Motivation	Set-Up	Results	Conclusion
00	0000	000000	0

A short story on how the $\triangle(1232)$ lost its mass

Tom Reichert, Paula Hillmann, Ayut Limphirat, Christoph Herold, Marcus Bleicher

Johann-Wolfgang Goethe Universität Frankfurt

September 18, 2019

Motivation	Set-Up	Results	Conclusion
00	0000	0000000	O
Final result			

Motivation	Set-Up	Results	Conclusion
00	0000	0000000	O
Contents			

0	0000	0000000	0
Motivation	Set-Up	Results	Conclusion

Mass of hadrons constant?

- Mass drops with increasing temperature
- Hadrons become unstable at very high T

• Mass drops with increasing density

Tom Reichert – treichert@fias.uni-frankfurt.de – arXiv:1903.12032 [nucl-th] Workshop on Theory of Hadronic Matter Under Extreme Conditions – Dubna, JINR

Figure: F. Gastineau, J. Aichelin.

arXiv:nucl-th/0201063

MAIN

- Early: Hot and dense phase, charm, QGP (?)
- Post-early: Hadronization, strangeness
- Intermediate: Chemical freeze-out
 - $\rightarrow {\sf yields}$
- Late: Kinetic freeze-out
 - ightarrow spectra

	0000	0000000	0
Motivation	Set-Up	Results	Conclusion

UrQMD (Ultra-relativistic Quantum Molecular Dynamics)

- Covariant propagation of hadronic resonances up to 2 GeV
- String dynamics, strangeness exchange reactions
- Decay widths via evolution of momentum distributions
- Established history of describing resonances over a broad range of energies

Figure: MADAI collaboration, Hannah Petersen and Jonah Bernhard

Motivation	Set-Up	Results	Conclusion
00	0000	0000000	O
$\Delta \leftrightarrow N + \pi$	cycle		

 $\begin{array}{l} \Delta \text{ travels} \sim 1 \text{ fm before it} \\ \text{decays into } \mathsf{N} + \pi \\ \downarrow \\ \mathsf{N} \text{ and } \pi \text{ scatter, loose} \\ \text{energy, thermalize} \\ \downarrow \\ \mathsf{N} + \pi \text{ form new } \Delta \end{array}$

Deconstruction	-f		
00	0000	0000000	0
Motivation	Set-Up	Results	Conclusion

Motivation	Set-Up	Results	Conclusion
00	000●	0000000	O
Time distribution			

- From 30 fm/c on, nearly every Δ will be reconstructed
- Time shift between contribution 1 and 2
- Integrated yield is roughly the same!

• Isospin dependence of Δ yield

FRANKFURT AM MAIN

Transverse momentum spectra

• Suppression of low-p_ Δ^{++}

• Inverse proportional to T

• Nearly every Δ^{++} will be reconstructed at high p_{\perp}

Influence	of the week at which	a substitution of	
00	0000	000000	0
Motivation	Set-Up	Results	Conclusion

Influence of the reconstruction contributions

- Δ^{++} yield originates to 50% from contribution 1 & 2
- Re-scattered particles shift more towards lower masses
- Distribution if both particles re-scatter becomes flat

Qualitative des	cription		
Motivation	Set-Up	Results	Conclusion
00	0000	0000000	O

- Invariant mass distribution \sim Breit-Wigner spectral function \times thermal weight of each resonance
- $\frac{dN}{dm} \sim BW(m_{\Delta}, m_{\Delta}^0, \Gamma_{\Delta}^0) \times PS(m_{\Delta}, p_T, T)$ with

$$\rightarrow \text{ BW}(m_{\Delta}, m_{\Delta}^{0}, \Gamma_{\Delta}^{0}) \propto \frac{\Gamma_{\Delta}^{0} m_{\Delta}}{\left(m_{\Delta}^{2} - m_{\Delta}^{0}\right)^{2} + (\Gamma_{\Delta}^{0} m_{\Delta})^{2}}$$
$$\rightarrow \text{ PS}(m_{\Delta}, p_{\mathrm{T}}, T) \propto \frac{m_{\Delta}}{\sqrt{m_{\Delta}^{2} + \rho_{\mathrm{T}}^{2}}} \exp\left(-\frac{\sqrt{m_{\Delta}^{2} + \rho_{\mathrm{T}}^{2}}}{T}\right)$$

• As long as notion of temperature is useful

Motivation	Set-Up	Results	Conclusion
00	0000	0000000	O
and the second second	and the second second		

- Peak and mean value shift towards lower masses at low p_T
- Lower boundary due to observation method in $p + \pi^+$ channel
- Possible overshadowing of conventional in-medium effects

FRANKFURT AM MAIN

Transverse momentum dependence of the mass shift

- Mass shift \sim 50 MeV
- Qualitatively: BS×PS \checkmark
- Supports late stage Δ formation
- Temperature extraction at low p_T? → 81 MeV

- Flat at high p_T
- Local minimum arises around midrapidity at low рт
- Supporting idea of $\Delta \leftrightarrow N + \pi$

Motivation	Set-Up	Results	Conclusion
00	0000	0000000	•
Conclusion			

- Mass shift on the order of \sim 50 MeV should be observed in Au+Au at E_{\rm lab}{=}1.23 AGeV
- In addition non-trivial rapidity dependence should be observed
- Could be used to extract the decoupling temperature at low p_T

