Fast Forward Detector Construction Status

Sergey Sedykh for the FFD group

MPD Collaboration Meeting Dubna, April 2019

FFD concept and requirements

Fast interaction trigger & T0 detector for TOF

Coincidence of signals in two sub-detectors $t_{E}-t_{W} =>$ localization of interaction point $\Delta Z < 3$ cm Offline t_{o} time for TOF better than 50 ps

FFD Sub-Detector

Inner diameter: 96 mm Outer diameter: 400 mm Distance from MPD center: 140 cm Active area: 650 cm²

20 modules of Cherenkov detectors(20 PMTs but 80 readout channels)80 channels of LVDS and analog pulses

View of a single module

FFD modules

tests in 2019

Status

MCP-PMTs XP85012/A1-Q (S) – available Quartz bars of radiators – available Housings and Pb plates – production in March – Oct. 2019 Optical grease (two types are available for tests) – March – April 2019 Technology, tools and equipment for module production – 2018 – Oct. 2019

Assembly of modules and tests - Oct.2019 - March 2020

Special stand for tests of FFD with cosmic muons

A special stand was created in 2018 for test measurements with the FFD modular arrays and all FFD sub-systems to study FFD operation and performance

Production of the scintillation planes

A scheme of the stand for tests with cosmic muons

Each scintillation plane has dimensions $50 \times 50 \times 1$ cm³ and consists of 10 strips. Crossing of the strips of X- and Y- planes on the top and bottom of the stand provides information about direction of incoming cosmic muons. The scintillation light is detected with two SiPMs placed on the strip's ends.

The stand sub-systems:

- Four scintillation planes with electronics
- Trigger module (FPGA Altera Cyclon V)
- HV crate
- readout electronics (TDC 72VHL)
- readout electronics (digitizers CAEN mod.N6742)
- Laser system
- Control system

Planned Tests:

- Individual module performance
- Combined time resolution by group of modules
- Laser vs Cosmic muons pulse height
- Readout and trigger electronics

FFD sub-systems electronics overview

Sub-Detector and Vertex Electronics

Sub-Detector Unit

The SDU has a modular structure, it contains a set of modules placed in a VME crate having a custom back-plain.

The set of modules includes

- LV power supply Module (LVM) (prototype tested)
- Signal Processing Module (SPM) has programmable delays with 10 ps steps (prototype tested)
- Central Processing Module (CPM) (design in progress),
- Interface Module (IM).

Each module containing FPGA is equipped with the FPGA Configuration Loading Module (CLM) connected directly to a serial link interface.

StatusImage: Components were purchased in 2018Module prototyping - Sept. 2019SDU production & tests (1st unit) - March 20202nd unit - June 2020

Vertex and L0 electronics

Status

The components were purchased in 2018 Module prototyping – Dec. 2019 Module production & tests – June 2020

A block-diagram of the SDU.

VME crate

Readout Electronics

Main DAQ electronics

Two pairs of TDC72VHL modules in VME crates of the TOF detector **Production in 2019**

Tests in 2019 – 2020 with FFD modules and cosmic stand

Local DAQ for control of FFD operation (Available)

Tests in 2019 – 2020 with FFD modules and cosmic stand

High voltage power supply

Three 16- channel HV modules in HV crate (WIENER & ISEG)

Available

Control software with interface was developed in 2018

Cooling of FFD modules

Tests in laboratory were done in February-March 2019

Gas flow: air at room temperature

<u>Reasons for cooling:</u>

- FEE of one FFD module brings <1W but in tight setting
- FFD PMTs need less than 50°C temperature
- Source of heat to other detectors

Cooling of FFD modules Results

A flow of nitrogen gas 5 l/min/module will be used for cooling to keep temperature of 25° C inside FFD modules with outside temperature of 20° C. Monitoring of the temperature will be organized for every FFD module.

Integration in MPD

Status of FFD sub-systems

Sub-system	Elements	2019		2020	2021	
FFD modules	MCP-PMTs Quartz bars FEE boards Housings Pb converters Assembling technology	Ready Ready Production & Tests Production (Oc Production (Oc Development (C	t.) t.)	Production & Tests of FFD modules (March)		
FFD electronics	Sub-detector electronics L0 trigger electronics LV modules	Prototyping (D Prototyping (I Prototyping (May)		Production & Tests (June)		ΔΡD
HV power supplies	Crate Modules Interface	Ready Ready Ready				i.
Readout electronics	TDC72VHL modules NIM crates Digitizers CAENmod.N6742 with optical readout	Productio Ready Ready	n (Dec.)	Tests with FFD modules and cosmic stand	sts	tion
Laser calibration system	PiLas laser Optical box & fiber bundles Reference detector Optical cables	Ready Ready Ready Production (May)	Tests (Dec.)		Те	8 La
Cable system	HDMI, Coaxial, Molex, HV	Estimation of length	Production	Production (May)		n t e
FFD mechanics	Sub-detector assembly Installation mechanics	Prototypin _i ; (Dec.)		Production (May)		
Cooling		Prototyping, Tests	Production	Tests		
Detector control system		Development		Production & Tests (May)		