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External field concept . . . depends on the topic!

Assume strong field = laser field (though other cases, e.g. ,
channeled electrons in crystals, heavy ion/electron bunches
collisions, magnetars may be also of interest). Examples:

External field concept: # absorbed/emitted photons (' 1) in a
mode� their total number Nγ

Nγ '
(E2/4π)V

~ω
� 1 =⇒ E �

√
~ω/V

for tight focusing V ∼ λ3 =⇒ E � ω2
√
~/c3

is satisfied for I & 105W/cm2 (c.f. 1.4 × 10−4W/cm2 coming from
Sun).
Atomic physics: E & Eat = e/a2

B = m2e5/~4 = 5 × 109V/cm,
corresponds to I & cE2

at/4π = 3× 1016W/cm2.



Relativistic intensity

Assume e− in plane wave

E = {E sinϕ, 0, 0} ,H = {0, E sinϕ, 0} , ϕ = ω(t− z/c)

Equations of motion can be solved exactly (p0 = 0, ϕ0 = 0):

ε = mc2

[
1 +

1

2

(
eE

mωc

)2

(cosϕ− 1)2

]
, p⊥ ' mc

eE

mωc

ξ ≡ a0 =
eE

mωc
— classical non-linearity parameter

ξ & 1 =⇒ e− becomes ultrarelativistic during t < T

ξ ∼ eEλ/mc2 — work done by the field at distance λ

For lasers: a0 = eE/mωc = 6× 10−10λ[µm]

√
I[W/cm2] & 1, or

I & 3× 1018W/cm2.

As we will see, this has also important implications in QED.



SFQED characteristic field

lC = ~/mc ≈ 3.9× 10−11 cm

lCE

Let E = const, H = 0, pair is created if eElC = mc2

ES =
m2c3

e~
— critical field (F. Sauter 1931)

ES = 1.32× 1016 V/cm = 4.4× 1013 G

IS =
c

4π
E2
S ∼ 1029 W/cm2



Examples of SFQED processes

An external field can:
polarize system (i.e., vacuum);
modify (assist or suppress) a process;
induce a process.

Pic. by D. Seipt

(a): vacuum birefringence;
(b): photon splitting;
(c): pair production;
(d): photon emission (nonlinear Compton
scattering);
(e): two-photon emission (plural or dou-
ble Compton scattering);
(f): trident pair production.



Timeline of the progress in laser technology

A half of the Nobel Prize in Physics 2018 was awarded jointly to Gérard
Mourou and Donna Strickland “for their method of generating high-
intensity, ultra-short optical pulses.”



Ordinary QED
From now on ~ = c = 1

Fundamental fields: ψ(x), Aµ(x)

The Lagrangian: L = Le−e+ + LMaxwell + Lint,

Le−e+ = ψ̄ (iγµ∂µ −m)ψ,

LMaxwell = −1

4
FµνF

µν ,

Lint = −JµAµ = −eψ̄γµAµψ

Initial state |Ψi〉 evolves into a final state |Ψf 〉 = S|Ψi〉, where

S =

∞∑

n=0

(−i)n
n!

∫
d4x1 . . .

∫
d4xnT[Lint(x1) . . .Lint(xn)]

Si→f ≡ 〈Ψf |S|Ψi〉 is the amplitude giving the probability Wi→f =
|Si→f |2 of the process
α = e2/4π = 1/137.035999074(44) is small =⇒ perturbation the-
ory is valid (higher-order terms can be neglected)



SFQED Lagrangian

Aµ(x) = Aµext(x)︸ ︷︷ ︸
classical field, non-perturbative

+ Aµrad(x)︸ ︷︷ ︸
quantized radiation, perturbative

L = Le−e+ + Lrad
Maxwell + Lext

int︸ ︷︷ ︸
L0

+Lrad
int +���

�
Lext

Maxwell︸ ︷︷ ︸
∂µF ext

µν =0

+���
�

Lext+rad
Maxwell︸ ︷︷ ︸

∂µF rad
µν =0

,

Le−e+ + Lext
int = ψ̄

(
iγµ∂µ − eγµAext

µ −m
)
ψ,

L
(•)
Maxwell = −1

4
F (•)
µν F

µν
(•) , Lrad

int = −JµArad
µ = −eψ̄γµArad

µ ψ

Hamiltonian: H(t) = He−e+(t) +Hrad
Maxwell(t) +Hext

int (t) +Hrad
int (t)

He−e+(t) =

∫
d3x ψ̄(x) (iγ∇−m)ψ(x),

H
(•)
Maxwell(t) =

∫
d3x

[
1

2

(
E2

(•) + B2
(•)

)
+∇A0E(•)

]

H
(•)
int (t) =

∫
d3xJµ(x)A(•)

µ (x) = e

∫
d3x ψ̄γµA(•)

µ ψ



The Furry picture

Let’s separate interaction with the radiation field

Ĥ(t) = Ĥe−e+ + Ĥrad
Maxwell + Ĥext

int (t)︸ ︷︷ ︸
Ĥ0(t) — time dependent!

+ Ĥrad
int (t)︸ ︷︷ ︸
Ĥint(t)

The Schrodinger picture: |Ψ(t)〉 = U(t, t0)|Ψ(t0)〉, d

dt
Ô = 0

Û(t, t0) = T exp


−i

t∫

t0

Ĥ(t)dt




Changing to the Furry picture:

|Ψ(t)〉F = ÛF †0 (t, t0)|Ψ(t)〉, OF = ÛF †0 (t, t0)OSÛF0 (t, t0),

ÛF0 (t, t0) = T exp


−i

t∫

t0

Ĥ0(t)dt






The Furry picture
In the Furry picture:

|Ψ(t)〉F = ÛF (t, t0)|Ψ(t0)〉F , i d
dt

OF (t) =
[
OF (t), ĤF

0 (t)
]
,

ÛF (t, t0) = T exp


−i

t∫

t0

ĤF
int(t)dt


 ,

ψ and Aµrad are quantized as in QED in the Schrodinger picture
{
ψ̂Fσ (x), ψ̂F†λ (y)

}
= δσλδ

(3)(x− y),
[
Ârad
µ (x), π̂rad

Aν(y)
]

= igµνδ
(3)(x− y), other relations are zero

Substitute ψ̂F to Eq. for OF and we get
(
/̂p− e /Aext −m

)
ψ̂F = 0 ,

ψ̂F (x) =

∫
d3p

[
âpψp(x) + b̂†pψ−p(x)

]
,

ψ̂F (x) =

∫
d3p

[
â†pψp(x) + b̂pψ−p(x)

]

K. Felix Mackenroth “Quantum Radiation in Ultra-Intense Laser Pulses” (2014)



Physical derivation: perturbation theory breakdown
w.r.t. external field

= + + + . . .

ψp =

{
1 +

i

/̂p−m (−ie /A) +
i

/̂p−m (−ie /A)
i

/̂p−m (−ie /A) + . . .

}

×e−ipxup
Effective vertex weight:

√
α 7→ √α×

√
N̄γ '

e√
~c
×
√(

~
mc

)2

× 2πc

ω
× E2

4π~ω
' eE

mωc
' ξ

If ξ = e
m

√
−〈A2〉 & 1 then all the terms are comparable and must be

retained – summation needed:

ψp = e−ipxup +
i

/̂p−m (−ie /A)ψp

Dirac equation in Furry picture:
(
/̂p− e /A−m

)
ψp = 0



Volkov equation: (
/̂p− e /A−m

)
ψp = 0

Exercise 1

Solve this equation if Aµ = Aµ(ϕ), ϕ = kx, k2 = kA = 0.

Look up for hints in V. B. Berestetskii, E. M. Lifshitz, L P. Pitaevskii
Quantum Electrodynamics (Course of Theoretical Physics, 4),
paragraph 40.



Volkov solution,
(
/̂p− e /A−m

)
ψp = 0

Plane wave: Aµ = Aµ(ϕ), ϕ = kx, k2 = kA = 0

Solution: ψp,σ(x) = Ep(x)up,σ , (/p−m)up,σ = 0

Ep(x) = eiSpΣp – Ritus Ep-function

Σp = 1 +
e

2(kp)
/k /A – spin factor

Sp = −px+ δSp(ϕ) – classical action

δSp(ϕ) = − e

kp

∫ ϕ

0

(
pA(ϕ)− e

2
A2(ϕ)

)
dϕ

Orthonormality and completeness:
∫
d3xψp,σ(x, t)γ0ψq,λ(x, t) = (2π)3δσλδ(p− q),

∑

σ

∫
d3p

(2π)3
ψp,σ(x, t)ψ†p,σ(y, t) = δ(x− y)



Volkov solution,
(
/̂p− e /A−m

)
ψp = 0

Plane wave: Aµ = Aµ(ϕ), ϕ = kx, k2 = kA = 0

Solution: ψp,σ(x) = Ep(x)up,σ , (/p−m)up,σ = 0

Ep(x) = eiSpΣp – Ritus Ep-function

Σp = 1 +
e

2(kp)
/k /A – spin factor

Sp = −px+ δSp(ϕ) – classical action

δSp(ϕ) = − e

kp

∫ ϕ

0

(
pA(ϕ)− e

2
A2(ϕ)

)
dϕ

Properties of Ep-functions:
∫
d4xEp(x)Eq(x) = (2π)4δ(4)(p− q),

∫
d4p

(2π)4
Ep(x)Ep(y) = δ(4)(x− y), Ep = γ0E†pγ

0

Exercise 2

Prove the following property: /̂PEp = Ep/p, /̂P = /̂p− e/A



Volkov solution in plane wave 8

FIG. 3 (Color) Free wave packet evolution in a plane wave
field. The solid gray line indicates the center of mass tra-
jectory, coinciding essentially with the classical trajectory,
and the laser pulse travels from left to right. The blue re-
gions indicate the copropagating self-adaptive numerical grid.
Time and space coordinates are given in “atomic units”, with
1 a.u. = 24 as and 1 a.u. = 0.05 nm, respectively. From
Bauke and Keitel, 2011.

energy free bi-spinor 1 (Berestetskii et al., 1982)). Al-
though it has been shown long ago that positive- and
negative-energy Volkov states form a complete set of or-
thogonal states on the hypersurfaces φ = const (Ritus,
1985), the corresponding property on the hypersurfaces
t = const is not straightforward and it has been proved
only recently (see Ritus, 1985 and Zakowicz, 2005, and
Boca and Florescu, 2010 for a proof of the orthogonal-
ity and of the completeness of the Volkov states, respec-
tively).

Since the Volkov states form a basis of the space of
the solutions of Dirac equation in a plane wave, they can
be employed to build electron wave packets and study
their evolution. A pedagogical example of laser-induced
Dirac dynamics is displayed in Fig. 3 for a plane wave
with peak intensity of 6.3 × 1023 W/cm2 and central
wavelength of 2 nm. The figure shows the drift of the
wave packet in the propagation direction of the wave, its
spreading and its shearing due to non-dipole effects. In
Fillion-Gourdeau et al., 2012 an alternative method of
solving the time-dependent Dirac equation in coordinate
space is presented, which explicitly avoids the fermion
doubling, i.e., the appearance of unphysical modes when
the Dirac equation is discretized.

As in the classical case, we shortly mention here the
paradigmatic case of a monochromatic, linearly polar-
ized plane-wave field Aµ(φ) = Aµ

0 cos(ω0φ). In this case
the action Sp0(x) can be written in the form Sp0(x) =

1 We point out that the discussed Volkov states Ψ±p0,±σ0(x) are
the so-called Volkov in-states, as they transform into free-states
in the limit t → −∞ (Fradkin et al., 1991). Volkov out-states,
which transform into free-states in the limit t → ∞, can be
derived analogously and differ from the Volkov in-states only by
an inconsequential constant phase factor (recall that A(∞) = 0).

−(q0x) + “oscillating terms”, with (Ritus, 1985)

qµ
0 = pµ

0 +
m2ξ2

0

4p0,−
nµ

0 . (8)

The four-vector qµ
0 plays the role of an “effective” four-

momentum of the electron in the laser field and it is indi-
cated as electron “quasimomentum”. The corresponding
electron “mass”

p
q2
0 = m∗ = m

p
1 + ξ2

0/2 is known as
electron’s dressed mass. The results for the quasimo-
mentum qµ

0 and the dressed mass m∗ in the case of a
circularly polarized laser field with the same amplitude
and frequency is obtained from the above ones with the
replacement ξ2

0 → 2ξ2
0 . The quasimomentum coincides

classically with the average momentum of the electron
in the plane wave. Correspondingly, the mass dressing
depends only on the classical nonlinearity parameter ξ0
and it is an effect of the quivering motion of the electron
in the monochromatic wave (see also the recent review
Ehlotzky et al., 2009). As we will see in Sec. V.A, it
is important that conservation laws in QED processes
in the presence of a monochromatic plane-wave field in-
volve the quasimomentum qµ

0 for the incoming electrons
rather than the four-momentum pµ

0 . The question of the
electron dressed mass in pulsed laser fields has been in-
vestigated in Heinzl et al., 2010a and Mackenroth and
Di Piazza, 2011.

In the realm of QED the parameter ξ0 can also be
heuristically interpreted as the work performed by the
laser field on the electron in the typical QED length
λC = 1/m ≈ 3.9 × 10−11 cm (Compton wavelength) in
units of the laser photon energy ω0 (see Eq. (4)). This
qualitatively explains why multiphoton effects in a laser
field become important at ξ0 & 1, such that the laser field
has to be taken into account exactly in the calculations
(Ritus, 1985). In the framework of QED this is achieved
by working in the so-called Furry picture (Furry, 1951),
where the e+-e− field Ψ(x) is quantized in the presence
of the plane-wave field. This amounts essentially in em-
ploying the Volkov (dressed) states and the correspond-
ing Volkov (dressed) propagators (Ritus, 1985) instead
of free particle states and free propagators to compute
the amplitudes of QED processes. In the Furry picture
the effects of the plane wave are accounted for exactly
and only the interaction between the e+-e− field Ψ(x)
and the radiation field Fµν(x) ≡ ∂µAν(x) − ∂νAµ(x)
is accounted for by means of perturbation theory. The
complete evolution of the system “e+-e− field+radiation
field” is obtained by means of the S-matrix

S = T
�

exp

�

−ie

Z
d4xΨ̄γµΨAµ

��

, (9)

where T is the time-ordering operator and Ψ̄(x) =
Ψ†(x)γ0. For an initial state containing only a single elec-
tron with four-momentum pµ

0 , the quantitative descrip-
tion of the interaction between the electron, the laser field

Free wave packet evolution in a plane wave field. The solid gray line
indicates the center of mass trajectory, coinciding essentially with the
classical trajectory, and the laser pulse travels from left to right.
Bauke and Keitel, Computer Physics Communications 182, 12 (2011); A. Di Piazza et al. Rev. Mod.

Phys. 84 (2012)



S-matrix

|Ψ(t)〉F = ÛF (t, t0)|Ψ(t0)〉F , ÛF (t, t0) = T exp


−i

t∫

t0

ĤF
int(t)dt


 ,

Scattering (no pair creation)

|Ψi〉F −→
∑

f

|Ψf 〉F F 〈Ψf |ŜF |Ψi〉F︸ ︷︷ ︸
Ŝfi

,

ŜF = ÛF (tf → +∞, ti → −∞) = T exp


−ie

+∞∫

−∞

ψ̂F /̂AFradψ̂
F dt




Now we can construct perturbation theory w.r.t. interactions with
Arad in presence of Aext (which is considered non-perturbatively )



Feynman rules in SFQED
Table by S. Meuren (from PhD thesis)
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1.3. Feynman rules for QED in external electromagnetic fields

As long as we have a stable vacuum (which is the case in the presence of a plane-wave
laser field), the derivation of the Feynman rules including the external field is
conceptually the same as in ordinary QED (see for example [LL82; PS08; GR96;
FGS91]). The main difference is the concrete form of the spinor field operators14

given in Eq. (1.24). This leads to different external states and a different propagator
for the spinor field. We will not derive the Feynman rules here, the results are
presented in Table 3.

Feynman rules for QED with background fields

Vertex −ieγµ

�
Photon propagator −iDµν(x − y)

�

x‚ µ y‚ ν

Dirac propagator iG(x, y)
�

x y

Incoming fermion Ep(x) up,σ√
2�
�

p
x

Outgoing fermion ūp,σ√
2�
Ēp(x)
�

p
x

Incoming anti-fermion ū−p,−σ√
2�

Ē−p(x)
�

← p
x

Outgoing anti-fermion E−p(x) u−p,−σ√
2�
�

← p
x

Incoming photon
√

4π eµ(α) e−ikx

�← k
x

Outgoing photon
√

4π eµ(α)∗
eikx

�← k
x

Table 3: Feynman rules to calculate the S-matrix elements Sfi in QED
with external fields. We use a double line for (anti-) fermions
to stress the fact that they include the exact interaction with
the classical background field. In the limit Aµ → 0 we obtain
the Feynman rules for ordinary QED [LL82].

14As aforementioned in other external fields the situation is a bit more complicated. We could
have different in- and out-states, non-zero tadpole diagrams and spontaneous pair-creation from
the vacuum all of which is not the case in a plane-wave laser field.



Fermion propagator

Green’s function Eq.:
(
/̂p− e /A−m

)
iG(x, y) = iδ(x− y)

We can use Ep functions instead of Fourier transform:

G(x, y) =

∫
d4p′

(2π)4

d4q′

(2π)4
Ep′(x)G(p′, q′)Eq′(y)

Transforming the whole equation and using the properties of Ep:
∫
d4x d4yEp(x)

[(
/̂P−m

)
G(x, y)

]
Eq(y)

︸ ︷︷ ︸
(/p−m)G(p,q)

= (2π)4δ(p− q)

G(p, q) = (2π)4δ(p− q)G(p), then G(p) =
1

/̂p−m →
/̂p+m

p2 −m2 + i0

iG(x, y) =

∫
d4p

(2π)4
Ep(x)

i(/̂p+m)

p2 −m2 + i0
Ep(y)

G(x, y) can be derived from iG(x, y) = 〈0|T
{
ψ̂F (x), ψ̂F (y)

}
|0〉



Ep-representation

Example, γ-emission: Si→f = −ie
∫
d4x ψ̄p′(x)/ε

∗
l e
ilxψp(x)

Some operator: O(p′, q′) =
∫
d4x d4yEp′(x)O(x, y)Eq′(y)

l ↓

q

Eq(x)

p

Ep(x)

−ieγµ
x

In various diagrams every vertex we will face a combination:

Γµ(l; p, q) =

∫
d4xe−ilxEp(x)γµEq(x)

In Ep-representation interaction with Aext can be transferred to
vertices, while fermion propagator and endings are written as in
free QED

γ-emission: Si→f = −ieūp′ε∗lµΓµ(−l; p′, p)up



Dressed vertex in CCF i

Constant crossed field: Aµ = −aµϕ , ϕ = kx, k2 = ka = 0,
e.g. aµ = {0, E/ω, 0, 0}, kµ = {ω, 0, 0, ω}

Eq(x) = Σq exp[−iqx+ iδSq(ϕ)], let’s perform FT:

Γµ(l; p, q) =

∫
d4x

∞∫

−∞

dseisϕ×

∞∫

−∞

dϕ

2π
e−isϕei(p−q−l)x

[
Σpγ

µΣqe
−iδSp+iδSq

]
(ϕ)

=

∞∫

−∞

ds (2π)4δ(sk + p− q − l)Γ̃µ(s|p, q)

Conservation laws:

kp− kq − kl = 0 ⇒ χp = χq + χl, χp =
e
√
−Fµνpν
m3

= ξ
kp

m2

p⊥ = q⊥ + l⊥,

sω + εp = εq + εl



Dressed vertex in CCF ii

Constant crossed field: Aµ = −aµϕ , ϕ = kx, k2 = ka = 0,
e.g. aµ = {0, −E/ω, 0, 0}, kµ = {ω, 0, 0, ω}
Further rearranging Γ̃µ(s|p, q)

Σpγ
µΣq =

(
1 + e

2(kp)
/A/k
)
γµ
(

1 + e
2(kq)

/k /A
)

= R0 +R1ϕ+R2ϕ
2

We have to calculate the integrals

An(s) =

∞∫

−∞

dϕ

2π
ϕn exp [−isϕ+ iδSq(ϕ)− iδSp(ϕ)] , n = 0, 1, 2

Actually An(s) = in∂nA0(s)/∂sn

The exponent:

δSp(ϕ) = − e

kp

∫ ϕ

0

(
pA(ϕ)− e

2
A2(ϕ)

)
dϕ,

δSq(ϕ)− δSp(ϕ) =
e

2

(
aq

kq
− ap

kp

)

︸ ︷︷ ︸
α/2

ϕ2 +
e2a2

6

(
1

kq
− 1

kp

)

︸ ︷︷ ︸
−4β/3

ϕ3



School implies homework!

Exercise 3

1 Consider Σ̄pγ
µΣq =

(
1 + e

2(kp)
/A/k
)
γµ
(

1 + e
2(kq)

/k /A
)

.
Using γ-matrix relations this expression can be simplified to the
form

Σ̄pγ
µΣq = γν

(
hV

µ
ν + hA

µ
νγ

5
)
,

where hV and hA are some tensors, depending only on Aµ (or
Fµν) and momenta. Calculate hV and hA for the case of CCF.

2 The function A0(s) =
∞∫
−∞

dϕ
2π exp

[
−isϕ+ iα2ϕ

2 − i 4β
3 ϕ

3
]

can be

rewritten in the following form:

A0(s) = f(α, β)Ai [y(α, β)] , Ai(y) =
1

2π

∞∫

−∞

dσ e−iσ
3/3−iyσ.

Calculate f(α, β) and y(α, β).

We will use these results in the following lecture on Friday!



General notion of a strong field for a field-induced
process

Quantum theory allows for fluctuations restricted by the
uncertainty relations. Consider a field-induced process with
energy lack ∆E and the two characteristic times:

Uncertainty time ∆E · τQ ' ~ =⇒ τQ '
~

∆E
;

Time needed for the field to restore this energy: work produced

by the field eE · vτF · cosϑF ' ∆E =⇒ τF '
∆E

eEv cosϑF

Then obviously the process is allowed if τF . τQ, or E & ∆E2

e~v cosϑF



Tree level processes and cascades

γ e−

γ
e+

γ

e−

e−

e+

γ

e+

e−

e−

e+

Strong
field
region

seeding e−



Nonlinear Compton scattering

p

p′

k

θ

ϑ

E

Consider photon emission by an ultrarel-
ativistic (γ � 1) electron in a transverse
field.
An ultrarelativistic particle emits into an
angle θ, ϑ ' γ−1 (kinematical effect).
Then v = c and for an angle ϑF with the
field cosϑF ' γ−1.

Then from momentum conservation p = p′ + ~ω
c and

ε =
√
c2p2 +m2c4 ≈ pc+

m2c3

2p
, ε′ =

√
c2p′2 +m2c4 ≈ cp′ + m2c3

2p′
,

∆E = ε′ + ~ω − ε '����
���:

0
cp+ ~ω − cp′ + O

(
mc2

γ

)

E & ∆E2

e~v cosϑF
' (mc2/γ)2

e~ · c · γ−1
=
ES

γ
, or χ =

γE

ES
& 1



Meaning of the dynamical quantum parameter χ

χ =
e~
m3c4

√
−(Fµνpν)2

=
γ

√(
E + v×H

c

)2 − (v·E)2

c2

ES
=
EP

ES
' γE⊥

ES

Electron proper acceleration in the field measured in Compton
units mc3/~;
Ratio of the electric field in a rest frame to ES

Roughly: normalized product of energy and transverse field strength,
In an electron rest frame ∆E′ ' ~ω ' mc2, cosϑ′F ' 1 and

E′ & ∆E′2

e~v cosϑ′F
' (mc2)2

e~ · c · 1 = ES, E′⊥ ' γ × E⊥, E′‖ ' E‖

Unlike for vacuum processes, enough to provide E ' ES in a rest frame!



NCS in circularly polarized plane wave

Si→f = −ie
∫
d4x Ψ̄p′(x)/ε

∗
l e
ilxΨp(x) = (2π)4

∑

s≥1

M (s)δ(4)(q′ + k′ − q − sk)

W1 = + + + . . .

k k′ k′ k′

W2 = + + . . .

kk k′ kk k′

Narozhny, Nikishov, Ritus, Sov. Phys. JETP 20, 622–629

(1965)

W
(s)
i→f (ξ, χ) =

αm2

4q0

∫ us

0

du

(1 + u)2

{
−4J2

s (z) + ξ2

(
2 +

u2

1 + u

)

×
[
J2
s+1(z) + J2

s−1(z)− 2J2
s (z)

]}
,

z =
ξ2
√

1 + ξ2

χ

√
u (us − u), us =

2sχ

ξ(1 + ξ2)



Locally constant field approximation

If τF � λ then one can use a locally constant field approximation
(LCFA);
Examples:

Atomic physics: τF =
me

~E
. K = ωτF is called the Keldysh parame-

ter, the field is slowly varying if K � 1.

SFQED: τF =
mc2

eE
and LCFA is valid for ξ � 1 (actually if χ � 1

then for ξ � χ1/3).

This is not only a great simplification (allowing, e.g., to use Monte
Carlo codes to track complicated backgrounds and plural events),
but also a manifestation of a truly SF regime!



Validation (Harvey et al, PRA 2014)

ξ . χ1/3 ξ � χ1/3



Invariant probabilities of processes

Probabilities of various processes W should be lorenz- and gauge
invariant, thus W should be a function of

ξ =
e
√
−〈AµAµ〉
mc

, χe,γ =
e~
√
−(Fµνpν)2

m3c4

F =
1

2
FµνFµν = H2 − E2, G = −1

2
εµνλσF

µνFλσ = (E,H)

Suppose ξ � 1, χ1/3 : ξ →∞, formation length lF ∼
λ

ξ
� λ — field

is locally constant

W = W (χ,F,G) — invariant



LCFA for general process

If |F|, |G| � min(1, χ2)E2
S :

W ≈W (χ, 0, 0)

F = G = 0
⇓

E = H = const, (E,H) = 0 —
constant crossed field

In RF of an ultra-relativistic particle any field looks like CCF!

LCFA: for most physical cases it is enough to calculate W (χ, 0, 0)



Nonlinear Compton Scattering in CCF

Probability rate of e−(e+) with energy εe to emit γ with energy εγ :

dWrad(εγ , χe)

dεγ
= −αm

2c4

~ε2
e





∞∫

x

Ai (ξ) dξ +

(
2

x
+ χγ

√
x

)
Ai′(x)





χe = χ′e + χγ , x = (χγ/χeχ
′
e)

2/3

Wrad ≈
αm2c4

~εe
×





1.44χe, χe � 1

1.46χ2/3
e , χe � 1

A.I. Nikishov, V.I. Ritus JETP, Vol. 19, 5 (1964);
19, 2, (1964);

N. V. Elkina et al Phys. Rev. STAB 14, 054401

(2011)



Nonlinear Breit-Wheeler process in CCF

Probability rate of e−e+ production by a photon with energy εγ ,
energies of e− and e+ are εe, ε′e = εγ − εe:

dWcr(εe, χγ)

dεe
=
αm2c4

~ε2
γ





∞∫

x

Ai (ξ) dξ +

(
2

x
− χγ

√
x

)
Ai′(x)





χγ = χe + χ′e, x = (χγ/χeχ
′
e)

2/3

Wcr ≈
αm2c4

~εγ
×





0.23χγe
−8/3χγ , χγ � 1

0.38χ2/3
γ , χγ � 1

A.I. Nikishov, V.I. Ritus JETP, Vol. 19, 5 (1964); 19, 2,
(1964);

N. V. Elkina et al Phys. Rev. STAB 14, 054401 (2011)



Particle free path

Wrad,cr — total probability rates

tfree ∼W−1
rad,cr — mean free path time of e±, γ

tfree ∝
~ε

αm2c4
χ−2/3, χ� 1

0.1 1 10 100 1000
0.001

0.01

0.1

1

10

100

Χe,Γ

L
Re

,Γ
H1

0
-

4
c
m
L 1b

2b

3b
1a

2a

3a

LR ∼ cte,γ — mean free path length of a) e, b) γ propagating transversely in
laser field of intensities I 1023 (1a, 1b), 1024 (2a, 2b), 1025 (3a, 3b) W/cm2

S. S. Bulanov, C. B. Schroeder et al, Phys. Rev. A, 87, 062110 (2013).



S-type cascades

Let’s take e− with εe ∼ 10÷ 100 GeV, and “moderately” intense laser
I ∼ 1019 ÷ 1022 W/cm2.

Due to high εe the parameter χ ∼ εe
mc2

E

ES
& 1

e−

In each reaction χ = χ′1 + χ′2, so χ↘ and Wcr ∝ exp

(
− 8

3χγ

)
→ 0!

Cascade will eventually collapse, Ne−e+ ∝ ε0

This cascade resembles Extensive
Air Showers
S(Shower)-type cascade
S. S. Bulanov et al Phys. Rev. A 87,

062110(2013).

I. V. Sokolov et al PRL 105, 195005 (2010).



The SLAC E144 experiment (1991-1998)

εe = 46.6 GeV, I ≈ 1018 W/cm2, a0 ≡ ξ ≈ 0.6, χ ≈ 0.13 – slightly
below the threshold of a ‘strong field domain’



Self-sustained cascades

e− is seeded at rest in strong laser field
with params λ, E � ES

e− motion is quasi-classical,
dwave packet � λ

z

dpµ(τ)

dτ
=

e

m
Fµν(x(τ))pν(τ),

dxµ(τ)

dτ
=
pµ(τ)

m
,

χ(r, t) =
e

m3

√
(p0E + p×H)

2 − (pE)
2

e− is accelerated so that dχ/dt > 0

Acceleration time:
dχ

dt
tacc ∼ 1

Lifetime: Wrad · tfree ∼ 1

Escape time: tesc ∼ λ/c



Self-sustained cascades

e− is seeded at rest in strong laser field
with params λ, E � ES

e− motion is quasi-classical,
dwave packet � λ

z

dpµ(τ)

dτ
=

e

m
Fµν(x(τ))pν(τ),

dxµ(τ)

dτ
=
pµ(τ)

m
,

χ(r, t) =
e

m3

√
(p0E + p×H)

2 − (pE)
2

EM field restores ε and χ, the process is
repeated, until particles leave SF area or
field is depleted

Ne−e+(t) ∝ eΓt

How strong the field must be? Γ?



Toy model: uniformly rotating electric field

Initially slow p(0)� mc particle in a “relativistic field” a0 = eE0

mcω � 1

χ(0) ∼ E0/ES � 1

E(t) = {E0 cosωt,E0 sinωt} ≈ E0{1, ωt}

dp(t)

dt
= eE(t), p(0) = 0

p(t) =��
�*0

p(0) +

t∫

0

eE(t) dt = eE0

{
t,
ωt2

2

}

E⊥ ∼ E0
ωt

2
, χ(t) ∼ E⊥ γ

ES
∼ E0

ES︸︷︷︸
small

× ωt

2︸︷︷︸
small

×
eE0t

mc︸ ︷︷ ︸
very large!

angle ωt
2

mc

eE0
� t� 1

ω

x

y

E⊥ p(t)

ωt/2ωt

E(t)

χ can attain unity rather quickly: t � ω−1!!! But how general is
that?



General case (numerical simulations

Fedotov A.M. et al, PRL 105, 080402 (2010)



Toy model: hierarchy of times in cascade

χ(t) ∼
(
E0

ES

)2 ~ω
mc2

t2

τ2
C

, γ(t) ∼ E0t

ESτC
, τC =

~
mc2

tacc : χ(tacc) ' 1 =⇒ tacc '
τC
αµ

√
mc2

~ω
, µ =

E

αES

tacc � tfree ⇒ γ are emitted when χ� 1 =⇒Wrad ≈
α

τCγ
χ2/3

tfree : Wrad(tfree) ' 1 =⇒ tfree '
τC

αµ1/4

√
mc2

~ω

1/ω . tesc ∼ λ

Hierarchy of times:
mc

eE0
� tacc . tfree �

1

ω
. tesc

Finally: µ & 1, or E0 & ES/137 , laser intensity I & 1025 W/cm2

Ne−e+ ∼ eΓt: Γ =
tfree

tacc
∼ µ3/4,

π/ω

tfree
∼ πµ1/4

√
α2mc2

~ω
(0.5α2mc2 = 13.6eV =⇒

√
∼ 5)



Basic Monte-Carlo algorithm

1 Set initial particle at
r0(t0)

2 Determine particle
lifetime τ ∼W−1(χ)
with Event Generator
(EG)

3 Solve Eqs of motion,
r0(t0) 7→ r(t = τ) with
Particle Mover (PM)

4 Calculate out-particles
with Particle Generator
(PG)

5 Repeat these steps for
new particles

Particles move along trajectories (r(t), p(t)), so
χ(t) = χ(r(t),p(t)), ε(t) = ε(r(t),p(t)) and W (t) = W (χ(t), ε(t))

Steps 2 and 3 are mixed!



Details of the Monte-Carlo algorithm

Incorporate of the Particle Mover with the Event Generator
∆t — time step of numerical scheme

e− at ti at r(ti)
with εi, pi and χi

EG: check if emis-
sion happens dur-
ing ti < t < ti + ∆t

random 0 < r < 1

r
?
< Wrad(ti)∆t

PM: move e−

r(ti) 7→ r(ti + ∆t)

PG: new e−γ
Get εγ(ti), kγ(ti),
then ε′e(ti), pγ(ti)

False

True

∆t�W−1
rad(ti)



Particle Generator PG

1) Random 0 < r′ < 1
2) Solve equation on εγ :

1
Wrad

εγ∫
εmin

dWrad(εγ)
dεγ

dεγ = r′

1) Random εmin < εr < εe
random 0 < r < max(dWrad(εγ)/dεγ)
2) If r < dWrad(εr)/dεγ take εr

3) determine χγ(ti), k(ti)
4) determine new e− energy εe,
p(ti) from χi = χγ + χe

Relativistic aberration effect⇒ p of product particles lay in ∆θ ∼ γ−1

around p0, so all particles move in same direction



Particle Movers

χ� 1 — classical emission
χ & 1 — quantum emission

E is high, tacc: ∆χ(tacc) ∼ 1, ωtacc . 1
QED cascades take place for χ & 1, so we choose quantum
description.

Between actions of emission e± move along classical trajectories:
ṗ(t) = e

[
E(r, t) + v

c ×H(r, t)
]

ṙ(t) = p(t)/m

Numerical schemes
Leapfrog
Boris
Runge-Kutta
other



Simulations of cascade dynamics in rotating E field
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Number of e−e+ pairs

Maximum number of pairs (solid):

N ∼ exp

(
tesc
te

)
∼ exp

(
παµ1/4

√
~ω
mc2

)

Number of pairs “stored” in laser pulse (dashed):

Ne,max ∼
W

2εe
∼ αµ5/4

(
~ω
mc2

)5/2
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A(valanche)-type QED cascade
can deplete driving laser field!

A. M. Fedotov, N. B. Narozhny, G. Mourou and G. Korn, PRL 105, 080402 (2010)



Proof of scaling

χest ∼ µ3/2

εest ∼ mc2µ3/4
√

mc2

~ω

ϑest ∼ 1
αµ1/4

√
~ω
mc2

Γ ∼ αµ1/4
√

mc2ω
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Kinetic description of generated e−e+γ- plasma
(EPPP)

Phase space distributions of EPPP:
f−(r,p, t), f+(r,p, t), fγ(r,p, t)

dfa
dt

= GAIN− LOSS

Currently neglected:
(Possible) degeneracy of EPPP:
εe � εF = (3π2)1/3~cn1/3

e =⇒ ne � (εe/~c)3;
Recombination processes O(n2

a) (e±γ → e±, e+e− → γ):
ne � (mc/~)2 × (εe/~c);
“Trident” processes (e± → e±e−e+, e± → e±γγ);
Other O(α2) processes (e±γ → e±γ, e+e− → γγ, γγ → e+e−,...);
. . .



Kinetic (cascade) equations

{
∂

∂t
+

p

ε
· ∇ ± e

(
E +

p

ε
×H

)
· ∂
∂p

}
f±(p, t) =

=

∫
f±(p + k, t)wrad(p + k→ k)d3k︸ ︷︷ ︸

gain e±→e±γ

− f±(p, t)

∫
wrad(p→ k)d3k︸ ︷︷ ︸

loss e±→e±γ︸ ︷︷ ︸
quantum radiation reaction (friction)

+

+

∫
fγ(k, t)wcr(k→ p)d3k︸ ︷︷ ︸

gain γ→e−e+

{
∂

∂t
+

k

ω
· ∇
}
fγ(k, t) =

∫
[f+(p, t) + f−(p, t)]wrad(p→ k)d3p︸ ︷︷ ︸

gain e±→e±γ

−

− fγ(k, t)

∫
wcr(k→ p)d3p︸ ︷︷ ︸

loss γ→e−e+



General structure of PIC-QED code
Elkina, Fedotov et al 2011

saving
results;
t := t+ ∆t

Monte Carlo
∀e±: if e± → e±γ then randomly sample γ
∀γ: if γ → e+e− then randomly sample e±

data restructuring:
saving created particles

removing decayed particles

PIC
pi := pi + ei{Ei(ri, t) + vi × H(ri, t)/c}∆t;

E := E + (c∇grid × H − 4πj)∆t;
H := H − c(∇grid × E)∆t

sample random ρ (0 ≤ ρ < 1)

Wrad ·∆t < ρ

Nγ := Nγ + 1;
sample random ρ′ (0 ≤ ρ′ < 1);

sampling εγ :
1

Wrad

εγ∫
~/∆t

dWrad
dεγ

dεγ = ρ′;

pγ = (εγ/εe)pe; rγ = re;
p′e = pe − pγ

END

YES
NO

PIC-QED codes:
SMILEI (http://www.maisondelasimulation.fr/smilei/)
EPOCH (https://gitlab.com/arm-hpc/packages/wikis/
packages/EPOCH)
PICADOR (http://hpc-education.unn.ru/en/research/
overview/laser-plasma

OSIRIS (http://epp.tecnico.ulisboa.pt/osiris/)
and many others

http://www.maisondelasimulation.fr/smilei/
https://gitlab.com/arm-hpc/packages/wikis/packages/EPOCH
https://gitlab.com/arm-hpc/packages/wikis/packages/EPOCH
http://hpc-education.unn.ru/en/research/overview/laser-plasma
http://hpc-education.unn.ru/en/research/overview/laser-plasma
http://epp.tecnico.ulisboa.pt/osiris/


Field depletion in PIC-QED simulations
T. Grismayer et al (2017)

GRISMAYER, VRANIC, MARTINS, FONSECA, AND SILVA PHYSICAL REVIEW E 95, 023210 (2017)

(a) (b) (c) 

electrons
positrons
photons

electrons
positrons
photons

electrons
positrons
photons

FIG. 1. 3D PIC simulation snapshot of QED cascades for (a) setup 1 with a0 = 1000 at t = 90ω−1
0 , (b) setup 2 with a0 = 1300 at t = 80ω−1

0 ,
and (c) setup 3 with a0 = 2000 at t = 46ω−1

0 . The laser pulses are shown through isocontours of the electromagnetic energy. The particles
displayed represent only a small fraction of the simulation particles.

modifies the orbits of particles [34] and can lead to anomalous
radiative trapping [35], which we omit in the following analysis
but which is self-consistently captured in our simulations.

Setup 1 (lp-lp) consists of two linearly polarized lasers
where the phase and polarization are defined by

�a± = (0,a0 cos(ω0t ± k0x),0), (1)

where “−” and “+” denote, respectively, a wave prop-
agating in the positive and in the negative x direction.
a0 = eE0/mω0c is the Lorentz-invariant parameter, related
to the intensity I by a0 = 0.85(I [1018 W cm−2]λ2

0 [μm])1/2,
and E0 is the peak electric field strength (which will be
expressed is units of mω0c/e in the following, such that
Ẽ0 = eE0/mω0c = a0). This results in a standing wave where
Ey = 2a0 cos(k0x) sin(ω0t) and Bz = −2a0 sin(k0x) cos(ω0t);
the electric and magnetic fields of the standing wave have a
fixed direction. In addition, �E ⊥ �B and there is a π/2 phase
offset between �E and �B both in space and time. This suggests
that the dynamics of the particles in the standing wave might
be dominantly affected by the electric or the magnetic field
depending on the phase within the temporal cycle [17,34].
The electric field accelerates electrons in the y direction,
the magnetic field Bz can rotate the momentum vector and
produce also px , and the orbits are confined in the x-y plane;
see Fig. 1(a). The existence of the px component ensures
that there is a perpendicular momentum component to both
�E and �B. Rotating the momentum vector toward higher px

gradually increases χe until a photon is radiated. This photon
then propagates and can decay far from the emission point. For
a particle born at rest, χe oscillates approximatively twice per
laser period with a maximum on the order of 2a2

0/aS , where
aS = mc2/h̄ω0 is the normalized Schwinger field [36]. The
cascade develops mostly around the bunching locations (two
per wavelength, which corresponds to the moment of rotation
or high χ ) and is characterized by a growth rate that possesses
an oscillating component at 2ω0.

Setup 2 (cw-cw) is composed of two clockwise circularly
polarized lasers defined by

�a± = (0,a0 cos(ω0t ± k0x), ±a0 sin(ω0t ± k0x)), (2)

where a0 = 0.6(I [1018 W cm−2]λ2
0 [μm])1/2. In addition to

the Ey and Bz components that are the same as for the
lp-lp case, we also have Ez = 2a0 sin(k0x) sin(ω0t) and By =
−2a0 cos(k0x) cos(ω0t). For any x, both �E and �B are parallel

to the vector �e(x) = (0, cos x, sin x). The direction of the fields
depends on the position, but the amplitude of both �E and �B
is only a function of time, which results in a helical field
structure growing or shrinking uniformly in space ( �E and �B
are dephased by π/2 in space). Contrary to the lp-lp setup,
this configuration does not produce px for particles born at
rest since at each position both �E and �B are parallel to the
momentum at all times, and significant χe cannot be achieved.
Reaching high values of χe is, however, possible for particles
that are not at rest initially. If an external perturbation provides
a transverse momentum px (e.g., the initial ponderomotive
force due to the laser pulse envelope), the particle can move
along the x axis and leave the region where the fields remain
parallel to the momentum kick acquired at the initial position.
In this way, the value of χe is increased, and so is the
probability of radiating hard photons. The decay of hard
photons produces pairs that will possess either an initial
transverse or longitudinal momentum component, and the
cascade will naturally develop. A crude analysis shows that
the maximal χe attainable is on the order of 2a0γ0/aS (γ0

being the initial energy of the particle when created). All x

positions have equivalent probabilities to initiate a cascade
because only the azimuthal angle of the field changes along
the x axis. Therefore, the cascade shall develop over the entire
wavelength.

Setup 3 (cw-cp) is formed by a clockwise and a counter-
clockwise polarized laser:

�a± = (0,a0 cos(ω0t ± k0x), −a0 sin(ω0t ± k0x)), (3)

where a0 = 0.6(I [1018 W cm−2]λ2
0 [μm])1/2. The components

Ey and Bz are the same, but Ez = 2a0 cos(k0x) cos(ω0t) and
By = −2a0 sin(k0x) sin(ω0t). The magnitude of the field vec-
tors is constant in time (| �E| = 2a0 cos x and | �B| = 2a0 sin x),
whereas the direction changes. In this case, �E|| �B, and their
direction �e(t) = (0, cos t, sin t) does not depend on space,
which results in a fixed planar beating pattern that rotates
around the laser propagation axis. This setup consists in a
rotating field structure, and the dynamics of the particles has
already been studied [15,26,37]. The advantage lies in the
direction of the fields, which is constantly changing, and the
particles are not required to move in x to enter a region where
�E and �B are perpendicular to their momentum. For similar p⊥,
the χe is on the same order regardless of the x position, so we
could expect the cascade to grow everywhere with the same

023210-2

E.N. Nerush et al (2011)

Energy balance:

E.N. Nerush et al (2011)



Discussion i

Observation:
Typically, in more realistic simulations, self-sustained regime of QED
cascades is already observed at intensities 1023÷24W/cm2, 1÷ 2

orders lower than 5× 1025W/cm2 ↔ E = αES .

Of ultimate importance for ELI, XCELS, etc.!

If R� 1/ω, then tesc ' R� 1/ω (if radiative trapping also takes
place [Gonoskov et al., PRL 2014; Ji et al., PRL 2014; AF et al.,
PRA 2014], then even tesc � R!);
Any estimate of Γ always underestimates cascade multiplicity:
〈eΓt〉 > e〈Γ〉t, and even 〈eΓt〉 � e〈Γ〉t for t� Γ−1;
Originally, we assumed κ & 1 as rough condition for pair pro-
duction (this also approved usage of universal asymptotic for W ).
However, Wcr(κ � 1) = O(e−8/3κ) remains non-negligible for
even smaller values κ & 0.1



Discussion ii
At I & 1024÷25W/cm2 a new physical regime of laser - matter interac-
tion should be revealed, characterized by massive production of QED
(e−e+γ) cascades [with macroscopic multiplicity!]

There may be though some problems with injection of seed particles
(e.g. due to radiative impenetrability of strong field region)
One possible solution – conversion of S-cascades to A-cascades
(as hard photons may easily access focus)

At I & 1026÷27W/cm2 even focusing of laser pulses in vacuum would
become unstable due to spontaneous pair creation and subsequent cas-
cades development

This process of fast depletion of a focused laser field in vacuum due to
production of e−e+γ-plasma may very likely prevent attainability of the
Sauter-Schwinger critical electric field

ES =
m2c3

e~
= 1.3× 1016V/cm

with laser fields capable for pair creation

However, for more definite predictions further simulations of this regime
are required.



Radiative corrections in SFQED

Some diagrams for further use

For formulation of exact electron propagator:

For formulation of exact photon propagator:

Arbitrary-order multi-bubble diagrams:

Higher-order mass corrections:

Higher-order polarization corrections:

For skeleton equations:

Some diagrams for further use

For formulation of exact electron propagator:

For formulation of exact photon propagator:

Arbitrary-order multi-bubble diagrams:

Higher-order mass corrections:

Higher-order polarization corrections:

For skeleton equations:



Electron self-energy

Classical Electrodynamics

Eem ∝
e2

2

∫
d3ξ

δ(3)(ξ)

|ξ| =
e2

2r0
r0 → 0,

r0 . re ≡
e2

mc2
= αlC (re – ‘classical electron radius’)

re and Ecr =
m2c4

e3
=
ES
α

limit Classical ED

Quantum Electrodynamics

Eem '
e2m

π2

∫
d3ξ

|ξ|3 ∝ e
2m log

(
1

mr0

)
, r0 → 0

Pointlike charge is effectively replaced by a cloud of virtual pairs

of size ' lC =
1

m
' 137re (or

~
mc
' 4×10−11cm in conventional

units)
Weisskopf V. F. Growing up with Field Theory (The Development of Quantum Electrodynamics in

Half a Century. Personal Recollections) (1980)



Radiation corrections in QED
~ = c = 1

After renormalization (which is all the same required for physi-
cal reasons, albeit Eem ' αm log

(
1

mr0

)
� m for any reasonable

value of r0!), the coupling constant becomes effectively ‘running’,
and its energy dependence essentially mimics the nature of diver-
gency: α(ε) ' α log(ε/m), ε � m (high energy ‘stripping’). Note
that α(ε) remains small for all reasonable values of energy!

Review and classification of the variety of high-energy QED pro-
cesses demonstrates that all the cross sections remain small σ(ε) .
αnr2

e logk(ε/m) within all the reasonable energy range.
V.G. Gorshkov (1973); V.N. Baier (1981)

Thus, perturbation theory in ordinary QED works pretty well
for all the reasonable values of parameters.



Radiation corrections in SFQED — the first glance
Consider e− or γ in CCF, characterized by a single Lorentz- and

gauge-invariant parameter χe,γ =
e

m3

√
−(Fµνpνe,γ)2 ∼ EP

ES

— Volkov propagator

Nonlinear Compton effect: Wrad(χe) '
αm2

p0
χ2/3
e , χe � 1

on the other hand by optical theorem Wrad =
2m

p0
ImM (2)

M (2)(χe) = ' αmχ2/3
e , χe � 1;

Nonlinear BW pair production:

Wcr(χγ) =
2m

k0
Im Π(2) ' αm2

k0
χ2/3
γ , χγ � 1,

Π(2)(χγ) = ' αmχ2/3
γ , χγ � 1;

IFQED radiation corrections are growing surprisingly fast with χ
(i.e. with both energy and field strength)



Reminder: Volkov solution in CCF

CCF: Aµ = −aµϕ, ϕ = kx, k2 = ka = 0

ψp,σ(x) = Ep(x)up,σ, (/p−m)up,σ = 0

Ep(x) =

[
1− e /k/a

2(kp)
ϕ

]
exp

{
−ipx+ i

e ap

2 kp
ϕ2 + i

e2a2

6 kp
ϕ3

}

Ep(x) =

[
1− e /a/k

2(kp)
ϕ

]
exp

{
ipx− i e ap

2 kp
ϕ2 − ie

2a2

6 kp
ϕ3

}

e− propagator

iG(x, y) =

∫
d4p

(2π)4
Ep(x)

i(/̂p+m)

p2 −m2 + i0
Ep(y)



Electron mass operator in CCF

l →

q →p′ x′
p

x

Γν Γµ

Dcµν l ↓

q

Eq(x)

p

Ep(x)

−ieγµ
x

Γµ(l; p, q) =

∫
d4xe−ilxEp(x)γµEq(x)

−iM(x, x′) = (−ie)2γµiGc(x, x′)γνDc
µν(x− x′),

Dc
µν(x− x′) =

∫
d4l

(2π)4

−igµν
l2 + i0

e−il(x−x
′)

In Ep representation:

−iM(p, p′) = (−ie)2

∫
d4xd4x′ Ēp(x)γµiGc(x, x′)γνEp′(x)Dc

µν(x− x′)

= (−ie)2

∫
d4l

(2π)4

d4q

(2π)4
Γµ(l; p, q)

i(/q +m)

q2 −m2 + i0
Γν(−l; q, p′) −igµν

l2 + i0



Electron mass operator in CCF

Originally the diagram calculated by V.I. Ritus (1972). Unfortunately
the paper lacks details and contains old notations, making it difficult to
understand. Nevertheless, let’s try to follow it’s plan

Main goals:
simplify as much as possible
extract SF behaviour (dependence on χ)



M (2) : Sketch of calculation I, conservation laws

−iM(p, p′) = −e2

∫
d4l d4q

(2π)8
Γµ(l; p, q)

i(/q +m)

q2 −m2 + i0
Γν(−l; q, p′) −igµν

l2 + i0

12 integrals in total (and some of them are divergent)

Let’s use

Γµ(l; p, q) =
∞∫
−∞

ds (2π)4δ(sk + p− q − l)Γ̃µ(s|p, q)

Γν(−l; q, p′) =
∞∫
−∞

ds′ (2π)4δ(−s′k − p′ + q + l)Γ̃ν(−s′|q, p′)

Let’s fix q = sk + p− l and integrate over d4q:

M(p, p′) = −ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× 1

(q2 −m2 + i0)(l2 + i0)
Γ̃µ(s|p, q)(/q +m)Γ̃µ(−s′|q, p′)



M (2) : Sketch of calculation II, dressed vertices

M(p, p′) = −ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× 1

(q2 −m2 + i0)(l2 + i0)
Γ̃µ(s|p, q)(/q +m)Γ̃µ(−s′|q, p′)

Γ̃µ(s|p, q) = γλ

(
Γ̃λµV (s|p, q) + Γ̃λµA (s|p, q)γ5

)
,

Γ̃λµV (s|p, q) = A0 g
λµ +

i

2

(
1

kp
+

1

kq

)
A1 eF

λµ − 1

2(kp)(kq)
A2 e

2(F 2)λµ,

Γ̃λµA (s|p, q) =
1

2

(
1

kp
− 1

kq

)
A1 eF

∗λµ,

Fλµ = kλaµ − kµaλ, F ∗λµ =
1

2
ελµσδFσδ, An = An(s|p, q)

p′ = p+ (s− s′)k =⇒ Γ̃µ(−s′|q, p′ ) = Γ̃µ(−s′|q, p )



M (2) : Sketch of calculation III, γ-matrix algebra

M(p, p′) = −ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× 1

(q2 −m2 + i0)(l2 + i0)
Γ̃µ(s|p, q)(/q +m)Γ̃µ(−s′|q, p)

Total expression is very bulky. It much easier to expand all the
γ-matrix terms with a computer algebra system like FeynCalc.
Here for demonstration let’s consider only terms ∝ A0(s)

Γ̃µ0 (s|p, q) = γµA0(s|p, q)

M00(p, p′) =− ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× 1

(q2 −m2 + i0)(l2 + i0)
A0(s|p, q)A0(−s′|q, p)γµ(/q +m)γµ

γµ(/q +m)γµ = −2/q + 4m



M (2) : Sketch of calculation IV, the A0 function

M00(p, p′) = −ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× −2/q + 4m

(q2 −m2 + i0)(l2 + i0)
A0(s|p, q)A0(−s′|q, p)

Next we need to substitute A0-s explicitly

A0(s|p, q) =
1

(4β)1/3
exp

[
−is α

8β
+ i

8β

3

(
α

8β

)3
]

Ai(y),

α = −e
(
ap

kp
− aq

kq

)
, β =

e2a2

8

(
1

kp
− 1

kq

)

y = (4β)2/3

[
s

4β
−
(
α

8β

)2
]
,

Ai(y) =
1

2π

∞∫

−∞

dσ e−iσ
3/3−iyσ

Don’t mix up α here with α = e2/4π!



Remark on the constant crossed field I

Fµν = kµaν − kνaµ, F ∗µν =
1

2
εµνλσFλσ

Crossed field field strength obeys some simple relations

(F ∗F ∗)µν = (F 2)µν = −a2kµkν ,

(F ∗F )µν = (FF ∗)µν = 0,

FFF = 0, Fn = 0, n ≥ 3

If we have a 4-vector pµ we can construct only 4 non-zero
4-vectors in combinations with F :

pµ, (Fp)µ, (F ∗p)µ, (F 2p)µ

Their scalar combinations (other are zero):

p2, e2 [(Fp)µ]
2

= e2 [(F ∗p)µ]
2

= −e2pµ(F 2p)µ = −m6χ2
p



Remark on the constant crossed field II

Any 4-vector can be expanded:

lµ = C1p
µ + C2(Fp)µ + C3(F ∗p)µ + C4(F 2p)µ

To find Ci we multiply lµ by pµ, (Fp)µ, (F ∗p)µ, (F 2p)µ
Arising scalar combinations:

lp

lFp −→ ρ = −e (lFp)

ξm4χl
,

lF ∗p −→ τ =
e (lF ∗p)
m4χl

lF 2p =
m6

e2
χlχp

Thus

C1 =
χl
χp
, C2 =

eχl
m2χ2

p

ξρ, C2 = − eχl
m2χ2

p

τ, C4 =
1

m6χ2
p

(
pl − χl

χp
p2

)

Fµν = kµaν − kνaµ, kp = m2χp
ξ
, ξ2 = −e

2a2

m2



Remark on the constant crossed field III

Exercise 4
Using formulas from previous slides prove that

1 l2 = −χ
2
l

χ2
p

p2 − χ2
l

χ2
p

(ξ2ρ2 + τ2)m2 + 2
χl
χp
pl;

2 C4 =
1

2m6χ2
p

(
− χl
χp
p2 +

χp
χl
l2 +

χl
χp

(ξ2ρ2 + τ2)m2

)
;

3 also using the conservation law sk + p = q + l show that

s =
ξ

2

[
1

χq

q2

m2
− 1

χp

p2

m2
+

1

χl

l2

m2
+

χl
χpχq

(ξ2ρ2 + τ2)

]

.



M (2) : Sketch of calculation V, changing variables
M00(p, p′) = −ie2

∫
d4l ds ds′ δ [(s− s′)k + p− p′]

× −2/q + 4m

(q2 −m2 + i0)(l2 + i0)
A0(s|p, q)A0(−s′|q, p)

Variable change (all of them ∈ (−∞, +∞))




l0

l1

l2

l3





−→





l2

χl = ξ
kl

m2

ρ = −e (lFp)

ξm4χl

τ =
e (lF ∗p)
m4χl





J−1 = m2ξ
|χl|
2χ2

p

s′ −→ s′′ = s′ − s
s −→ q2 formula from prev slide

d4l ds ds′ =
ξ2

4χ2
p

∣∣∣∣
χl
χq

∣∣∣∣ dq2 dl2 dχl dτ dρ ds
′′



M (2) : Sketch of calculation VI, changing variables

Consider α(p, q), β(p, q):

α = −e
(
ap

kp
− aq

kq

)
= − e

(kp)(kq)
[(kq)(ap)− (kp)(aq)] = − χl

χpχq
ξ3ρ,

β =
e2a2

8

(
1

kp
− 1

kq

)
=

1

8

χl
χpχq

ξ3,

α

8β
= −ρ

Some formulas that we use

sk + p = q + l, kp = kq + kl,

(lFp) = −(qFp) = −(kq)(ap) + (kp)(aq) = −ξm
4χl
e

ρ,

kp = m2χp
ξ
, ξ2 = −e

2a2

m2



M (2) : Sketch of calculation VII, combining A0 functions
The last change of variable χl −→ u = χl/χq, χp −→ χ

χq =
1

1 + u
χ, χl =

u

1 + u
χ, dχl = χ

du

(1 + u)2
,

α =
u

χ
ξ3ρ,

1

8

u

χ
ξ3,

α

8β
= −ρ

A0(s|p, q) =
1

(4β)1/3
exp

[
−is α

8β
+ i

8β

3

(
α

8β

)3
]

Ai(y)

=
1

ξ

(
2χ

u

)1/3

exp

[
iρs− i1

3

u

χ
ξ3ρ3

]
Ai(y)

y =

(
u

2χ

)2/3(
1 + u

u2

l2

m2
− 1

u

p2

m2
+

1 + u

u

q2

m2
+ τ2

)

y does not depend on ρ!

A0(−s′|q, p) =
1

ξ

(
2χ

u

)1/3

exp

[
−iρs′ + i

1

3

u

χ
ξ3ρ3

]
×Ai

(
y +

s′′

(4β)1/3

)



M (2) : Sketch of calculation VIII, integrating over dρ ds′′

M00(p, p′) = −ie2 ξ
2

4χ

∫
dq2 dl2 du

(1 + u)2
dτ dρ ds′′ |u|δ (−s′′k + p− p′)

×
−2/q + 4m

(q2 −m2 + i0)(l2 + i0)
A0(s|p, q)A0(−s′|q, p)

(−2/q + 4m)A0(s|p, q)A0(−s′|q, p′) ∝




1
ρ
ρ2


× exp [−is′′ρ]

∫
dρ ρnf(s′′) exp [−is′′ρ] = (−i)n2πf (n)(0) δ(s′′)

∫
ds′′δ(s′′) . . . is now trivial

δ (−s′′k + p− p′) −→ δ (p− p′), M (2) is diagonal!

M (2)(p, p′) = (2π)4δ (p− p′)M (2)(p, F )

Let’s follow only −2/q + 4m

2πuA0(s|p, q)A0(−s|q, p) = 2π
1

ξ2
2χ

(
u

2χ

)1/3

Ai(y)2



M (2) : Sketch of calculation IX, integrating over dτ

M4m
00 (p, F ) = 4m

−iπe2

(2π)4

∫
dq2 dl2 du

(1 + u)2
dτ
|u|
u

(
u

2χ

)1/3

× 1

(q2 −m2 + i0)(l2 + i0)
Ai2(y)

y =
t

22/3
+

(
u

2χ

)2/3

τ2 , t =

(
u

χ

)2/3(
1 + u

u2

l2

m2
− 1

u

p2

m2
+

1 + u

u

q2

m2

)

Let’s use the property of Ai(y):

∞∫

0

dz√
z

Ai2
(

t

22/3
+ z

)
=

1

2
Ai1(t) ≡ 1

2

1

2πi

∞∫

−∞

dσ

σ − i0 e
−iσ3/3−itσ,

∞∫

−∞

dτAi2(y) = 2× 1

2

(
2χ

u

)1/3
∞∫

0

dz√
z

Ai(y) =
1

2

(
2χ

u

)1/3

Ai1(t)



M (2) : Sketch of calculation X, virtualities

M4m
00 (p, F ) = 4m

−iπe2

2(2π)4

∞∫

−∞

du

(1 + u)2

|u|
u

∫
dq2 dl2

Ai1(t)

(q2 −m2 + i0)(l2 + i0)
︸ ︷︷ ︸

I1(u)

The last step — calculate the integrals over virtualities:

I1 =

∞∫

−∞

dµ

∞∫

−∞

dλ
Ai1(t)

(µ+ i0)(λ+ i0)

t =

(
u

χ

)2/3(
1− 1

u
ν +

1 + u

u
µ+

1 + u

u2
λ

)
,

µ =
q2 −m2

m2
, λ =

l2

m2
, ν =

p2 −m2

m2

Ai1(t) =
1

2πi

∞∫

−∞

dσ

σ − i0 exp
[
−iσ3/3− itσ

]



M (2) : Sketch of calculation XI, the master integrals

Swap the integrals:

I1(u) =
1

2πi

∞∫

−∞

dσ

σ − i0 e
−iσ3/3−izσ

∞∫

−∞

dµ
e−iaµ

µ+ i0

︸ ︷︷ ︸
−2πiθ(Re a)

×
∞∫

−∞

dλ
e−ibλ

λ+ i0

︸ ︷︷ ︸
−2πiθ(Re b)

,

Re
1+u

u^(1/3)
σ

Re
1+u

u^(4/3)
σ

-4 -2 0 2 4

-4

-2

0

2

4

u

σ

z =

(
u

χ

)2/3(
1− 1

u
ν

)
,

a =
1 + u

χ2/3u1/3
σ,

b =
1 + u

χ2/3u4/3
σ,

θ(Re a)θ(Re b) = θ(u)θ(σ)



M (2) : Sketch of calculation XII, renormalization I

I1(u) = 2πiθ(u)

∞∫

0

dσ

σ − i0 e
−iσ3/3−it(ν)σ — UV divergent!

This divergency is purely of QED nature and does not depend
on the external field

You may directly apply a standard regularization scheme like di-
mensional reg. or Pauli-Villars reg., but while we are interested in
SF effects it is more efficient to do the following:

M (2)(p, F )→M (2)
ren(p, F ) =

[
M (2)(p, F )−M (2)(p, 0)

]

︸ ︷︷ ︸
M

(2)
R – regular part

+M (2)
ren(p, 0)

We need M (2)(p, 0) (in our case M4m
00 (p, 0)).



M (2) : Sketch of calculation XII, renormalization II

When we started from the dressed vertex, we got:

A0(s) =

∞∫

−∞

dϕ

2π
exp

[
−isϕ+ i

α

2
ϕ2 − i4β

3
ϕ3

]

and after substitution ϕ→ σ = (4β)1/3(ϕ− α/8β) we get Ai(y)

F = 0 =⇒ α = β = 0, and the substitution is trivial ϕ→ σ:

A0(s)

∣∣∣∣
F=0

=
1

2π

∞∫

−∞

dσ exp [−isσ]

The rest calculation is similar, but instead of Ai1 we will arrive to

Ai1(t) =
1

2πi

∞∫

−∞

dσ

σ − i0 e
−iσ3/3−itσ −→ 1

2πi

∞∫

−∞

dσ

σ − i0 e
−itσ

The subtraction
[
M (2)(p, F )−M (2)(p, 0)

]
effectively leads to

Ai1(t)→ AiR1 (t) =
1

2πi

∞∫

−∞

dσ

σ − i0e
−itσ

(
e−iσ

3/3−1
)



M (2) : Sketch of calculation, RESULT

IR
1 (u) = 2πiθ(u)

∞∫

0

dσ

σ − i0 e
−izσ

(
e−iσ

3/3 − 1
)

︸ ︷︷ ︸
O(σ3), σ→0

= 2πiθ(u)f1(z)

(MR)4m
00 (p, F ) =

2e2

(4π)2

∞∫

0

du

(1 + u)2
2mf1(z)

Reduced to double integral
Considered only one term in whole γ-structure. Other terms are
calculated exactly the same way.
Regularization procedure concerns only those terms that are
non-zero at F = 0. All other terms appear to be convergent.



The Ritus function

f(z) = i

∞∫

0

dσ exp
[
−iσ3/3− izσ

]

Re f(z)

Im f(z)

-20 -10 10
z
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1.0

1.5

f(z)



M (2) : total result

−iM (2)
R (p, F ) = −i 2e2

(4π)2

∞∫

0

du

(1 + u)2

×
{[

2m− γp

1 + u
− e2(γF 2p)

2m4χ2

(
1 +

u− 1

1 + u

p2

m2

)]
f1(z0)

−
[
eσF

mχ
− e(γF ∗p)γ5

m2χ

2 + u

1 + u

](χ
u

)1/3

f(z0)

+
e2(γF 2p)

m4χ2

u2 + 2u+ 2

1 + u

(χ
u

)2/3

f ′(z0)

}
,

Ritus V.I. Annals of Physics 69.2 (1972)



The on-shell matrix element

M
(2)
R (χ) = upM

(2)
R (p, F )up

=
αm2

π

∞∫

0

du

(1 + u)2

{
f1(z) +

u2 + 2u+ 2

1 + u

(χ
u

)2/3

f ′(z)

−upeF̂
∗pγ5up

2m4(1 + u)

(
u

χ

)2/3

f(z)

}
,

z = (u/χ)2/3, α = e2/4π

Imaginary part of Mif = upM
(2)
R (p, F )up −→Wrad(χ) (see the

2nd lecture)
Real part −→ correction to the electron mass
Asymptotic behaviour at χ� 1:

M
(2)
R (χ� 1) ' e−iπ3 28 6

√
3

27
Γ

(
2

3

)
m2αχ2/3



Polarization operator in CCF
N.B. Narozhny Sov. Phys. JETP 28 (2) (1969); Ritus V.I. Annals of Physics 69.2 (1972)

x x′
iΠµν(x, x′) = e2 Tr [γµiG(x, x′)γνiG(x′, x)]

Πµν(l2, χl) =
(
Z−1 − 1

)
gµν + π1(l2, χl)εµ(l)εν(l) + π2(l2, χl)ε

∗
µ(l)ε∗ν(l)

εµ(l) =
eFµν l

ν

m3χl
, ε∗µ(l) =

eF ∗µν l
ν

m3χl

Z−1 − 1 =
4α

π

∫ ∞

4

dv

v5/2
√
v − 4

[
f1(z)− log

(
1− 1

v

l2

m2

)]
' −2α

9π
logχl � 1

π1,2(l2, χl) =
4αχ

2/3
l m2

3π

∫ ∞

4

dv

v13/6

v−1
+2√
v − 4

f ′(z), z =

(
v

χl

)2/3(
1− l2

vm2

)

π1(0, χl � 1) ≈ e−iπ/3 2

3 3
√

6
√
π

Γ2(2/3)

Γ(13/6)
m2αχ

2/3
l , π2(0, χl � 1) =

3

2
π1

Calculated either the same way as M (2) or via proper time
representation



Graphical representation and high-χ asymptotics
validity

100 101 102 103 104

χl
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100
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e
π

1,
2(
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χ
l)
|/m
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|Re π1|
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2/3
l

|Re π2|
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2/3
l
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−
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|Im
π

1,
2(

0,
χ
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l

|Im π2|
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Running coupling in CCF

In QED polarization operator leads to renormalization of charge
and:

αeff =
α

1− α

3π
log

l2

m2

In SFQED (in CCF):

αeff =
α

1− 2α

9π
logχl + . . .



Ritus-Narozhny conjecture

Expansion parameter of PT in SFQED is g = αχ2/3 , χ ∼ ε

m

E

ES
Main contribution — loop insertions

Some diagrams for further use

For formulation of exact electron propagator:

For formulation of exact photon propagator:

Arbitrary-order multi-bubble diagrams:

Higher-order mass corrections:

Higher-order polarization corrections:

For skeleton equations:

M
m

=

2

FIG. 1. a) Illustration of a beam-beam collider for probing the fully nonperturbative QED regime. b) 3D OSIRIS-QED
simulation of the collision of two spherical 10 nm electron beams with 125 GeV energy (blue). The fully nonperturbative QED

regime αχ2/3 ≥ 1 is experienced by 38% of the colliding particles (red). The interaction produces two dense gamma-ray beams
with 0.2 photons with Eγ ≥ 2mc2 per primary electron (yellow).

pairs. A strong electromagnetic field polarizes/ionizes
the vacuum, which therefore behaves like an electron-
positron pair plasma. As a result, the “plasma frequency
of the vacuum” changes the photon dispersion relation,
implying that a photon acquires an effective mass mγ(χ),
(see supplemental material for details). The appearance
of a photon mass induces qualitatively new phenomena
like vacuum birefringence and dichroism [28]. Pertur-
bation theory is expected to break down in the regime
mγ(χ) & m, where modifications due to quantum fluc-
tuations become of the same order as the leading-order
tree-level result (Fig. 2).

In order to determine the scaling of mγ(χ), a photon
with energy ~ωγ � mc2 is considered, which propagates
through a perpendicular electric field with magnitude E
in the laboratory frame. The χ associated with this pho-
ton is χ ∼ γE/Ecr, where γ = ~ωγ/(mc2) can be in-
terpreted as a generalized Lorentz gamma factor. As the
polarization of the quantum vacuum requires at least two
interactions (Fig. 2), it is expected that m2

γ(χ) ∼ αM2

(the plasma frequency of a medium exhibits the same
scaling in the coupling constant). Here, M ∼ eE∆t/c de-
notes the characteristic mass scale induced by the back-
ground field and ∆t represents the characteristic life time
of a virtual photon to pair transition.

The scaling of ∆t is determined by the Heisenberg
uncertainty principle ∆t∆ε ∼ ~, where the energy un-
certainty ∆ε ∼ (eE∆tc)2/(~ωγ)2 of a virtual photon
to pair transition is inferred by comparing the relativis-
tic energy-momentum relations for photons ε = pc and
electrons/positrons ε =

√
(pc)2 +m2c4 + (eE∆tc)2 ≈

pc + (eE∆tc)2/(2pc). Here, eE∆t � mc (assuming
χ � 1) is the momentum acquired in the background
field E. Notably, the resulting field-induced mass scale
M ∼ mχ1/3 is independent of m (note that χ ∼ m−3).
This suggests a new regime of light-matter interaction,
where the characteristic scales of the theory are deter-

P

m2
=

∼αχ2/3

Narozhny
1968

+

∼α2χ2/3log χ

Morozov
1977

+

∼α3χlog2χ

Narozhny
1980

+

∼αnχ(2n−3)/3

conjecture

+ · · ·

M

m
=

∼αχ2/3

Ritus
1970

+

∼α2χ log χ

Ritus
1972

+

∼α3χ5/3

Narozhny
1980

+

∼αnχ(2n−1)/3

conjecture

+ · · ·

FIG. 2. Dressed loop expansion of the polarization operator
P (top row) and mass operatorM (bottom row). Wiggly lines
denote photons and double lines dressed electron/positron
propagators [2]. According to the Ritus-Narozhny conjecture,
the diagrams shown represent the dominant contribution at
n-loop and αχ2/3 is the true expansion parameter of strong-
field QED in the regime χ� 1 [17–19].

mined by the background field (M � m). The scaling
m2
γ(χ) ∼ αM2 ∼ αχ2/3m2 in the regime χ � 1 implies

mγ & m if αχ2/3 & 1 and thus a breakdown of perturba-
tion theory at the conjectured scale [17–19]. The same
scaling is also found for the electron/positron effective
mass by analyzing the mass operator (see supplemental
material for details).

The key challenge for reaching the fully nonperturba-
tive regime αχ2/3 & 1 in beam-beam collisions is the mit-
igation of radiative losses through beamstrahlung: the
emission of radiation as the colliding particles are bent
in the fields of the opposing bunch. This process is
characterized by four beam parameters: the transverse
σr and the longitudinal σz dimensions of the bunches
(σr = σx = σy for radially symmetric beams), the num-
ber of particles per bunch N (i.e., the total charge) and
the beam Lorentz factor γ. Lorentz invariance requires

αχ2/3

Ritus 1970

α2χ logχ
Ritus 1972

α3χ5/3

Narozhny 1980

αnχ(2n−1)/3

conjecture

1 N.B. Narozhny, Sov. Phys. JETP 28, 371-374 (1969).
2 V.I. Ritus, Ann. Phys. 69, 555 (1972).
3 N.B. Narozhny, Phys. Rev. D 21, 1176 (1980).
4 V.I. Ritus, Journ. Russian Laser Research 6, 584 (1985).



Nowadays

A review dedicated to the memory of Nikolay Narozhny presented
at LPHYS’16:

A.M. Fedotov, Journ. of Phys.: Conf. Series 826, 012027 (2017).

No relation to fundamental ultraviolet behavior of QED:
T. Podszus and A. Di Piazza, Phys. Rev. D 99, 076004 (2019).
A. Ilderton, Phys. Rev. D 99, 085002 (2019).

Experimental proposals to reach g & 1:
C. Baumann, E.N. Nerush, A. Pukhov, I.Yu. Kostyukov, Scientific
Reports 9, 9407 (2019)
T.G. Blackburn, A. Ilderton, M. Marklund, C. P. Ridgers, New J. Phys.
21, 053040 (2019)
V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov,
F. Fiuza, T. Grismayer, M.J. Hogan, A. Pukhov, L.O. Silva, G. White,
Phys. Rev. Lett. 122, 190404 (2019)

Upcoming workshop “Physics Opportunities at a Lepton Collider
in the Fully Nonperturbative QED Regime”, SLAC 7-9 August,
2019 https://conf.slac.stanford.edu/npqed-2019/.

https://conf.slac.stanford.edu/npqed-2019/


Summation of the leading diagrams

l

q
p p

Γµ Γν

Dcµν

The exact photon propagator
= + + + . . .

Dc
µν(l) = D0(l2, χl)gµν+D1(l2, χl)εµ(l)εν(l)+D2(l2, χl)ε

∗
µ(l)ε∗ν(l),

D0(l2, χl) =
−i

l2 + i0
, D1,2(l2, χl) =

iπ1,2

(l2 + i0) (l2 − π1,2)

Exercise 5
Solve the Dyson equation for the exact photon propagator (derive
Dc
µν(l))



Summation of the leading diagrams

l

q
p p

Γµ Γν

Dcµν

The exact photon propagator
= + + + . . .

Dc
µν(l) = D0(l2, χl)gµν+D1(l2, χl)εµ(l)εν(l)+D2(l2, χl)ε

∗
µ(l)ε∗ν(l),

D0(l2, χl) =
−i

l2 + i0
, D1,2(l2, χl) =

iπ1,2

(l2 + i0) (l2 − π1,2)

We should insert Dc
µν(l) into M(p, p′) and recalculate everything

in the same manner. Finally, this way we arrive at:

M(χ) ≡ ūp,sM(p)|p2=m2up,s = M
(2)
R (χ) + δM(χ), δM =

2∑

i=1

δMi



The correction δMi

δM1,2(χ) = − iαm
2

(2π)2

∫ +∞

−∞

du

(1 + u)2

∫ +∞

−∞

dλπ1,2/m
2

(λ+ i0) (λ− π1,2/m2)

∫ +∞

−∞

dµ

µ+ i0

×
{[

1 + λ
u2 + 2u+ 2

2u2

]
Ai1(t) +

(
u2 + 2u+ 2

1 + u
± 1

)(χ
u

)2/3

Ai′(t)

}

t =

(
u

χ

)2/3(
1 +

1 + u

u2
λ+

1 + u

u
µ

)
, χl =

χu

1 + u
,

Ai1(t) = −i
∫ ∞

−∞

dσ

2π

1

(σ − i0)
e−iσ

3/3−itσ, Ai′(t) = −i
∫ ∞

−∞

dσ

2π
σe−iσ

3/3−itσ

Main difficulty on this step — the master integral over λ



Approximating the master integral over λ

Resulting approximation:

J1(z) =

+∞∫

−∞

dλ
π(λ, χl)e

−iλz

λ− π(λ, χl)
≈

− 2πi θ
(
z − χ−2/3

l

)
π(0, χl)e

−iπ(0,χl)z

Similarly:

J2(z) =

+∞∫

−∞

dλ

λ+ i0

π(λ, χl)e
−iλz

λ− π(λ, χl)
≈

− 2πi θ
(
z − χ−2/3

l

)(
e−iπ(0,χl)z − 1

) 100 101 102 103

zχ
2/3
l

10−3

10−2

|J
1(
z)
|/χ

2/
3

l

Exact Approx.

−1 0 1 2 3 4

0

1

2
×10−2

The last step — calculating the asymptotics at χ� 1



Calculation of δM: Summary

Mass radiative correction: M(χ) = M
(ren)
0 + δM, δM = δM(II) +

δM(III)

Lowest-order PQED
correction M

(ren)
0

0.843(1− i
√

3)αχ2/3m2

NPQED correc-
tion due to photon
emission δM(II)

(−0.995 + 1.72i)α3/2χ2/3m2

NPQED correction
due to trident pair
production∗ δM(III)

−(0.103 + 1.18i)α2χm2

∗ Cf. 2-loop PQED result [Eq.(76) in Ritus 1972]:

δM(2−loop) = −[0.208 + (0.133 lnχ− 0.725)i]α2χm2



Justification by numerical calculation

10−3

10−1

101

|δM
(I

I)
|/m

2

|Re δM(II)|
|Im δM(II)|
0.995 · α3/2χ2/3

1.72 · α3/2χ2/3

103 104 105 106 107 108

χ

10−1

101

103

|δM
(I

II
) |/
m

2

|Re δM(III)|
|Im δM(III)|
0.103 · α2χ

1.18 · α2χ



χ-dependence
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Discussion

NOVELTY: first truly NPQED calculation (bubble-type corrections
to on-shell mass operator).
OBSERVATIONS:

g = αχ2/3 ' 1: effect is small (reduction by . 3% w.r.t. 1-loop)
g = αχ2/3 � 1:

PROSPECTS FOR FURTHER STUDIES:
diagrams with more complex virtual channels are of great potential
interest!

etc. . .



Take-away message: SFQED parameters and regimes
Regime a0 � 1 a0 & 1
χ� 1 classical non-relativistic (lin-

ear Thompson scattering)
classical relativistic (non-
linear Thompson =syn-
chrotron radiation)

χ & 1 perturbative QED (Comp-
ton, Breit-Wheeler,. . . )

SFQED (nonlinear Comp-
ton, nonlinear Breit-
Wheeler, cascades,. . . )

a0 � 1, χ1/3 =⇒ LCFA!!!!
χ≫ 1 =⇒ NptSFQED

IL[W/cm2] PHYSICAL REGIME
5× 1029(?) Sauter-Schwinger QED critical field (unstable vacuum)
2.5× 1025 Massive self-sustained QED cascades

1024 Quantum radiation reaction, pair photoproduction (χ &
1)

5× 1023 Classical radiation reaction
5× 1022 State-of-the-art
3× 1018 Relativistic electrons (a0 & 1)
3× 1016 Strong field of atomic physics (immediate ionization)

105 External (given classical background) field concept
< 105 Week field quantum regime
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