

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

Λ hyperon yields in carbon-nucleus interactions

Yu.Gornaya, M.Kapishin, **G.Pokatashkin**, I.Rufanov, V.Vasendina, A.Zinchenko

3rd BM@N Collaboration Meeting 17 April 2019 JINR, Dubna, Russia

Outline

- Technical run with carbon beam (March 2017)
 ✓ BM@N detector set-up
- 2. Data-MC agreement
 - ✓ Multiplicity
 - ✓ Momentum spectra
- 3. Analysis of data (C+Cu and C+Al at 4A GeV)
 - \checkmark A yield calculation
 - ✓ Efficiency estimates
 - ✓ $dN/dY \& dN/dP_T$ spectra
- 4. Summary

BM@N set-up in carbon run

Data vs MC for C+Cu @ 4A GeV

G. Pokatashkin

Momentum spectra: Data vs MC

Λ signals on different targets

N of reconstructed A in Y and P_{T} bins

G. Pokatashkin

Λ yields calculation

Luminosity calculation for different targets using DAQ information

G. Pokatashkin

Efficiency decomposition

$$\varepsilon_{\text{total}} = \varepsilon_1^{acc} \cdot \varepsilon_2^{emb} \cdot \varepsilon_3^{vtx} \cdot \varepsilon_4^{trig}$$

$$\varepsilon_1^{acc} = \frac{N_{acc}^{\Lambda}(y, p_T)}{N_{gen}^{\Lambda}(y, p_T)}$$

- Λ acceptance in GEM

$$\varepsilon_2^{emb} = \frac{N_{acc}^{\Lambda,\varepsilon_{det}}(y, p_T)}{N_{acc}^{\Lambda}(y, p_T)}$$

- efficiency of embedded Λ reconstruction

$$\varepsilon_{3}^{vtx} = \frac{N_{vtx(cuts)}^{\Lambda}(y, p_{T})}{N_{rec(MC_{full})}^{\Lambda,\varepsilon_{det}}(y, p_{T})}$$

$$\varepsilon_4^{trig} = 1 - \frac{N_{BD(cuts)}^{\Lambda}(<=2)}{N_{BD(cuts)}^{\Lambda}(all \ge =3)} -$$

- efficiency of Λ event selection

- trigger efficiency from Λ data

Target	С	AI	Cu
$arepsilon_4^{trig}$	0.9	0.95	0.95

Efficiency dependence on Y

Efficiency dependence on P_T

Total efficiency for C+Cu

Summary efficiency of Λ

Without ε_4^{trig} efficiency

A yields in C+A1 @ 4A GeV

A yields in C+Cu @ 4A GeV

Summary

- ✓ Reasonable agreement between data and MC has been achieved after taking into account features of set-up.
- ✓ A efficiencies have been extracted from data using embedding technique.
- Λ yields have been calculated for two targets and compared with DCM-QGSM simulated data.
- ✓ Carbon target data analysis is in progress.

Thank you for attention!

Backup

Experimental Data

Signals with errors according to P_{τ} and Y intervals.

	Y			P _T			
Target	С	AI	Cu	Target	С	AI	Cu
Interval				Interval			
1.2-1.45	65±20	176±31	269±37	0.1-0.3	193±34	341±51	264±54
1.45-1.65	133±25	236±40	258±45	0.3-0.5	232±35	372±54	380±59
1.65-1.85	163±31	389±49	281±53	0.5-0.75	150±28	351±45	235±47
1.85-2.1	169 ±36	308±54	253±56	0.75-1.2	no	81±25	184±28
Total Total _{fit}	530±57 530±58	1109±89 <mark>1099±89</mark>	1061±97 1025±97	Total Total _{fit}	575±56 530±58	1145±90 <mark>1129±90</mark>	1063±97 1025±98

The error approximation formula $\Delta = \sqrt{(S+B)_{hist} + \frac{-y_{th}}{2}}$ G. Pokatashkin

Invariant mass in Y-bins (C+Cu @ 4A GeV)

BM@

1.12

1.1

1.14

Y = [1.45 - 1.65]

G. Pokatashkin

1.08

1.16 1.18 M_(p+π),GeV/c²

Invariant mass in P_T-bins (C+Cu @ 4A GeV)

G. Pokatashkin

dN/dP_T spectra

Without center-bin correction! Without systematic errors (only statistical)!

Phase space of Λ

