

XXIV International Baldin Seminar on High Energy Physics Problems *Relativistic Nuclear Physics & Quantum Chromodynamics*

September 17 - 22, 2018, Dubna, Russia

Exclusive studies of Short Range Correlations (SRC)

in nuclei

Maria Patsyuk

Short Range Correlated (SRC) pairs

Relative momentum > 300 MeV/c

CM momentum O(150 MeV/c)

~20 % of nucleons

Nucleon momentum distribution for uncorrelated nucleons

In reality about 20% of nucleons have $k > k_F$

All nucleons with $k > k_F$ belong to SRC pairs

Exclusive hard scattering reactions are a perfect tool to study SRC properties

Interact with a single nucleon and detect 3 particles (triple coincidence):

the scattered probe,

the knocked-out nucleon,

and the recoil

A(p, 2pn) – BNL A(e, e'pp) - JLab A(e, e'pn) - JLab

p(¹²C, 2p A-2) - JINR

Choose kinematics where Final State Interactions (FSI) are confined to the pair

FSI do not impact isospin structure

FSI do not impact pair total momentum

JLab: CLAS-6 setup – base for the newest SRC results

BNL: 92% of high momentum protons have a recoil

- Recoil has high momentum
- k < k_F isotropic,
 k > k_F back to back

JLab: np-pairs dominate pp by a factor of 20

C, Al, Fe, Pb (e, e'pp) or (e, e'p)

"np-dominance" --> tensor, spin-dependent interaction within SRC

Piasetzky, PRL (2006); Shneor, PRL (2007); Subedi, PRL (2008)

np-dominance established for a wide range of A

Duer, Nature 560 (2018)

Where we stand:

SRC exist in nuclei and account for

- ~ 20 % on nucleons
- ~ 100% of high momentum (k > kF) nucleons

Have high relative momentum and low c.m. momentum

np-dominance is established for C, Al, Fe, Pb

Tensor, spin-dependent interaction within SRC

Much has been learned from very few events

experiment	nuclei	pairs	Pmiss [MeV/c]	# of pp- events	# of np- events	# of nn- events	
EVA/BNL	12 C	pn only	300-600	0	16	-	proton beam A(p, 2pN) Electron beam
E01-015/ JLab	¹² C	pp and np	300-600	263	179	-	
E07-006/ JLab	⁴ He	pp and np	400-850	50	223	-	
CLAS/JLab	C, Al, Fe, Pb	pp and np	300-700	~ 400 / nucleus	~200 / nucleus	-	∫ A(e, e'pN)

SRC in inverse kinematics at JINR A(p, 2p n A-2) : **detecting the nuclear remnant**

4 GeV/c ¹²C beam on LH target

Probe universality

Detecting the A-2 system is essential for rejecting non-SRC background

P_{miss} – momentum of the struck nucleon before interaction

Identification of A-2 rejects the mean field component by 10 times

P_{miss} – momentum of the struck nucleon before interaction

Z from the scintillator counter: calibration

Residual nucleus can be identified from dE/dx

Analysis is going on: TOF400 calibration

After strip alignment, clustering, time-walk (T0 and ToF400) Pb Wall Data - No-Pb Wall Data

Analysis is going on: MWPC reconstruction

Conclusions

SRC is a vibrant fast developing field of studies on the border between nuclear and particle physics

New insights about SRC:

- np dominance confirmed over a wide range of A
- SRC hypothesis for EMC explanation is stronger with the new data
- SRC pair formation and NN repulsive core

New exclusive experiments are designed to test new SRC ideas:

- disentangle mass and asymmetry, EMC/SRC (JLab)
- detect the residual nucleus for the first time (JINR)

The SRC World

+ Many Theory Collaborators: UW, Penn State, Huji, Gent, FIU, Perugia, ...

Looking at Z2 After Target

1 and 2 tracks look identical — need to clean up selection 3 tracks is different event topology

