COMPASS++/AMBER project: common topics with SPD

A. Guskov, JINR, DLNP avg@jinr.ru

COMPASS-AMBER

Apparatus for Meson and Baryon Experimental Research

a new QCD facility at the M2 beam line of the CERN SPS

AMBER physics program

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent:

A New QCD facility at the M2 beam line of the CERN SPS*

COMPASS++[†]/AMBER[‡]

CERN

CERN-SPSC-2019-003

SPSC-I-250

January 28, 2019

arXiv:1808.00848

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal for Measurements at the M2 beam line of the CERN SPS

Phase-1: 2022-2024

COMPASS++*/AMBER†

SPSC-2019-022 SPSC-P-360 May 31, 2019

AMBER physics program

- Proton radius measurement in μ-p elastic scattering
- Drell-Yan and charmonium production using conventional hadron beams
- # Hard exclusive reactions with muon beam and transversely polarised target
- Spectroscopy with low-energy antiproton beam
- Measurement of antiproton production cross section for dark matter search
 RF-separated beam
- Wector-meson production in nuclear matter
- Spectroscopy of kaons
- Drell-Yan and charmonium production using kaon and antiproton beams
- Study of gluon content of kaons with prompt photons
- Low-energy QCD with kaon beam

Sea/valence quarks in pion via DY

Sea/valence separation

$$\Sigma_{val}^{\pi D} = -oldsymbol{\sigma}^{\pi^+ D} + oldsymbol{\sigma}^{\pi^- D}$$

$$\Sigma_{sea}^{\pi D} = 4\sigma^{\pi^+ D} - \sigma^{\pi^- D}$$

Sea/valence quarks in kaon

Poor knowledge of kaon valence PDFs, no info about sea

Gluon PDFs of mesons

Z. Phys. C 72, 249-254 (1996)

xG(x)	Reactions	Subprocess	Reference
$(1-x)^3$	$\pi N \to \psi$	GG o car c	[4], (1980)
$(1-x)^{1.9\pm0.3}$	$\pi^- Be o \psi$	GG o car c	[5],(1983), WA11
$(1-x)^{2.38\pm0.06\pm0.1}$	$\pi^{\pm} Pt o \psi$	$GG ightarrow car{c}$	[6], (1983)
$\sim (1-x)^{3.1}$, evolves with Q^2	$\pi p \to \psi, \pi^{\pm} X$	$GG ightarrow car{c}$	[7], (1984)
$(1-x)^{2.3^{+0.4+0.1}_{-0.3-0.5}}$	$\pi^-W \to \Upsilon$	$GG o bar{b}$	[8], (1986) NA10
$(1-x)^{1.94^{+0.39}_{-0.17}}$	$\pi^{\pm}p ightarrow \gamma X$	$QG ightarrow \gamma Q$	[10], (1989) WA70
$(1-x)^{2.1\pm0.4}$	$\pi^+ p o \gamma X$	$QG ightarrow \gamma Q$	[11], (1991)
$(1-x)^{2.75\pm0.40\pm0.75}$	$\pi^- p o dijets$	$QG, GG \rightarrow dijets$	This paper

$$xg(x) \sim (1-x)^{\eta}, \eta \approx 2$$

quarkonia production

prompt photons

Complimentary approaches!

We have some minimal data for pion, for kaon there is no any experimental results!

While there is a prediction that gluon content of kaon at hadronic scale is ~1/6 in respect to pion.

jet production

Gluon content of pion & J/ψ

CEM

Two main mechanisms of J/ψ production in hadron collisions:

$$gg \rightarrow J/\psi + ...$$

 $q\overline{q} \rightarrow J/\psi + ...$

Model-dependent separation of gg and qq contributions

Gluon PDFs of kaon & J/ψ

CEM

$$\sigma_{J/\psi}^{K^-} - \sigma_{J/\psi}^{K^+} \propto \bar{u}^{K^-} u^N$$

Gluon PDFs of kaon via prompt y

K+ for main sample, K-,π+,πfor reference and systematic studies.

Gluon PDFs of kaon via prompt y

Flat acceptance in p_T

Two different methods to touch g(x) — different systematics, different kinematic ranges.

Spin physics with antiproton beam

Antiproton beam and transversely polarised NH₃ target

Active absorber

Beam energy (Gev)								
	Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c^2)	DY e $\mu^+\mu^-$	vents e^+e^-
	This exp.	110cm NH ₃	Ēρ	3.5×10^7	100 120 140	4.0 - 8.5 $4.0 - 8.5$ $4.0 - 8.5$	28,000 40,000 52,000	21,000 27,300 32,500

Nuclear effects in DY

Energy loss:

- Multiple scattering of incoming quark in large nuclei
- No energy loss in the final state
- ightarrow Comparison between DY and J/ψ complementary information

Flavour dependent EMC effect: Meson induced Drell-Yan process tags flavours

Using two π beam charges and two targets, one can add constraints on the EMC

flavour dependence

GPD E via DVCS and DVMP

$$H(x, \xi, t) \stackrel{t \to 0}{\longrightarrow} q(x) \text{ or } f_1(x)$$

Elusive" $E(x, \xi, t) \leftarrow \rightarrow f_{1T}^{\perp}(x, k_T)$

Ji sum rule

$$\mathbf{J}^{q} = \frac{1}{2} \lim_{t \to 0} \int (\mathbf{H}^{q}(\mathbf{x}, \xi, t) + \mathbf{E}^{q}(\mathbf{x}, \xi, t)) \mathbf{x} d\mathbf{x}$$

$$\mathcal{D}_{CS,T} \equiv \Delta \sigma_{T} (\mu^{+\downarrow}) - \Delta \sigma_{T} (\mu^{-\uparrow})$$

$$\rightarrow Im(F_{2}\mathcal{H} - F_{1}\mathcal{E}) \sin(\phi - \phi s) \cos \phi$$

µ± beams Transversely polarised NH₃ target 2 year of data taking

Similar for DVMP

p-yields for astrophysical dark matter search

But the most of antiprotons are produced in interaction of primary CR with interstellar matter

	pbar(18-45 GeV/c)	pbar (5-18 GeV/c)
p-p @ 0-280GeV/c	OK 2009 data @190GeV	RICH veto or RICH0
p-He @0-280GeV/c	new LHe target	RICH veto or RICH0

Proton radius measurement

RP, Gilman, Miller, Pachucki, Annu. Rev. Nucl. Part. Sci. 63, 175 (2013).

proposed set-up

- hydrogen TPC acting as active target
 - measurement of energy of recoil proton
 - between 0.5 and 100 MeV
 - required resolution: $\Delta \approx 60 \, \text{keV}$)
- silicon telescopes up- and downstream of target
 - measurement of muon scattering angles
 - 300 μ rad at $Q^2 pprox 10^{-3} \; ({
 m GeV}/c)^2$
 - ullet required resolution $\sigma \lessapprox 100 \, \mu \mathrm{rad}$

uncertainty on $\sqrt{\langle r_E^2
angle} pprox 0.01\,\mathrm{fm}$

Charmonia via pp annihilation

Wide spectrum of quantum numbers!

Vector mesons in nuclear matter

 $\sigma_{L,T} = \sigma(V_{L,T}: \rho, \omega, \phi...N)$

Important for:

treating of the CT effect

heavy ion collisions

 $\gamma A \rightarrow V A$ (coherent) – σ_T (proposed to be precisely measured at JLab) $\pi - A \rightarrow V A' - \sigma_L$ dominates (AMBER)

Naive quark model: $\sigma_L = \sigma_T$

Color dipole model:

Running with the set of different nuclear targets (Be - Pb). No special requirement for the spectrometer. Running in parasitic mode is also possible.

clusive charge exchange reactions:

K- A → K*(892) A'

$$\pi$$
- A → ρ (770) A'
 π - A → f_2 (1270) A'

Low-energy QCD with RF-separated hadron beam

Kaon polarizability

$_XPT$ prediction $O(p^4)$:

$$\alpha_K + \beta_K = 0$$

$$\alpha_K = \alpha_\pi \times \frac{m_\pi F_\pi^2}{m_K F_K^2} \approx \frac{\alpha_\pi}{5} \approx 0.6 \times 10^{-4} fm^3$$

Quark confinement model:

$$\alpha_K + \beta_K = 1.0 \times 10^{-4} fm^3$$

$$\alpha_K = 2.3 \times 10^{-4} fm^3$$

π⁰ lifetime

==17					
<i>VALUE</i> (10 ⁻¹⁷ s)	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
8.52 ± 0.18 OUR AV	ERAGE	Error includes scal	le fact	or of 1.2	
$8.32 \pm 0.15 \pm 0.18$					Primakoff effect
8.5 ± 1.1		² BYCHKOV	09	PIBE	$\pi^+ ightarrow e^+ u \gamma$ at rest
$8.4\ \pm0.5\ \pm0.5$	1182	³ WILLIAMS	88	CBAL	$e^+e^- ightarrow e^+e^-\pi^0$
$8.97 \pm 0.22 \pm 0.17$		ATHERTON	85	CNTR	Direct measurement
8.2 ± 0.4		⁴ BROWMAN	74	CNTR	Primakoff effect

Kaon spectroscopy with kaon beam

- Most PDG entries more than 30 years old
- Since 1990 only 4 kaon states added to PDG

We intend to rewrite completely the kaon section of PDG

SUMMARY

COMPASS++/AMBER is a planned fixed-target facility at CERN with an extended physics program which partially overlaps with the SPD physics program.

Experience of the COMPASS++/AMBER project could be used by the SPD project