Possible Contribution to Electromagnetic Calorimeters

Feature Extraction from Waveforms and Data Reduction

Marcin Ziembicki

Warsaw University of Technology and AstroCeNT

Introduction

- Possibility to implement completely dead-time free system.
- Ability to disentangle overlapping pulses (pile-up)
- Can subtract off periodic EMI by digital filters implemented in FPGA firmware.
- There is a price to pay: **power consumption, cost, data rate**.
 - Can we reduce the above without affecting the physics performance?

Optimizing the Signal Chain

- Type and cutoff frequency of analog shaper/anti-aliasing filter?
- Speed and resolution of the ADC?
- Signal processing methods and sharing of signal processing between FPGA and DAQ
- Optimization of resource usage within the FPGA
- Quality of time & charge estimates
- Two independent compression methods:
 - Waveform (potentially lossy)
 - Time/charge (lossless)
- Disentanglement of pulse pile-up

Timing of arriving photons → leading edge

= EMI (deterministic source)

Recovery time \rightarrow rate tolerance

Need decent model of the full signal chain \rightarrow having one allows exploration of various variants of shaper/ADC combinations without the need for building prototypes (thus saves labor time)

Study of Sampling Systems

How **poor** can the **system specs** be to still be able to tell **when** and how big the **pulse was** with **satisfactory precision**?

Interactions Buffer size, link bandwidth and storage requirements Compression algorithms Pile-up **Processing** resolution speed and maximum Data rate pulse rate Dynamic ADC resolution range **ADC Speed** Pulse width Shaper / anti-System Signal to Time bandwidth **Noise Ratio** aliasing Filter resolution Noise Charge Signal spectrum resolution processing algorithms **FPGA** resource usage

Timing Resolution of Sampling Digitizers

PURPOSE OF THE STUDY:

Determine how fast and how precise does a system needs to be to achieve given performance specs?

- Use AWG instead of PMT.
- Use large reference pulse (timing accuracy $\sigma \approx 10$ ps) and small, shaped signal pulse (1 mV ~ 100 mV).
- Apply signal processing methods and calculate time difference Δt between ref. and sig. channels.
- Repeat multiple times and compute RMS of Δt values.
- Two shapers:
 - 15 ns and 30 ns rise time (10% to 90%), 5-th order Bessel-type low-pass filters.
- Shared project WUT/TRIUMF

Custom shapers

Commercial ADCs (CAEN)

V1720 (250 MSPS/12b)

V1730 (500 MSPS/14b)

Signal Processing Methods

Digital Constant Fraction Discriminator:

- Simple processing → needs little
 FPGA resources
- Does not make any assumption as to the pulse shape
- Favors high sampling rate, but some improvements are possible for low sampling rates if pulse shape is invariant
- Poor performance in low SNR conditions

Time errors and possible correction

 θ - actual sub-sample shift

$$CR = \frac{P}{P - Q}$$

Signal Processing – FIR DPLMS

Gatti E., et al., "Digital Penalized LMS method for filter synthesis with arbitrary constraints and noise", NIM A523, 167-185, 2004

Signal Processing - FIR Filters

0.02

0.01

-0.01 -0.02 80 90 100 110 120 130 140 Sample no.

FIR response (event 1)

- Trigger on matched filter response (red)
- Use adaptive threshold to prevent false positives (dotted black line)
 - Average signal to get the threshold and delay FIR processing to check for pulses and their timing
- Get time using the 'timing' filter (blue)
- Apply correction to counteract non-linear shape of the waveform near zero-crossing.

Method assumes that shape is constant

Need on-line Quality Factor to judge accuracy of estimation

Signal Processing - Continued

Matched FIR Filter and Cross-Correlation Processing:

- Much more complex processing
 - Works well with filter orders of 9-12
- Assumes that shape is constant
- Similar timing performance to zeroaverage FIR filter
- Relatively easy to disentangle piled-up pulses

Sub-sample shifts done using windowed sinc interpolation (Blackman window). FFT interpolation also possible if shifting impulse response.

Aligned pulses

System Model (each channel)

Signal and Noise Models

- Good match of simulated periodogram with an experimental one.
- Potential problem:
 - Some of the deterministic components (peaks in spectrum) do not have random phase, but are correlated to the sampling clock.

Digital CFD / FIR DPLMS - Normalized

- Don't need extremely high sampling rates to maintain good timing resolution, as long as SNR is sufficient
- It seems that it is better to maintain sharp edge → logical, as we don't cut bandwidth of the signal that still has valid information
 - Sharp edges help in pile-up resolution
- Oversampling help only in case of FIR-based algorithms → SNR gets better

Example Histograms – FIR Timing

Large SNR case (approx. 60 dB)

100 MSPS ADC, 14-bit, no shaper (left), 15 ns shaper (right)

10 ps resolution from a system with 10 ns sampling

Photosensor - R14374

- Visible dependence of waveform shape on position of the light source on the photocathode
- t_{rise} ∈ (1.9 ns, 3.0 ns), FWHM ∈ (3.0 ns, 4.7 ns); both increase with PE level (expected)
- Not a lot of change in spectra density in the 'recorded' bandwidth → good news!

Normalized templates 0.2 0 -0.21.13 p.e. 1.49 p.e. -0.6 2.81 p.e. 5.78 p.e. 12.47 p.e. -0.8 39.19 p.e. 80.47 p.e. 20 0 40 60 80 Time (ns)

Where are we now?

- Prototype in July
- Re-designed the shaper
 - Old shaper used for tests was too noisy, had too low cutoff frequency
 - Decided to switch to fully passive design (LC-ladder) – still need one amplifier to separate LC circuit from the twisted pair
 - Investigating possibility to switch from Bessel to a filter with a sharper roll-off
- Need additional digital all-pass filter to correct passband ripple and phase

Compression Studies

- Modeling
 - Linear Prediction
 - Signal Models
 - Transforms
- Quantization
 - Scalar quantization
 - Vector quantization using signal models
- Entropy Coding
 - Variable length coding
 - Arithmetic coding more complex and better compression

TWO INDEPENDENT COMPRESSIONS

- Time/charge data (lossless)
- Waveforms (lossless or lossy)

Preliminary results on Super-Kamiokande data

- → Time/charge data
- \rightarrow **1:1.6** reduction (**1:2** reduction within reach)

- Lossless Coding of waveforms
 - Compression ratio: about 2-6
 - Depends on SNR, sampling frequency, signal dynamics
- Lossy Coding of waveforms
 - Compression ratio: more than 3, e.g. 10, 20 ...
 - Distortion (D) and bit rate (R) depend on quantization step
 - o RD Tradeoff
 - Allowable losses should be lower than signal noise

Filter Implementation

FPGA runs with a faster clock than ADC, so multiple cycles possible for one sampling period → multiplex FIR processing in time

Filter sharing among channels

Filter sharing for different coefficients

Summary

- Much work already done, even more still to do
 - 'Attacking' problem from multiple angles
- Prototype foreseen in July
- Need to foresee that in FIR-based methods the estimate may be completely wrong in case of non-standard shape (for ex. pile-up)
 - Need quality factor for each time/charge estimate
 - Should send full waveform for off-line processing
- We're also involved in photosensor characterization
 - Can't design good electronics without understanding signal source
- Closely working with the TRIUMF laboratory and TU Munich
- Recently teamed up with INFN Trieste
 - They made spectroscopy system using the same filtering approach, but optimizing amplitude resolution \rightarrow complementary our efforts so far
- Planning beam test sometime in November

BACKUP

Results – Digital CFD

$SNR \ge 20 dB$

Good match of model and data for 100 MHz ADC, slightly worse for 250 MHz ADC

SNR < 20 dB

Poor match, data worse than model. Not a useful range anyway, as we need σ_{time} < 1 ns.

Timing resolution is proportional to

Results – FIR DPLMS

Synthesizing FIR filter – Method 1

Digital Penalized LMS Method

noise

of the filter

noiseless signal stationary input signal (our template) x[n] = x'[n] + x''[n]impulse response

number of filter taps

Filter is **linear**, so the output signal is:

$$y[n] = \sum_{l=0}^{N-1} h[l] \cdot x'[n-l] + \sum_{l=0}^{N-1} h[l] \cdot x''[n-l]$$

Therefore, we can deal with noise and signal components separately

Take multiple measurements, then:

Minimize overall variance of the response:

Sought filter $Var(y) = \mathbf{h}^{1,N} \cdot \mathbf{R}^{N,N} \cdot \mathbf{h}^{N,1}$ Noise auto-covariance matrix

Minimize difference between filter response and our desired response

$$(E(y[k] - v_k))^2 = (h^{1,N} \cdot x'(k)^{N,1} - v_k)^2$$

Value of k-th
sample of the
response to x'
$$N \text{ past samples of } x',$$

starting from k

Synthesizing FIR filter – Method 1 (cont.)

Digital Penalized LMS Method

Add additional constraints for frequency response, including gain at DC ...

Add constraints related to bit-gain (i.e. how well we are supposed to reject quantization noise) ...

Finally, build the error functional and minimize it:

$$Area(FIR) = \frac{Area(y)}{Area(x)}$$

All components are square functions, so there exists a global minimum – just need to properly choose N, \overrightarrow{v} , $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, φ and γ \rightarrow papers don't say much about that

STEP 1: Detect template

- Compute cross-correlation between two events.
- Align pulses using sinc interpolation – resample 2nd event to maximize crosscorrelation.
- Average events.
- Take next event and resample it to maximize cross-correlation with the averaged event.
- Repeat last step for desired amount of events.

STEP 2: Calculate noise autocovariance matrix

If the images are smeared, then it is PDF's image compression rather than strange covariance matrix.

STEP 3: Calculate 'gate' filter

The 'gate' filter will be used to detect pulse. It is a standard matched filter that maximizes SNR.

STEP 4: Calculate desired FIR response

- Use solver and compute waveform shape that meets desired shape, length and linear edge requirements.
- Downsample resulting waveform so that Nyquist criteria is met.
- Figures show downsampled responses.

STEP 5: Calculate 'timing' FIR

• Use DPLMS method to calculate FIR filter based on pulse template, desired response and noise autocovariance matrix.

STEP 6: Calculate shift between maximums of 'gate' and 'timing' filter response

- Make separate calculation for 'reference' and 'signal' channels
- This value will later be used to start searching for zero-crossing of 'timing' filter response.

STEP 6: Calculate correction function to account for non-linear shape near zero crossing of 'timing' filter response

 θ - actual sub-sample shift

$$CR = \frac{P}{P - O}$$

