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1.0 Particle production in heavy-ion collisions may proceed by the decay of color electric flux tubes which are
characterized by a linear, stringlike potential between color charges, analogous to the case of a homogeneous
electric field considered by Schwinger |eE| = σ, with σ = 0.19 GeV2 being the string tension. The
transverse energy spectrum of produced particles according to the Schwinger mechanism would then be
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⊥ being the transverse energy, often also denoted as ”transverse mass” m⊥. This spectrum
of produced particles is nonthermal and thus would contradict the observation of thermal particle spectra
in heavy-ion collision experiments
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with an effective temperature Teff ∼ 160 . . . 180 MeV (inverse slope parameter). Thus the question for the
thermalization arises.

Show that a thermal particle spectrum would arise when the string tension parameter would fluctuate
and have a Poissonian spectrum
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πσσ0,

which is normalized
∫
dσP (σ) = 1 and has a mean value 〈σ〉 =
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temperature appears to be the Hawking-Unruh temperature of thermal hadron production,
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∼ 173 MeV .

Hint: Use the integral:
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2.1 The polarization function for gauge bosons in a fermion-antifermion plasma is given by
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Evaluate the fermionic Matsubara sum and show that the result is
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2.2 Perform the static (set iωl = 0) and long-wavelength (let q → 0) limit of the polarization function and
derive the result for the Debye mass in a plasma of massless fermions Π00(0; 0) = Ndofg

2T 2/3 = m2
D(T ) .

2.3 Use the Ritz variational principle for the hamiltonian of a heavy quarkonium state in a plasma
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with the trial wave function

ψγ(r) =

√
γ3

π
exp(−γr)

to obtain a condition on the critical Debye mass mMott
D for which the binding energy vanishes. Check that

the energy functional is

E(γ) =< ψγ |H|ψγ >=
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.

and derive the result mMott
D = 2γ. Interprete the result in terms of the Bohr radius a0 = 2/(αmQ)!


