Introduction to (selected) Physics at NICA

David.Blaschke@gmail.com

University of Wroclaw, Poland & JINR Dubna & MEPhl Moscow, Russia

- 0. Motivation: Astrophysics Supernovae & BNS Mergers
- 1. The NICA White Paper [EPJA Topical Issue Vol. 52(8) (2016)]
- 2. Selected Topics

3. Event Simulation for NICA & FAIR: THESEUS

- Particlization and all that ...
- First results: Baryon stopping signal for a 1st order PT
- 4. Further developments

3rd Collab. Meeting of BMaN and MPD at NICA, Dubna, 16.-17.04.2019

Helmholtz International Center

From: "NuPECC Long Range Plan 2017"; http://www.nupecc.org

From: "NuPECC Long Range Plan 2017"; http://www.nupecc.org

Phase diagram from relativistic density functional for hadronic (DD2F) & quark matter (SFM)

Phase diagram from relativistic density functional for hadronic (DD2F) & quark matter (SFM)

Phase diagram from relativistic density functional for hadronic (DD2F) & quark matter (SFM)

If the transition looks like a crossover – what can it mean ??

If the transition looks like a crossover – what can it mean ??

2) Inhomogeneous chiral condensates (ICC)

If the transition looks like a crossover – what can it mean ??

Buballa & Carignano, arxiv:1508.04361

If the transition looks like a crossover – what can it mean ??

4) Parity doubling (equal mass for chiral partners)

If the transition looks like a crossover – what can it mean ??

5) Unified quark-hadron matter model

Statistical Model of Hadron Resonance Gas

Well established for Description of chemical freezeout

The European Physical Journal

Hadrons and Nuclei

Topical Issue on Exploring Strongly Interacting Matter at High Densities - NICA White Paper

edited by David Blaschke, Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Teryaev, Viacheslav Toneev

From: Three stages of the NICA accelerator complex by V. D. Kekelidze et al.

The NICA White Paper

TOPICS

- Phases of dense QCD matter and their possible realization
- Characteristic processes as indicators
 of phase transformations
- Estimates for events and event rates
- Comparison to other experiments
- Interdisciplinary aspects, e.g. astrophysical constraints for dense matter phases

Guest Editors

Jörg Aichelin (SUBATECH Nantes, France) Elena Bratkovskaya (GSI Darmstadt & Goethe University Frankfurt, Germany)

Volker Friese (GSI Darmstadt, Germany) Marek Gazdzicki (Goethe University Frankfurt,

Germany & Jan Kochanowski Univ. Kielce, Poland)

Jørgen Randrup (LBNL Berkeley, California, USA) Oleg Rogachevsky (JINR Dubna, Russia) Oleg Teryaev (JINR Dubna, Russia) Viacheslav Toneev (JINR Dubna, Russia)

Co-Editor

David Blaschke (University of Wroclaw, Poland & JINR Dubna & NRNU Moscow (MEPhI), Russia) http://epja.epj.org/component/list/?task=topic

NICA White Paper – Table of Contents (I)

#	Corr. Author	Title	18	Costa	Isentropic thermodynamics and scalar meson properties at finite	
Ch	aracterizing th	e NICA facility]		temperature and density at NICA energies	
1	Meshkov	Three stages of the NICA accelerator complex	19	Parganlija	Vacuum glueballs and in-medium vector mesons at NICA	
2	Kekelidze	The multi-purpose detector (MPD) of the collider experiment	20	Kunihiro	Combined chiral and diquark fluctuations along QCD critical line and enhanced	
3	Kapishin	The fixed target eperiment for studies of baryonic matter at the Nuklotron	21	Contrera	Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD	
4	Rogachevsky	Simulation software for the NICA experiments	22	Alverez	Neutron star mass limit at 2Mo supports the avistance of a CEP	
5	Teryaev	Spin physics experiments at NICA-SPD with polarized proton and deuteron beams	Pa	Particle production in heavy-ion collisions		
General aspects			23	Satz	Strangeness production at high baryon density	
6	Gazdzicki	Multi-purpose detector at the JINR NICA collider in the landscape of heavy-ion projects	24	Becattini	Investigating the QCD phase diagram with hadron multiplicities at NICA	
7	Senger	Nuclear matter physics at NICA	25	Io	Missing baryonic resonances in the Hagedorn spectrum	
8	Randrup	Exploring high-density baryonic matter: maximum freeze-out density	26	Tomasik	Observables of non-equilibrium phase transition	
9	Bratkovskaya	Observations and open problems at NICA	27	Ivanov	Baryon stopping in heavy-ion collisions at $E_{Lab} = 2-200 \text{ AGeV}$	
10	Brodsky	Novel QCD physics at NICA				
11	Klusek	Studying the interplay of strong and electromagnetic forces in	28	Wolschin	Baryon stopping probes deconfinement	
		heavy-ion collisions with NICA		Steinheimer	Spinodal amplification and baryon number fluctuations in	
Phases of QCD matter at high baryon density					nuclear collisions at NICA	
12	Fukushima	Strangeness as a probe to baryon-rich QCD matter at NICA	30	Nahrgang	Phenomena at the QCD phase transition in nonequilibrium	
13	Voskresensky	Comments on manifestation of in-medium effects in heavy-ion collisions			chiral fluid dynamics (N\chiFD)	
14	DiToro	Probing the hadron-quark mixed phase at high isospin and beryon density. Sensitive observables	31	Friese	Measurement of strange particle production in the NICA fixed target program	
15	Fischer	her Consequences of the simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram	32	Botvina	Relativistic ion collisions as the source of hypernuclei	
			33	Uzikov	Search for scaling onset in exclusive reactions with the lightest	
16	Schmitt	From ultra-dense QCD to wards NICA densities: color-flavor locking and other color superconductors			nuclei	
17	Bugaev	Glueballs and vector mesons at NICA	34	Roepke	Light cluster production at NICA	

NICA White Paper – Table of Contents (II)

Multipolar flow in heavy-ion collisions						
35	Bravina	Directed flow in heavy-ion collisions at NICA: what is interesting to measure				
36	Ivanov	Directed flow is a sensitive probe of deconfinement transition				
37	Ivanov	Elliptic flow in heavy-ion collisions at NICA energies				
38	Lokhtin	Perspectives of anisotropic flow measurements at NICA				
39	Torrieri	Scaling in heavy-ion collisions and the low-energy frontier				
Fluctuations and correlations						
41	Kapusta	Net baryon fluctuations from a crossover equation of state				
41	Kolomeitsev	Complete strangeness measurements in heavy-ion collisions				
42	Asakawa	Importance of third moments of fluctuations of conserved charges in relativistic heavy-ion collisions				
43	Tawfik	Axiomatic nonextensive thermodynamics at NICA				
44	Tawfik	Analogy of QCD hadronization and Hawking-Unruh radiation at NICA				
45	Okorokov	NICA-MPD: azimuthal and femtoscopic particle correlations				
46	Okorokov	NICA fixed target mode: soft jet studies in the relative 4-velocity space				

Electromagnetic Probes						
47	Rapp	Thermal electromagnetic radiation in heavy-ion collisions				
48	Zetenyi	Dilepton and phi meson production in elementary and nuclear collisionsat the NICA fixed target experiment				
49 Abraamyan		Electromagnetic probes on NICA: diphoton and dipion production				
50	Kurepin	Solving the problem of anomalous J/ψ suppression by the MPD experiment on the NICA collider				
51	Kokoulina	From soft photon study at Nuclotron and U-70 to NICA				
52	Wunderlich	Imprints of a critical point on photon emission				
Strong magnetic fields						
53	Buividovich	Magnetic fields in QCD vacuum: a lattice view				
54	Toneev	Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions				
55	Koch	Particle correlations and the chiral magnetic effect				
56	De la Incera	Exploring dense and cold QCD in magnetic fields				

What is special at NICA / FAIR / J-PARC energy?

#8: Exploring high-density baryonic matter: Maximum freeze-out density

Jørgen Randrup
1 and Jean Cleymans^2 $\,$

Highest baryon density at freeze-out for $s^{1/2}$ ~6 GeV, slightly lowering with ex.volume

Many ideas about the QCD phase diagram at finite baryon densities ... one of them:

#15 Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

Many cross-relations with astrophysics of compact stars! High-mass twin stars prove CEP !

#22 Neutron star mass limit at $2M_{\odot}$ supports the existence of a CEP

D. Alvarez-Castillo^{1,a}, S. Benic^{2,b}, D. Blaschke^{1,3,4}, Sophia Han^{5,6}, and S. Typel⁷

#41 Net Baryon Fluctuations from a Crossover Equation of State

J. Kapusta¹, M. Albright^{1a}, and C. Young²

#32 Relativistic ion collisions as the source of hypernuclei.

A. S. Botvina^{1,2}, M. Bleicher¹, J. Pochodzalla^{3,4}, and J. Steinheimer¹

Dubna Cascade Model (DCM) prediction for hyperresidues production as a function of beam energy Yields of light hypernuclei from target residues in hybrid DCM Fermi breakup model (FBM) calculations at 20 AGeV UrQMD plus coalescence of baryons (CB) model results For rapidity distributions of hyper fragments and residues

#34 Light cluster production at NICA

N.-U. Bastian¹, P. Batyuk², D. Blaschke^{1,2,3}, P. Danielewicz⁴, Yu. B. Ivanov^{3,5}, Iu. Karpenko^{6,7}, G. Röpke^{3,8,a}, O. Rogachevsky², H. H. Wolter⁹

Danielewicz:

Flow of light custers traces early pressure distribution, not affected by rescattering on pions and light hadrons

Three-fluid Hydrodynamics based Event Simulator Extended by UrQMD final State interactions (THESEUS)

P. Batyuk, D. Blaschke, M. Bleicher, Yu. Ivanov, Iu. Karpenko, S. Merts, M. Nahrgang, H. Petersen, O. Rogachevsky, Arxiv:1608.00965 (Dubna-Wroclaw-Frankfurt-Moscow-Florence-Nantes collab.)

Strategy towards event simulations testing PT signal

Two alternative approaches:

 Direct approach based on transport codes: Particle trajectories are followed; Properties of the medium are encoded in propagators and cross sections
 → UrQMD (Aichelin et al.),
 → PHSD (Bratkovskaya, Cassing, et al.),
 → PHSD + SACA (Bratkovskaya, Aichelin, LeFevre, et al.)

II) Hybrid approach:

Joins hydrodynamic evolution of a (multi-)fluid system described by an **EoS** with Particle transport via a procedure called **"particlization"** (Karpenko) Particularly suitable for studying effects of a strong phase transition in model EoS

- a) Sandwich: UrQMD + hydro + hadronic cascade (H. Petersen et al.)
 - \rightarrow PT in hydro stage only
- b) **3-fluid hydro**dynamics (Ivanov) + particlization (Karpenko)
 - \rightarrow PT in baryon stopping regime already!

(main difference to sandwich; appropriate for energy range of NICA / CBM)

Both approaches provide the inputs for the simulation of the **detector response** (GEANT-MPD: Rogachevsky, Merts, Batyuk, Wielanek, et al.)

Hydrodynamic modelling for NICA / FAIR / J-PARC-HI

More complicated for lower energies:

- \rightarrow baryon stopping effects,
- \rightarrow finite baryon chemical potential,
- \rightarrow EoS unknown from first principles

We want to simulate the effects of, and ultimately discriminate different EoS/PT types The model has to be coupled to a detector response code to simulate detector events

time

Yu.B. Ivanov, V.N. Russkikh and V.D. Toneev, Phys. Rev. C73, 044904 (2006)

http://theory.gsi.de/~ivanov/ mfd/

٨

Event set:

40k AuAu @ $\sqrt{s_NN} = 9 \text{ GeV} [0-5\%]$ The most reliable region |eta| < 1.2; 0.4 < p_t [GeV/c] < 0.8

Result:

PHSD input \rightarrow GEANT+MPD detector reproduces the rapidity distribution ! (previous concerns not confirmed !!)

Signal:
$$C_y = (y_{cm}^3 \frac{d^3 N}{dy^3})_{y=0} / (y_{cm} \frac{dN}{dy})_{y=0}$$

Investigation of p_T cuts: Yu. Ivanov & D. Blaschke, arxiv:1504.03992

$$C_y = \left(y_{\text{beam}}^3 \frac{d^3 N}{dy^3}\right)_{y=0} / \left(y_{\text{beam}} \frac{dN}{dy}\right)_{y=0}$$

= $\left(y_{\text{beam}} / w_s\right)^2 \left(\sinh^2 y_s - w_s \cosh y_s\right)$

- i. 0 < p_T < 2 GeV/c and a very unrestrictive constraint to the rapidity range |y| < 0.7 y_{beam}, where y_{beam} is the beam rapidity in the collider mode, which is practically equivalent to the full acceptance;
- ii. 0.4 < p_T < 1 GeV/c and |y| < 0.5, the expected MPD acceptance [17];
- iii. 1 < p_T < 2 GeV/c and |y| < 0.5, an acceptance range where low-momentum particles witnessing collective behaviour are largely eliminated;
- iv. 0.4 < p_T < 3 GeV/c and |y| < 0.5, the range of the STAR acceptance [18].

Investigation of p_T cuts: Yu. Ivanov & D. B., PRC 92, 024916 (2015)

$$C_{y} = \left(y_{\text{beam}}^{3} \frac{d^{3}N}{dy^{3}}\right)_{y=0} / \left(y_{\text{beam}} \frac{dN}{dy}\right)_{y=0}$$
$$= \left(y_{\text{beam}} / w_{s}\right)^{2} \left(\sinh^{2} y_{s} - w_{s} \cosh y_{s}\right)$$

- "wiggle" formed in the nonequilibrium compresion stage of the collision, where p_{T} only in 3FH
- robust against serious p_T cuts
- at high p_T (1 2 GeV/c) in convex region
- at low p_T (0.2 1 GeV/c) in concave region
- required accuracy in C_v determination: $\Delta C_v < 2$

Investigation of p_T cuts: Yu. Ivanov & D. Blaschke, arxiv:1504.03992

$$\frac{dN}{dy} = a \left(\exp \left\{ -(1/w_s) \cosh(y - y_s) \right\} + \exp \left\{ -(1/w_s) \cosh(y + y_s) \right\} \right),$$

$$C_y = \left(y_{\text{beam}}^3 \frac{d^3 N}{dy^3} \right)_{y=0} / \left(y_{\text{beam}} \frac{dN}{dy} \right)_{y=0}$$

= $\left(y_{\text{beam}} / w_s \right)^2 \left(\sinh^2 y_s - w_s \cosh y_s \right).$

- "wiggle" formed in the nonequilibrium compression stage of the collision, where p_{τ} only in 3FH
- robust against serious p_{τ} cuts
- at high p_T (1 2 GeV/c) in convex region
- at low p_{T} (0.2 1 GeV/c) in concave region
- required accuracy in C_y determination: $\Delta C_y < 2$

Directed flow indicates a cross-over Deconfinement transition ...

Ivanov & Soldatov, Phys. Rev. C 91 (2015)

3+1D viscous hydro-cascade model (Yu. Karpenko, FIAS)

3+1D viscous hydro+cascade model was applied for A+A collisions at RHIC Beam Energy Scan energies ($\sqrt{s} = 7.7 - 39$ GeV), and for SPS energy points

Cascade-hydro-cascade approach:

Initial state: UrQMD cascade

S.A. Bass et al., Prog. Part. Nucl. Phys. 41 255-369, 1998

Hydrodynamic phase: numerical 3+1D hydro solution via original relativistic viscous hydro code

lu. Karpenko, P. Huovinen, M. Bleicher, arXiv:1312.4160

Hydro starts at $\tau = \sqrt{t^2 - z^2} = \tau_0$ (red curve): { $T^{0\mu}, N_b^0, N_a^0$ } of fluid = averaged { $T^{0\mu}, N_b^0, N_a^0$ } of particles

Fluid→particle transition

 $\varepsilon = \varepsilon_{sw} = 0.5 \text{ GeV/fm}^3$ (blue curve): $\{T^{0\mu}, N_b^0, N_q^0\}$ of hadron-resonance gas = $\{T^{0\mu}, N_b^0, N_q^0\}$ of fluid

Hadronic cascade: UrQMD

P. Huovinen, H. Petersen: "Particlization in hybrid models", Eur. Phys. J. A48 (2012) 171; arxiv:1206.3371

P.F. Kolb, J. Sollfrank, and U. Heinz, Phys.Rev. C 62, 054909 (2000).

THESEUS: Particlization of 3-fluid Hydro + UrQMD casc.

THESEUS: Particlization of 3-fluid Hydro + UrQMD casc.

P. Batyuk, D.B., M. Bleicher, Yu. Ivanov, Iu. Karpenko, M. Nahrgang et al., arxiv:1608.00965

2-phase EoS, b = 2 fm

Energy scan of the curvature Cy of the net proton Rapidity distribution at central rapidity y_{cm}

$$C_y = y_{\rm cm}^2 (d^3 N_{\rm net-p}/dy^3)/(dN_{\rm net-p}/dy)$$

Reduced curvature calculated for a parabolic fit

$$\tilde{P}_2(y) = ay^2 + by + c \longrightarrow C_y = y_{\text{beam}}^2 2a/c$$

P. Batyuk, D.B., M. Bleicher, Yu. Ivanov, Iu. Karpenko, M. Nahrgang et al.,

P. Batyuk, D.B., M. Bleicher, Yu. Ivanov, Iu. Karpenko, M. Nahrgang et al.,

P. Batyuk, D.B., M. Bleicher, Yu. Ivanov, Iu. Karpenko, M. Nahrgang et al.,

What about K+/π+ (Marek's horn) in THESEUS ?

2-phase EoS, b = 2 fm

THESEUS simulation reproduces 3FH result, Thus it has the same discrepancy with experiment

- --> some key element still missing in the program
- P. Batyuk, D.B., M. Bleicher et al., arxiv:1608.00965

Recent new development in PHSD

Chiral symmetry restoration in HIC at intermediate ..." A. Palmese et al., arxiv: 1607.04073

Strange baryon to pion ratios

Total yields

Hypernuclei

Hypernuclei provides unique opportunity to study the strange particle-nucleus interaction in a many-body environment.

On the astrophysical scale the appearance of hyperons in the dense core of a neutron star has been a subject of extensive studies since the early days of neutron star research

production enhanced at high baryon densities (NICA)

Conclusions

- 1. Light flavors and Hypernuclei: Spectra and Yields/ratios
- 2. Correlations & Fluctuations: Collective flow for hadrons; Femtoscopy
- 3. Electromagnetic probes: In-medium spectral properties Mott effect for hadrons?
- 4. Heavy flavors: Charm at threshold in MPD or even subthreshold?

Heavy Flavours ?

Further developments:

- MPD Detector simulation (Oleg Rogachevsky et al.)
- New 2-phase EoS (Wroclaw group: Bastian)

A new class of 2-phase EoS: Motivation from Astrophysics

Support a CEP in QCD phase diagram with Astrophysics?

NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Crossover at finite T (Lattice QCD) + First order at zero T (Astrophysics) = Critical endpoint exists!

Comparison 2-phase EoS

N.-U. Bastian, D. Blaschke (S. Benic, S. Typel), In progress (2016) A. Khvorostukhin et al. EPJC 48 (2006) 531 Yu. Ivanov, D. Blaschke, arxiv:1504.03992

Comparison 2-phase EoS

N.-U. Bastian, D. Blaschke, in: Proceedings SQM-2015, JPCS 668 (2016) 012042

Summary / Outlook:

- Baryon stopping signal ("wiggle") remains a robust signal for 1st order PT also under severe cuts in transverse momentum !
- Discrimination between hadronic phase and crossover transition ambiguous
- Position of the "wiggle" in the beam energy scan is EoS dependent new EoS ?!
- Particlization of 3-Fluid Hydrodynamics model works !
- UrQMD "afterburner" works too !

- Detector simulation in progress
- Systematic study of modern 2-phase EoS (Bayesian analysis) in progress

Critical Point and Onset of Deconfinement 2016

and Working Group Meeting of COST Action MP1304

> Wrocław, Poland May 30th - June 4th, 2016

Int. Advisory Comm.

- F. Becattini (Florence
- D. Blaschke (Dubna)
- Xin Dong (Berkeley)
- M. Gaździcki (Frankfurt)
- L. McLerran (Upton)
- E. Laermann (Bielefeld)
- J. Mitchell (Upton)
- K. Rajagopal (Boston)
- J. Randrup (Berkeley)
- D. Röhrich (Bergen)
- P. Senger (Darmstadt)
- P. Seyboth (Munich)
- E. Shuryak (Stony Brook)
- A. Sorin (Dubna)
- M Stephanov (Chicago)
- J. Stroth (Genf)
- Nu Xu (Berkeley)
- Dacui Zhou (Wuhan)

Organization Comm.

- D. Blaschke (Wroclaw)
- J. Margueron (Lyon)
- K. Redlich (Wroclaw)
- L. Turko (Wroclaw)
- C. Sasaki (Wroclaw)

Local Org. Comm.

- T. Fischer (Wroclaw) T. Klähn (Wroclaw) Pok Man Lo (Wroclaw) M. Marczenko (Wroclaw)
- M. Naskręt (Wroclaw)

Uniwersytet Wrocławski

Kick-off: Brussels, November 25, 2013

ISSN 1742-6588

