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Introduction

e Quarkonium spectroscopy indicates that between valence quarks
inside hadrons, the potential on small scales has D = 3 Coulomb
form and at hadronic scales has D = 1 Coulomb one.

e We may form an effective potential in which at small scales
dominates D = 3 component and at hadronic scale - D =1, the
Coulomb-plus-linear potential (the " Cornell potential”):

V(r)= —é + a_rz = u(x — g), uw=1/a=0.427GeV, x = pr,
where k = as = 0.52 = X2, xo = 0.72 and a = 2.34GeV ! were
chosen to fit the quarkonium spectra [Eichten et al 1978].

e We consider the dimension D(r) of space of hadronic matter

dynamically changing with r and corresponding Coulomb potential
VD(r) ~ rZ—D(r)’

where effective dimension of space D(r) changes from 3 at small r

to 1 at hadronic scales ~ 1fm.
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Coulomb problem in D-dimensions

Poisson equation with point-like source in D-dimensional space,
Ap = e6P(x), has the solution

AD.1) = ~5p D er .
V(D,r) = ep(D, r) = —a(D)r* P, a(D) = %,
a e’ a4 e?
V(@3,r) = —@ = V() = - r(2) -
Indeed,
/dem - QDrD*I%rg‘fz = —(D-2)Qpap = e, ap = —m, a3 = _%,
/deefxz = (2n /00o drre™)P/2 = P12 Z /OOO drrPle " = %r(o/z), Qp = FZ(WTE;/;),

3 0of 23
EEEEE————————————————————————



Coulomb problem in D-dimensions

e As defined so far, the coupling constant has a mass dimension
de = (D —3)/2 = —¢. To work with a dimensionless coupling
constant e, we introduce the mass scale .

e Then, the potential energy takes the following form

I_(D/2) 2 2 2-D
V(D,r) = —me ur

— (D)
= —a(D)x* Py
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e
Dimension dynamics from Cornell potential

e Cornell potential contains QCD dynamics. We may compare it with
Coulomb potential with dynamical dimension. Let us define
dimension of space from the equality of V/(r) = pu(x — %) and
V(D,r) = —a(D)r*P:

k—x? (D) = e’r(D/2) 2r(D/2) e
30 T N T oD~ )2 T Y (D — 2)rD-2/27 T ar
e For any values of x and D
(D—2)/2 k — x2
0 X
D x)=———(D-2 = ——— = (k—x*)xP3.
as( 7X) 2F(D/2)( )aa « X3_D ( X )X

e At the point D =1, x = xq,

1 k
as(1,x1) = > <1— ;) , X2 > X3 =k
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Hamiltonian formulation of space dimension dynamics

e Let us consider simplest Hamiltonian dynamics

x1 ={H,x1},
)'<2 = {H,XQ},
for dynamical variables (phase space) (x1,x2), Hamiltonian H
2 2
_ P =X
H= om + V(x) 5m + V(x2)

and Poisson structure

(AB) — £, OA 0B _ 12(8A88 aAaB)_

" 0%y Oxm - \Ox10x2  Ox2 Ox1

e Instead of solving the system of motion equations, we may solve
them in a semi-algebraic way: having one integral of motion -
Hamiltonian, we may find x; from the Hamiltonian, insert it in the

motion equation for x» and solve it.
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e The variables x, D and « are nonnegative, so it is natural to
introduce, free from this restriction, variables:

t=Inx
x1 = Inas
x> =1InD

e Then we obtain the following Hamiltonian and motion equations

H(X17X2a t) = X1 - V(X2’ t) = X1 = V(X2a t)7

x| = f128—X2,

(D-2)/2 )
Xo = —fl2, V(Xg, t) = In(ﬁ k—x

W(D =255 )
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e We may also take x; = «, then

=V(t,x) = (k—X )x D-3 _ = (k— X2)Xexp(xz) 3 _ = (k— e2t) t(e t— 3)

X = 8V = (k=x*)x*? 3 Inxe® = (k—e*)tetle et i, =1,
axz
. B o3t
a=p=tefa=pfia, ﬁlzlnb
xp=—1= xp = —t, DZ]./X
7T(D_2)/2 k — x2 7r(1/x—2)/2 —x2
as(DaX) - W(D_z) 3-D 2|—(1/2X)( /X ) x3— 1/x
7(1/x=2)/2 Vk + x
m(l/x 2)(Vk=x) 37 31/x
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Figure: as as a function of x = ur € (0.01,1.0)
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Figure: as as a function of x = ur € (0.72,5)
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o Note that x > 0 and s > 0 when x < min(1/2,v/k) = 1/2 or
x > max(1/2,vk) = vk = 0.72 and for 0.5 < x < 0.72, a5 < 0,

see figures 1 and 2.

e For x; = 1, we have from as(1, x1)

1 0.48
Qs 27T(1 k) o 0.076

e We may exclude the negative values by using different values of u:
x1=ru1=1/2, xp = rup =0.72, pa/py = 1.44.

11 of 23



Compactification and Dimension dynamics

Let us take one of the dimensions y as circle with radius R. This
corresponds to a periodic structure with a point charge sources at each
point y, =y +2nRn,n=0,+1,+2, ...

Av—erSD(X (vn), @(D,r.y) = ZwDryn
o0

V(D,r,y) = —a(D +1) Z (r? + (2mRn + y)?)(1=P)/2,

n=—0o0

When D = 3, the potential can be writen in a closed form [Bures,
Siegl 2014]

V(3,r,y):—

a(4) sinh(r/R) ) —a(4)/(2Rr), r>R
2Rr cosh(r/R) — cos(y/R) —a(8)/(rP+y?), r,y<R’

vv1|21efr2e3 a(4)/(2R) = a(3).



Compactification and Dimension dynamics

Alternatively, we can rewrite the potential as

_a(4) r+1iy r—iy
V(3,r,y)= AR [coth( R )—i—coth( R )],

or, using

A" =1/T(a) / dit®le A
0

by means of the Theta function as

V(3, r, _y) = _a(4) / dteftr2 Z e*t(zﬂ’Rner)z
0

—00

S 0 e 4R2%t
— _a(4) / dte‘"2M.
0 2R/t
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Compactification and Dimension dynamics

e For y = 0, the potential takes the following simple form

a(4)

r
—\Y oth
2Rr cot

%4 =0)= —.

(3,r,y=0) R

e From V/(3,r,y), we see that for big r, the effective dimension of
space is 3 and for small r is 4.

e For intermediate scales, the effective dimension might change
smoothly from 3 to 4. Integrating V/(3,r,y) by coordinate y, we
define mean potential depending only on the variable r, [Bures,
Siegl 2014]

27
V(3,r) = 2i/0 a9 Vs(r, 9) = —

s

a() __a3)

2Rr r
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Compactification and Dimension dynamics

e As in the Cornell potential case, we define the dimension dynamics
from equality between the corresponding Coulomb potentials:

a(4) sinh(r/R)

2r cosh(r/R) — cos(y/R)
p=1/R, x=pr, r* =x2+x3 +x3.

= a(D)(x)*"",

e From this equality, the dynamical dimension of space D(y, r) is
defined as implicit function and needs numerical solution.

e Alternatively, we may define y as an explicit function of x and D as

y = Rarccos(cosh x — A(D)X2D_3 sinh x),
(4 e2r(D /2
AP)= 5oy O 35 ay.0
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Compactification and Dimension dynamics

If we have two circlular coordinates - a torus, then

Ap=e 6°(x)3(yn)d(zm),

90(D7r7y7z) = Z@(D7raymzm)7
n,m

o0
V(D,r,y,z) = —a(D+2) Y (r+(2rRinty)’+(2rRam+2)?) P/,

n,m=—oo
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Compactification and Dimension dynamics

General expression for Coulomb potential in (D + d)-dimensional space
RD x T9 where T¢ = S x --. x S (d-times) is the d-dimensional
torus. D refer to the "big" dimensions x = (x1,...xp), whereas d to
the "small-compactified” ones y = (y1,...yq). Then

Ap=e Y 6P(X)3(yim)---0(Vdn,):

n1,..,ng

o(D,d,ry1,... yd) = Z o(D,d, ryyims - s Yding)s

V(D,d)(riy1,- - Ya)
o0
=—a(D+ d) Z (P + (7Rim + y1)? + - + (27Ry + yg)?) " (PTI2/2

..... nd_—oo

e—t(27Rang+ya)?

D+d 2

a(D+d Dd4, _
- r((DTz)/ dit” 2 e N e Bi(t.yi),

Bi(t,yi) = Z e~ t@mRin+y)? _ o=ty} 0(2iR;y;t, 471'1R, t),

wherg, the sums in B;'s were written by means of the Theta function.
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Compactification and Dimension dynamics

For a point quark inside hadron of size R at a temperature T we have

Dp=e 3 3(r)50a)5(yn)d(zm)
k,l,n,m

‘P(O,TaX,y’Z) = Z ‘P(OaTk,X/aYnaZm)a

k,l,n,m
0o

V(0,7 x,y,2) =—a(4) Y ((2nk/T +7)?

k,[,n,m=—o0

+(27 Ryl + x)? + (27 Ron + y)? + (2nRsm + z)?) 7!
— _a(a) / dttBo(t, ) Ba(t, X)Ba(t, y) Bs(t, 2),
0

o0
Bi(t,x)= Y e tCmRnt0® = o=0%(0iR xt, 47iR?t), ..., Ro =1/ T,

wlfgefrg we have written the sums by means of the Theta function.




Theta functions

Theta functions is the analytic function 6(z, 7) in 2 variables defined by

0(z,7) = Z explim(Tn® +2nz)] = 1 +2 Z exp(irTn?) cos(2mnz),

nez n>1

where z € C and 7 € H, the upper half plane Im 7 > 0. The series
converges absolutely and uniformly on compact sets.
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Integrals

Let us calculate the following integral

™ 2 2 1
/(a):/ dv ™ {77/3, 2>

0 a2+1—2ac0519:|a2—1|: T, 2<1

Obviously, /(1) = oo, but

/(1)_1/” dv _1/” dd _3/1 dx
2Jo 1T—cos(¥) 4y sin?Y 2 Jg (1-x2)32

1/t d 11 (1/2)r(=1/2
- Z/O ny)m = B(1/2,-1/2) = Z% =0,7!
1
B(a, p) = /0 dex® (1= x)77t = —FEZ)_IF_(?;,Rea/ a, 3> 0.
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Integrals

In our case, a = exp(r/R) > 1 and the corresponding integral is

/_1/ do 1/ dz
~a) b+2cos® ia) z2+bz+1
=1(z,a) = ! In 2+
Y T a(a—1/a) z+1/a’

I(a) =1(—1,a) — I(1,a) =

b=a+1/a, z=¢é"

( 1+a)(1+1/a)
ia(a—1/a) (1—|—1/a)(1+a) a1

Now,
o dy 27 mexp(—r/R)
I_/O 32+1—23COS(’[9) —I(B)—f—l(—a)_ |32_1| - Slnh(r/R) 5
12 do 2a 1
%/0\ COSh(r/R)—COS(/ﬂ) - 32_ 1 - Sinh(r/R)’ a—eXp(r/R).
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