

K⁺/π⁺ ratio in argon and krypton data

Plotnikov V., Rumyantsev M, GEM tracking group.

Identification method

Argon

Identification for Ar

• For positive particles, all Ar

Kaon identification, Al, BD>1 && Si>2

- Gaus2 Kaon's peak
- Gaus1 background from pions
- pol0 background from misidentified particles

K⁺/ π^+ (A) for two triggers

• Before corrections

Efficiency of triggers correction

- Triggers could select π⁺ and K⁺ differently (more π⁺ with low multiplicity)
- CorrEff(Si)=K+/pi+(Bd + Si)/K+/pi+(Bd)
- CorrEff(Bd)=K+/pi+(Si + Bd)/K+/pi+(Si)

^{вм@}K⁺/π⁺(A) with efficiency of triggers correction

- Pb data are rejected
- Averaged by two triggers using their efficiencies
- Statistical and full errors are presented
- 4 sources of systematics (see next slide)

Systematics

Source of systematic error	Without 096pq scaling	Strips corrected to protons in 2 <pq<5< th=""><th>dt vs amplitude alignment fit</th><th>Unidentified background fit</th></pq<5<>	dt vs amplitude alignment fit	Unidentified background fit
Value, %	2.8	0.3	0.2	1.9

Monte Carlo ArCu, DCM-QGSM

- GEM + TOF400 geometry for run 7
- Without reconstruction
- 100K events
- Identifiable track = Min 5 GEM + TOF400 hit + from Primary Vertex

K⁺, π^+ pq spectra, Exp vs MC

- Left trigger1, middle trigger2, right MC
- K+ spectra are differ larger
- About 2200 K⁺ in experiment

Acceptance correction

- 2 corrections: acceptance and K⁺ decay
- Low edge from Exp 0.5 GeV/qc
- Full K+ and $\pi\text{+}$ spectra are dropped monotonically after 0.5 GeV/qc

^{BM@N}K⁺/π⁺(A) with efficiency of triggers and acceptance corrections

- AccCorr=K+/π+(TOF400)/K+/π+(4π)=0.5568
- Same correction for all targets

^{вм@}K⁺/π⁺(p) with efficiency of triggers and acceptance corrections

- Efficiency of triggers correction error ~25%
- Acceptance correction error ~7%

Pt spectra for K⁺ and π^+ , Exp vs MC

- For MC identifiable tracks are shown
- Common pt interval 0-0.5 GeV/c
- MC spectrum is softer than Exp spectrum

^{вм@}K⁺/π⁺(pt) with efficiency of triggers and acceptance corrections

 Corrections errors as for the p dependence case

Krypton

Identification for Kr, TOF400 outer planes

- For positive particles, all Kr
- p/q<2.0 GeV/qc cut

BM@N

Identification Kr vs Ar

π+/p(Kr)<π+/p(Ar)

Kaons identification for Kr

• About 330 K+

Time resolution for Kr

- Left 2<p/q<5, right p/q<2
- Time resolutions for Kr ~84 psec
- It is comparable with Ar

Thank you!

Backup

Preparation to identification for Ar
Scale $p \rightarrow 0.96*p$ Align tof400 strips to proton ba

Correct tof400 strips t-Amplitude dependence

dt vs p/q for Kr

Distribution seems to be horizontal enough

Ar, Control Plots, C

Ar, Control Plots, Al

Ar, Control Plots, Cu

Ar, Control Plots, Sn

Ar, Control Plots, Pb

Statistical error estimation

- Background error, $\sigma_{\mbox{\tiny K+bkg}},$ from fitting
- $\sigma_{K+} = \sqrt{(N_{K+bkg} + \sigma_{K+bkg}^2)}, N_{K+bkg} = N_K + N_{bkg}$
- Background error, $\sigma_{\pi\text{+}\text{bkg}}\text{,}$ from fitting
- $\sigma_{\pi+} = \sqrt{(N_{\pi+bkg} + \sigma_{\pi+bkg}^2)}, N_{\pi+bkg} = N_{\pi} + N_{bkg}$
- $\sigma_{K^{+}/\pi^{+}} = \sqrt{((\sigma_{K^{+}}/N_{\pi})^{2} + (N_{K} \cdot \sigma_{\pi^{+}}/N_{\pi^{2}})^{2})}$

Averaging K⁺/ π^+ by triggers and by targets

K+/π+(A)=

 $(K^{+}/\pi^{+}(A,Tr1)/Eff(Tr1)/\sigma(A,Tr1)^{2}+K^{+}/\pi^{+}(A,Tr2)/Eff(Tr2)/\sigma(A,Tr2)^{2})/(1/\sigma(A,Tr1)^{2}+1/\sigma(A,Tr2)^{2})$

• For systematic errors assessment $K^{+}/\pi^{+}=\Sigma_{Targ}\Sigma_{Tr}(K^{+}/\pi^{+}(A,Tr_{i})/Eff(Tr_{i})/\sigma(A,Tr_{i})^{2})/\Sigma_{Targ}\Sigma_{Tr}(1/\sigma(A,Tr_{i})^{2}), A=C,AI,Cu,Sn, i=1,2$

BM@N

• Spectra for K⁺ and π^+ are pretty different

Identification in Kr

- All bands as for Ar well visible except K+
- High background under K⁺