫ ∞
0

dte−tr
2
θ
(

iy
2πR , e

i
4R2t

)
2R
√
π
√
t

.
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Compactification and Dimension dynamics

• For y = 0, the potential takes the following simple form

V (3, r , y = 0) = −α(4)

2Rr
coth

r

2R
.

• From V (3, r , y), we see that for big r , the effective dimension of
space is 3 and for small r is 4.

• For intermediate scales, the effective dimension might change
smoothly from 3 to 4. Integrating V (3, r , y) by coordinate y , we
define mean potential depending only on the variable r , [Bures,
Siegl 2014]

V̄ (3, r) =
1

2π

∫ 2π

0
dϑV3(r , ϑ) = −α(4)

2Rr
= −α(3)

r
.
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Compactification and Dimension dynamics

• As in the Cornell potential case, we define the dimension dynamics
from equality between the corresponding Coulomb potentials:

α(4)

2r

sinh(r/R)

cosh(r/R)− cos(y/R)
= α(D)(x)2−D ,

µ = 1/R, x = µr , r2 = x21 + x22 + x23 .

• From this equality, the dynamical dimension of space D(y , r) is
defined as implicit function and needs numerical solution.

• Alternatively, we may define y as an explicit function of x and D as

y = R arccos(cosh x − A(D)xD−3 sinh x),

A(D) =
µα(4)

2α(D)
, α(D) =

e2Γ(D/2)

2(D − 2)πD/2
.
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Compactification and Dimension dynamics

If we have two circlular coordinates - a torus, then

∆ϕ = e
∑
n,m

δD(x)δ(yn)δ(zm),

ϕ(D, r , y , z) =
∑
n,m

ϕ(D, r , yn, zm),

V (D, r , y , z) = −α(D+2)
∞∑

n,m=−∞
(r2+(2πR1n+y)2+(2πR2m+z)2)−D/2.
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Compactification and Dimension dynamics

General expression for Coulomb potential in (D + d)-dimensional space
RD × Td where Td = S1 × · · · × S1 (d-times) is the d-dimensional
torus. D refer to the ”big” dimensions x = (x1, . . . xD), whereas d to
the ”small-compactified” ones y = (y1, . . . yd). Then

∆ϕ = e
∑

n1,...,nd

δD(x)δ(y1,n1) . . . δ(yd ,nd ),

ϕ(D, d , r , y1, . . . , yd) =
∑

n1,...,nd

ϕ(D, d , r , y1,n1 , . . . , yd ,nd ),

V (D, d)(r , y1, . . . , yd)

= −α(D + d)
∞∑

n1,...,nd=−∞
(r2 + (2πR1n1 + y1)2 + · · ·+ (2πRd + yd)2)−(D+d−2)/2

= − α(D + d)

Γ
(
D+d−2

2

) ∫ ∞
0

dtt
D+d−4

2 e−tr
2
e−t(2πR1n1+y1)2 . . . e−t(2πRdnd+yd )

2

= − α(D + d)

Γ
(
D+d−2

2

) ∫ ∞
0

dtt
D+d−4

2 e−tr
2
Πd
i=1e

−ty2
i Bi (t, yi ),

Bi (t, yi ) =
∞∑

ni=−∞
e−t(2πRini+yi )

2
= e−ty

2
i θ(2iRiyi t, 4πiR

2
i t),

where the sums in Bi ’s were written by means of the Theta function.
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Compactification and Dimension dynamics

For a point quark inside hadron of size R at a temperature T we have

∆ϕ = e
∑

k,l ,n,m

δ(τk)δ(xl)δ(yn)δ(zm),

ϕ(0, τ, x , y , z) =
∑

k,l ,n,m

ϕ(0, τk , xl , yn, zm),

V (0, τ, x , y , z) = −α(4)
∞∑

k,l ,n,m=−∞
((2πk/T + τ)2

+(2πR1l + x)2 + (2πR2n + y)2 + (2πR3m + z)2)−1

= −α(4)

∫ ∞
0

dttB0(t, τ)B1(t, x)B2(t, y)B3(t, z),

B1(t, x) =
∞∑

n=−∞
e−t(2πR1n+x)2 = e−tx

2
θ(2iR1xt, 4πiR

2
1 t), ..., R0 = 1/T ,

where we have written the sums by means of the Theta function.
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Theta functions

Theta functions is the analytic function θ(z , τ) in 2 variables defined by

θ(z , τ) =
∑
n∈Z

exp[iπ(τn2 + 2nz)] = 1 + 2
∑
n≥1

exp(iπτn2) cos(2πnz),

where z ∈ C and τ ∈ H, the upper half plane Im τ > 0. The series
converges absolutely and uniformly on compact sets.
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Integrals

Let us calculate the following integral

I (a) =

∫ π

0

dϑ

a2 + 1− 2a cosϑ
=

π

|a2 − 1|
=

{
π/a2, a2 � 1

π, a2 � 1
.

Obviously, I (1) =∞, but

I (1) =
1

2

∫ π

0

dϑ

1− cos(ϑ)
=

1

4

∫ π

0

dϑ

sin2 ϑ
2

=
1

2

∫ 1

0

dx

(1− x2)3/2

=
1

4

∫ 1

0

dy

y1/2(1− y)3/2
= B(1/2,−1/2) =

1

4

Γ(1/2)Γ(−1/2)

Γ(0)
= 0, ?!

B(α, β) =

∫ 1

0
dxxα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α + β)
,Real α, β > 0.
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Integrals

In our case, a = exp(r/R) > 1 and the corresponding integral is

I =
1

a

∫
dθ

b + 2 cos θ
=

1

ia

∫
dz

z2 + bz + 1

= I (z , a) =
1

ia(a− 1/a)
ln

z + a

z + 1/a
,

I (a) = I (−1, a)− I (1, a) =
1

ia(a− 1/a)
ln

(−1 + a)(1 + 1/a)

(−1 + 1/a)(1 + a)
=

π

a2 − 1
,

b = a + 1/a, z = e iθ.

Now,

I =

∫ 2π

0

dϑ

a2 + 1− 2a cos(ϑ)
= I (a) + I (−a) =

2π

|a2 − 1|
=
π exp(−r/R)

sinh(r/R)
,

1

2π

∫ 2π

0

dϑ

cosh(r/R)− cos(ϑ)
=

2a

a2 − 1
=

1

sinh(r/R)
, a = exp(r/R).
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