Range (Muon) System for SPD/NICA: Status Report

G.Alexeev (on behalf of Muon group) International Workshop "SPD at NICA-2019" Dubna, 6 June, 2019

- Physics/detector tasks
- General concept (like PANDA/FAIR)
- Current status
- Results to be achieved/included into next CDR
- Work plan for year 2019

Muon System as PID

- SPD/NICA Muon System based on range system technique is a good PID system for muon-to-hadron separation.
- It works in full energy range of secondary particles at SPD (0.5 ÷ 10 GeV).
- It resolves muons and hadrons with ~ 100% efficiency (~zero hadron contamination) above ~ 1 GeV by obviously different response pattern.
- Separation of muons vs pions (the main rival) below 1 GeV is less efficient and requires test beam measurements for calibration.
- Important feature of range system is possibility to be used as coarse sampling (30 mm to 60 mm of Fe in our case) hadron calorimeter – > very important for neutron registration!

3D model of SPD/NICA Muon System

(total weight ~ 1270 ton, number of MDTs ~ 15'000, R/O channels ~ 120'000 (wires) + strips ?

Structures of Barrel & End Cap(s)

Mini Drift Tube (MDT) detectors

(D0/FNAL&COMPASS/CERN-wire R/O (left), PANDA/FAIR&SPD/NICA – wire&strip R/O (right)

HV on ALU cathode

Mini-Drift Tube (MDT) Detector as Basis for the Muon System

HV on the wires

'open cathode' geometry

MDT's strip readout

3D model of prototype with strip R/O

Strip board cut on G10

G10 Fiberglass Strip Board

1 cm wide strips

Range System Prototype

(~10 ton/Fe absorber plates; 276 MDTs; ~ 3000 R/O channels: 2200 wires + 672 strips)

beam position (horizontal)

PROTOTYPE @ PS/T9 BEAM LINE May 2017 – September 2018

cosmic test position (vertical)

PID pictures of Muon System

(single point equals one hit wire – 1x1 cm2; beam momentum – 5 GeV/c)

muonic sample -> 'straight' line

hadronic sample -> shower

Event Examples (Run 822, P = 1 GeV/c)

Prev	805	805 Next 805				Set 04-05-2018 21:40:10							Prev 97 Next			xt	805			Set	04	05-201)5-2018 21:37:31		
04-05-2018 21:36:51 <-> 04-05			04-05-2	5-2018 22:34:00			57.09	Cross				04	04-05-2018 2			21:36:51 <-> 04-05			5-2018 22:34:00		00.57.09		unionntonntonno		Jaalua
	•	iouip		WI	res			10055				,		•		iotrip		YYI	res						
																			_						
					[[1														2
											3														3
				•							4														4
	n										5 6								•						6
	P										7					μ			••••••						7
											8								•						9
											10								•						10
											11														12
											12														13
											1.4								•						14
											14								.	ļ					15
											15														16
											16														17
											17														10
											18														10
											19														19
											20														20

Event Examples (Run 835, P = 10 GeV/c)

Prev	87	Ne	ext		111		Set	05-	05-201	8 18:4	0:49	P	rev	235	Ne	xt		235		Set	05-	05-201	8 18:4	0:50
05-05-2	018 18:40	0:49 <->	05-05-2	2018 18	3:47:51	00.	07.02					05-0	5-2018 Profile	18:40:-	49 <-> (05-05-2	2018 18	3:47:51	00.	.07.02				
	nie	візкір		Wi	res		I B	ILIOSS					nome		isuip		Wi	res			oleioss			
								••••																
	·····			(1		.		((•	(((1
											23													2
				.							4													4
					•						5						•							5
	1)										6				U.									6 7
	Γ				•••						8													8
			•			-					9		÷	.			•	·				·		9
		•									10													10
											12		ļ	ļ										12
											12		ļ	ļ	ļ							ļ		13
											IJ													14
											14													14
											15													15
											16													16
											17		·											17
			ļ	ļ							18													18
											19		ļ	<u>.</u>	ļ			ļ				ļ		19
											20													20
			1								20													20

Calorimetry: PANDA Barrel Structure

Sampling: 30 mm / Fe Nuclear interaction length $\lambda_1 \approx 2.3$

Protons vs Antiprotons

* - PANDA FRS Structure, T = 3.1 GeV

Prototype Data (μ vs π)

Run 605 P = 0.5 GeV/c

Test Beam Results (Preliminary)

EPJ WoC, Volume 177 (2018) 04001

Run 605, autumn 2017 momentum = 0.5 GeV/c

Selection -> after layer #7:

22% - pion contamination and93% - muon efficiency

FairBoxGenerator, PandaROOT P = 0.5 GeV/c

Selection -> after layer #7:

27% - pion contamination and99% - muon efficiency

Wire & Strip Response

(left – muon, 5 GeV/c; right – proton, 10 GeV/c; strip width – 3 cm)

Analog Front End Electronics (FEE) cards

(conservative approach – D0/FNAL & COMPASS/CERN)

Amplifier-Discriminator Board, 32 channels, **ADB-32** for wire R/O

Preamplifier Board, 32 channels, A-32 for strips R/O

Necessary number of cards (30) to equip the Prototype exists

Digital Front End Electronics (FEE) cards

Design concept

Simplified Block-diagram of Xilinx FPGA Prototype R/O Module (192ch) (to be tested with Range System Prototype at CERN; if the results will be positive, the Artix 7 chip may be regarded as the basis for the final PANDA/DAQ)

To be developed in full 192 channel unit in VME, 6U standard (design in progress)

32 channel card tested at CERN

FEE cards -> in discussion for tests with MDTs (in cooperation with INFN Torino)

CMAD

Torino Integrated GEM Electronics for Readout (TIGER)

Programmable gain : 0,4mV/fC – 4,4 mV/fC

8 channels per chip

14mm

Gain programmable channel by channel

Threshold adjustable channel by channel (On board DACs+Logic)

Hit rate > 5 MHz

Power consumption < 30 mW/channel

64 channels: VFE, TDC/ADC, local controller SEU protected digital backend On-chip bias and power management On-chip calibration circuitry Fully digital output, LVDS IO 4 TX SDR/DDR links, 8B/10B encoding SPI configuration link Power consumption < 12 mW/channel Nominal 160 MHz system clock Sustained rate per channel: above 100 kHz

<u>3D model of SPD Muon (Range) System</u> Prototype

(total weight ~ 1,5 ton, 120 MDTs, 960 wire R/O channels, strips ?)

SIDE & FRONT VIEWS of the Prototype

Cerenkov counter for SPD test beam

(main task -> π/μ separation < 1,5 GeV/c; high pressure (up to 60 bar) of CO2)

3D model/design

Ready device at DLNP test stand, tuning of optics

- MC development:

 - Pattern recognition algorithms 12.2019
- Treatment of CERN test beam data 12.2019
- Participation in SPD/Nuclotron Test Beam Area:
 - Production of Prototype absorber 12.2019

 - Prototype module of digital FEE unit10.2019

CONCLUSION:

- Muon (Range) System of SPD/NICA is powerful PID instrument in full energy scale
- Existing set of experimental data is adequate for new SPD CDR
- MC requires serious development !
- Preparation for SPD test beam is on track

BACK UP SLIDES

3D model of SPD Barrel with cable channels

Barrel sub-module

Barrel sub-module

(half-size of Fe absorber plates is removed to demonstrate MDT detetector layers)

