

Status and upgrade of the BM@N detectors

A.Maksymchuk

BM@N Experimental Setup

Beam pipe before the target, target station

Target station:

Three different target types with d = 30mm and 1 empty target are foreseen for data taking and background evaluation;

Operational in vacuum and magnetic field.

See talk of S.SEDYKH

Forward Si tracking detectors performance at Ar and Kr beams (March 2018)

• Vertex plane-2 consists of 2 modules with sensitivity area $12,5 \times 12,5$ cm², 2560 strips

Si-3 detector residual vs GEM+Si track ~ 86 µm

Upgrade of the forward Si tracking detectors

Three sizes of Si-planes

Design of the Si-planes on the BM@N beam-channel

Plans:

06.2019 - ASIC VATAGP7.1 delivery

02.2020 – integration of the Si forward tracking detectors into BM@N setup

Station#	Number of	DSSD station	Number of
	DSSD modules	square	Readout
			channels
Station1	10	720 cm ²	12800
Station2	14	1008 cm ²	17920
Station3	18	1296 cm ²	23040
Total	42	~0.3 m²	53760

Readout ASIC VATAGP7.1.

Number of sensitive pre-amplifier (CSA) inputs - 128 Input charges (dynamic range) - $-30fC \div +30fC$ Peaking time (slow shaper) - 500ns (typ.) Good linearity for charges up to +/- 15fC Reading clock - 4,6MHz

Tentative Design of the BM@N STS

Preliminary layout of BM@N STS was developed.

Geometry was tested in simulations in CbmRoot (E. Lavrik) and BmnRoot (S. Mertz)

Recent progress in simulation --> talk of A.Zinchenko

Four stations are based on CBMtype modules with double-sided microstrip silicon sensors:

- Pitch 58μ
- Stereo angle 7.5°
- Thickness 300µ
- Sizes: 62x62, 62x42, 62x22 mm²
- Produced by two vendors: CiS (Germany) & Hamamatsu (Japan)

Material Budget x/X [%], STS

Number of modules: 292 Number of channels: ~600k Power consumption: ~15 kW

Tentative design of BM@N STS stations

Plans:

2021 – first 42 modules integration into BM@N;

2022 – BM@N STS full configuration (292 modules)

See talk of D. DEMENTYEV

Assembling of BM@N STS modules at JINR

- Two clean rooms are already equipped for the module assembly
- Full set of jigs was developed, produced and tested on mockups
- QA procedure for all steps of assembling was developed
- Two technicians and two engineers are currently fully involved into assembling of BM@N modules
- \succ First operable module was assembled and now is under tests

Assembling of the mockups of BM@N STS modules

Beam test of the STS modules at LINAC-200

STS1,2 – Test stations with double-sided microstrip silicon sensors 15*15 mm² SC – scintillator counter 200*200 mm²

GEM central tracking system performance at Ar and Kr beams (March 2018)

GEM group

Example of the event reconstruction in the central tracker in Ar+Al interaction

Seven GEM 1632x450 mm² chambers produced at CERN workshop were integrated into BM@N experimental setup.

Pile-up suppression in Ar, Kr runs: 3 µs before and 0.5 µs after trigger signal

Amplitude, ADC counts Amplitude, ADC counts **GEM X&Y amplitude distributions**

Fragments of Ar beam in one of the GEM chambers

Magnetic field 0.6 T, Ar(80)/Isobutane(20), Ar beam, Edrift = 1.5kV/cm

Scheme of the GEM full planes configuration inside the magnet

First half of the 2019 – development of the mechanics for GEM planes precise installation inside the magnet.

End of the 2019 – mechanics production, installation of the GEM planes.

Upgrade plans:

- First half of the 2019 year - production of 6 GEM chambers of size 1632 mm \times 390 mm to cover full vertical acceptance of analyzing magnet

- End of the 2019 – integration of the full GEM planes into the experimental setup (electronics based on the VA-163 chips, ~90000 readout channels)

- Development and tests of FEE based on VMM3 and STSXYTER ASICs.

Forward Si+ STS +Gem configuration

Four configurations of the tracking detectors are foreseen:

- Forward Si + 7 GEMs: beam intensity few 10^{5} Hz , 2020 2021
- Forward Si + 1 pilot STS station + 7 GEMs: beam intensity few 10^5 Hz , 2021
- Forward Si + 4 STS stations + 7 GEMs: beam intensity few 10^5 Hz, 2022
- 4 STS stations + 7 GEMs (fast FEE): high beam intensity few 10^6 Hz, 2022-

Performance of 1065x1065 mm² CSC chamber in Ar, Kr runs

Residual (CSC_hit – GEM) < 2cm

100

Schematic view of 2190x1453 mm² CSC

CSC group

Two cathode planes with strips inclined at 0° and 15° Each cathode plane consists of 8 printed circuit boards. Each pcb is divided on hot and cold zones.

Two 2190x1453 mm² CSC chambers are to be installed before and after ToF-700

Design and assembly – JINR LHEP

Production plans:

- 07.2019: production of three 1065x1065 mm² chambers and design of the cathode planes for 2190x1453 mm² CSC chambers

-10.2019 – production of the cathode planes for $2190x1453 \text{ mm}^2 \text{CSC}$ chambers

- 02.2020 – Assembly of the first 2190x1453 $\rm mm^2$ CSC

- 05.2020 - Assembly of the second 2190x1453 $\rm mm^2\, CSC$

- 12.2020 – All chambers are integrated into the BM@N experimental setup

Status ToF-400

ToF-400 + V.Plotnikov

Preliminary result of identification, GEM+CSC track extrapolated to ToF-400

Proton $Mass^2 = 0,894 + -0,081 \text{ GeV}^2/c^4$, Pion $Mass^2 = 0,021 + -0,016 \text{ GeV}^2/c^4$

See talk of V.Plotnikov

Status ToF-700

Yu.Petukhov, L.Kovachev

ECAL upgrade status

cells.

ZDC Status

group of INR RAS Troitsk

To be replaced

35 FHCAL MPD modules (16_BM@N+19_MPD)

20 PSD CBM modules

54 modules:

Yellow – CBM modules – 20x20 cm, 10 sections – 20 modules - 10 T Blue – MPD modules – 15x15 cm, 7 sections - 34 modules - 6.8 T

04.2019 - Transportation of CBM modules (20 pcs), FHCAL BM@N modules (16 pcs) and FHCal MPD modules (19 pcs) from INR at JINR was performed.

Plans:

05.2019 – Assembly of FHCAL at JINR

See talk of S.Morozov

Biological Protection Calculation for Au+Au interactions

Additional protection to be built before heavy ion beams are delivered to the BM@N experimental setup

MDC(Mobile data storage and DAQ center) was installed at 205 bld.

Summary:

Detector Subsystem	Status	Upgrade Status
Beam pipe before the target, target station		end of 2019
Forward Si detectors	3 small planes	3 full-size planes (02.2020)
STS BM@N		42 modules (2021) 292 modules (2022)
GEM	7 top half-planes + 1 bottom half-plane	7 full planes (2019)
CSC	l chamber 1065x1065 mm²	4 chambers 1065x1065 mm²(2019) 2 chambers 2190x1453 mm²(2020-21)
ECAL	one arm	two arms (2019)
ToF-400	full configuration	
ТоҒ-700	full configuration	
ZDC	ZDC Pb+Sci sandwitch	ZDC (MPD/CBM type) (2019)