Physics with prompt photons at SPD.

Aierke Rymbekova (JINR DLNP, Dubna)

SPD at NICA - 2019

Prompt photons

Photons produced in the hard scattering, named the **prompt photons**, provide information about gluon component of the proton.

 $d\sigma_{AB} = \sum_{a,b=q,\bar{q},g} \int dx_a dx_b f_a^A(x_a,\mu^2) f_b^B(x_b,\mu^2) d\sigma_{ab\to\gamma X}(x_a,x_b,\mu^2).$

One of the instrument to study gluon component of proton – prompt photons

2

Previous studies

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	p, π^+ ; C	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^+ , π^- ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	p, π^+ , π^- ; p	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	p, π^+ , π^- ; p	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	p, π^- ; Be	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p; p	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$ar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50

Previous studies (data/theory)

Phys.Rev. D73 (2006) 094007

TMD PDFs

Gluon polarization

3 PDFs are needed to describe nucleon structure in collinear approximation

8 PDFs are needed if we want to take into account intrinsic transverse momentum k_T of partons (LO) Transverse single spin asymmetry

J. Phys. G: Nucl. Part. Phys. 24 991(1998)

Rev. Lett. 67 (1991) 2264 6

E704 Fermilab

 $\sqrt{S} = 19.4 \text{ GeV}$

- Fixed-target experiment
- pp 200 GeV/c
- Polarized proton beam at 200 GeV/c originated from the decays of Λhyperons produced by an incident 800 GeV/c proton beam from the TEVATRON on a Be target

Phys. Lett. B345 (1995) 569 - 575

First ever polarised beam

Longitudinal double spin asymmetry

Production of prompt photons at large transverse momentum with longitudinally polarised proton beams is a very promising method to measure gluon polarisation Δg from measurement of the Longitudinal double spin asymmetry A_{LL} , defined as:

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})} \approx \int_{g(x_1)}^{\Delta g(x_1)} \times \left[\frac{\sum_q e_q^2 [\Delta q(x_2) + \Delta \bar{q}(x_2)]}{\sum_q e_q^2 [q(x_2) + \bar{q}(x_2)]} \right] + (x_1 \leftrightarrow x_2)$$
Gluon polarization

PHENIX

- Collider experiment
- $pp \sqrt{S} = 200 \text{ GeV/c}$

 10^{-1}

 X_T

10⁻²

Statistics is limited and it's very difficult to make any conclusions

Two ways to study gluon structure

 \Box J/ ψ mesons production

- Good signal
- Hard to interpret (model dependent)

Prompt photons production

- Large background
- Easy to interpret
- Possible to get soft gluons

- Low p_T region is useless for any studies of prompt photons due to huge background
- At high p_T statistics is very limited
- A reasonable cut on transverse momentum (> 4 GeV/c) of photon has to be applied in order to maximize the accuracy of the planned measurements.

It consists of the 3 parts: 2 endcaps and central one. Each part has individual magnet system, the endcaps - solenoidal coils, central part toroidal.

2

 \Box polarised (longitudinal and transverse) and non-polarised p -; d - collisions;

□ polarisation ~ 70%; □ $p \uparrow p \uparrow \sqrt{s} = 12 \div 27 \text{ GeV};$ □ $d \uparrow d \uparrow \sqrt{s} = 4 \div 13.8 \text{ GeV};$ □ $L_{average} \ge 10^{32} cm^{-2} s^{-1} (\text{at } \sqrt{s} = 27 \text{ GeV}).$

Calorimeter

- Energy resolution of about $5\% / \sqrt{E}(GeV)$
- Energy threshold below 100 MeV
- Granularity < 10 cm
- $12.5 X_0$

Prompt photons at SPD

Monte Carlo data using SPD root and Pythia 6 generator (GCS).

Main background sources

 π° Decay

- η-meson decay
- double clusters
- neutral hadrons (n,K,Λ)
- charged particles

A reasonable cut on transverse momentum (> 4 GeV/c) of photon has to be applied in order to maximize the accuracy of the planned measurements.

Expected accuracy

The main way to suppress the background is effective reconstruction of π^0 decays and an accurate simulation of setup behaviour.

Expected accuracy

- Data sample corresponds to 10^7 s of data taking (about 100 days) with average luminosity $L = 10^{32} s^{-1} cm^{-2}$.
- Errors from polarisation and luminosity measurements are not taken into account.

• Polarisation = 100 %

•
$$dk/k = 2\%$$
.

•
$$p_{T_{\min}} = 6 \text{ GeV}$$

Prompt photons provide an information about polarased and non-polarised gluon component of the proton

Studies of gluon structure of nucleon with prompt photons – one of the main tasks of the SPD physics program

Signal to background ratio

NICA (Nuclotron based Ion Collider fAcility)

SPD physics tasks Nucleon spin structure studies

- Drell-Yan pair production

- Nucleon PDFs by J/psi production

LO *cc* production diagram:

