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QCD WITH ISOSPIN

[Physical motivation, numerical advantages,

analytic results for the phase diagram]



Motivation

A nonzero isospin density nI = nu − nd describes an asymmetry between

the densities of up and down quarks

• hence between the densities of protons and neutrons

• hence between the densities of π+ and π−
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The nI < 0 case is relevant for

• the initial state of heavy ion collisions

• imbalance between produced charged pions

• structure of cold neutron stars

• very low proton fraction



Isospin chemical potential

Consider QCD with three flavors of fermions in the grand canonical en-

semble, where quark chemical potentials are the conjugated quantities to

the quark densities

µu =
µB

3
+ µI, µd =

µB

3
− µI, µs =

µB

3
− µS

• Consider zero baryon number and strangeness, but nonzero isospin

µB = 0, µS = 0, µI = µu = −µd

• One can then define a pion chemical potential µπ = µu − µd = 2µI

to which corresponds the isospin density nI = nu − nd



Chemical potential & positivity of the measure

Imaginary chemical potential and finite fermion density on the lattice
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Standard lattice fermion algorithms run into the well-known sign problem with a real chemical potential. In
this paper we investigate the possibility of using an imaginary chemical potential and argue that it has
advantages over other methods, particularly for probing the physics at finite temperature as well as density. As
a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard
model with an imaginary chemical potential. We also note that systems with a net imbalance of isospin may be
simulated using a real chemical potential that couples to I3 without suffering from the sign problem.
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I. INTRODUCTION

The behavior of fermions in the presence of a chemical
potential is relevant to condensed matter physics ~Hubbard
model away from half-filling! and particle physics ~high
quark density systems such as the early universe, neutron
stars, and heavy-ion collisions!. Furthermore, a remarkably
rich phase structure has been conjectured for QCD at finite
temperature and density @1,2#.
The only reliable nonperturbative approach to QCD is nu-

merical Monte Carlo evaluation of the functional integral
using a lattice regulator. Unfortunately, standard Monte
Carlo methods become inapplicable at finite quark density,
since in the presence of a real chemical potential the measure
is no longer positive. One approach to this problem is the
‘‘Glasgow method’’ @3#, in which the partition function is
expanded in powers of ebm, and the coefficients are evalu-
ated by the Monte Carlo method using an ensemble of con-
figurations weighted by the m50 action. Simulations using
this method have so far given unphysical results; namely, the
lattice starts to fill with baryons at a chemical potential well
below the expected value of one-third the baryon mass. It
seems plausible that this happens because the m50 en-
semble does not overlap sufficiently with the finite-density
states of interest, and so the true effects of quark loops will
only be seen at exponentially large statistics @3#.
In this paper we look at an alternative: evaluating the

partition function at an imaginary chemical potential, for
which the measure remains positive and standard Monte
Carlo methods apply. The canonical partition functions can
then be obtained by a Fourier transform @4,5#. Since the
dominant source of errors is now the Fourier transform rather
than the poor overlap of the measure, it seems worthwhile to
explore the imaginary chemical potential as an alternative to
the Glasgow method.
An outline of the paper is as follows. We give criteria that

a theory should satisfy in order for Monte Carlo simulations
at finite density to be feasible. We describe a toy model
where even-odd effects become visible. We find some inter-
esting examples ~e.g., QCD at finite isospin density! where
lattice simulations are possible. As a feasibility study, we
perform Monte Carlo simulations for the two-dimensional
Hubbard model with imaginary chemical potential and find

that it is indeed possible to obtain the canonical partition
functions at low particle number. At the rather high tempera-
ture and low interaction strength that we study, we see no
sign of electron pairing.

II. CHEMICAL POTENTIAL AND POSITIVITY
OF THE MEASURE

Consider a generic system of fermions c and bosons f,
where the fermion Lagrange density is c̄M (f)c . On inte-
grating out the fermions, the partition function becomes

Z5E Df e2Sbos~f! detM ~f!. ~2.1!

In order to perform Monte Carlo simulations, it is necessary
that the measure be non-negative; so we have either to re-
strict ourselves to the cases where detM>0 or to treat detM
as an observable. The latter option is usually not viable, as
detM tends to be a rapidly varying function of f. We will
discuss it again at the end of this section.
To guarantee that the measure is positive, we must gen-

erally have an even number of flavors, for each of which
detM is real ~but not necessarily positive!. One situation
where detM is real is when there exists an invertible opera-
tor P such that

M †5PMP21. ~2.2!

For a Wilson lattice fermion at zero chemical potential, this
relation holds, with P5g5 , so any even number of flavors
can be simulated by the Monte Carlo method. With a real
chemical potential, Eq. ~2.2! breaks down, but with an imagi-
nary chemical potential it is valid, and again simulations are
possible for an even number of flavors.
There are more exotic situations where Eq. ~2.2! holds.

For example, consider two-flavor QCD with a finite density
of isospin. In this case M has a block-diagonal structure

M ~m!5S L~m!
0

0
L~2m! D , ~2.3!
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• Systems with net imbalance of isospin nI 6= 0 can be simulated with

standard Monte Carlo importance sampling techniques using µI ∈ R
that couples to I3 = τ3

2 !
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QCD at finite isospin chemical potential mI has no fermion sign problem and can be studied on the
lattice. We solve this theory analytically in two limits: at low mI , where chiral perturbation theory is
applicable, and at asymptotically high mI , where perturbative QCD works. At low isospin density the
ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing.
The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition
from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase
diagram in the space of temperature and chemical potentials of isospin and baryon number.
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Introduction.—Ample knowledge of QCD in the
regime of finite temperature and baryon density is crucial
for understanding a wide range of phenomena from
heavy ion collisions to neutron stars and cosmology.
First-principles lattice numerical Monte Carlo calculations
provide a solid basis for our knowledge of the finite-
temperature regime. However, the regime of finite baryon
chemical potential mB is still inaccessible by Monte
Carlo because the present methods of evaluating the QCD
partition function require taking a path integral with a
measure which includes a complex fermion determinant.
Ignoring the determinant (as in the popular quenched
approximation) leads to qualitatively wrong answers for
finite mB [1]. Such a contrast to the case of mB ! 0,
where the quenched approximation proved useful, comes
from the fact that the latter corresponds to a nonphysical
theory with pairs of quarks of opposite baryon charges
(conjugate quarks) [2]. This is one of the main reasons
why our understanding of QCD at finite baryon density
is still rudimentary. Many interesting phenomena, such
as color superconductivity and color-flavor locking [3],
occur at finite baryon density, beyond the reach of current
lattice techniques.

To understand the regime of finite baryon density, one
would need to follow the transition from hadronic to quark
degrees of freedom by increasing the density of a con-
served charge (such as baryon number), i.e., without in-
voking the temperature. This is the motivation for us to
turn to QCD at finite chemical potential mI of isospin
(more precisely, of the third component I3). Nature pro-
vides us with nonzero mI systems in the form of isospin-
asymmetric matter. These always contain both isospin
density and baryon density. In any realistic setting mI ø
mB. In this paper, however, we shall consider an idealiza-
tion in which mI is nonzero while mB ! 0. Such a sys-
tem is unstable with respect to weak decays which do not
conserve isospin. However, since we are interested in the
dynamics of strong interaction alone, one can imagine that
all relatively slow electroweak effects are turned off. Once

this is done, we have a nontrivial regime which, as has been
emphasized recently in [4], is accessible by present lattice
Monte Carlo methods, while being, as we shall see, ana-
lytically tractable in various interesting limits. As a result,
the system we consider has a potential to improve substan-
tially our understanding of cold dense QCD. This regime
carries many attractive traits of two-color QCD [5,6], but
is realized in a physically relevant theory —QCD with
three colors.

Positivity and QCD inequalities.—Since the Euclidean
version of our theory has a real and positive fermion de-
terminant, some rigorous results on the low-energy be-
havior can be obtained from QCD inequalities [6,7]. In
vacuum QCD, the latter rely on the following property of
the Euclidean Dirac operator D ! g ? !≠ 1 iA" 1 m:

g5Dg5 ! Dy, (1)

which, in particular, implies positivity detD $ 0. For the
correlator of a generic meson M ! cGc , we can write,
by using (1) and the Schwartz inequality:

#M!x"My!0"$c ,A ! 2#TrS !x, 0"GS !0, x"G $A

! #TrS !x, 0"Gig5Sy!x, 0"ig5G $A

# #TrS !x, 0"Sy!x, 0"$A , (2)

where S % D21 and G % g0Gyg0. The inequality is
saturated for mesons with G ! ig5ti , since D commutes
with isospin ti , which means that the pseudoscalar cor-
relators are larger, point-by-point, than all other I ! 1
meson correlators [8]. As a consequence, one obtains an
important restriction on the pattern of the symmetry break-
ing: for example, it cannot be driven by a condensate of
#cg5c$, which would give 01 Goldstones.

At finite isospin density, mI fi 0, positivity still holds
[4] and certain inequalities can be derived (in contrast with
the case of mB fi 0 when there is no positivity). Now
D ! g ? !≠ 1 iA" 1

1
2mIg0t3 1 m, and Eq. (1) is not
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Non trivial phase diagram drawn on the basis of analytic computations in

• the nI → 0 limit ←− Chiral Perturbation Theory

• the nI →∞ limit ←− Perturbative QCD

http://inspirehep.net/record/527756


QCD at finite isospin density - The nI → 0 limit from χPT

• In the limit |µI | � mρ χPT applies

• Charged pions are the lightest hadrons that couple to the isospin chemical

potential. χPT describes their effective dynamics

• At T = 0, if the isospin chemical potential exceeds the critical value

µI ,c = mπ/2, sufficient energy is pumped into the system so that charged

pions can be created

• Due to the bosonic nature of pions, a Bose-Einstein condensate (BEC) is

formed

• χPT also predicts that the transition between the vacuum and the BEC

state is of second order with the universality class O(2)



QCD at finite isospin density - The nI →∞ limit from p-QCD

• In the limit |µI | � ΛQCD p-QCD applies

• Perturbation theory predicts that the attractive gluon interaction forms

Cooper-pairs (BCS superconductivity) of u and d̄ quarks in the

pseudoscalar channel

• Transition between the BEC and BCS states expected to be an analytic

crossover since the resulting pair has the same quantum numbers as the

pion condensate

• At asymptotically large µI , decoupling of the gluonic sector and emergence

of a first-order deconfinement phase transition



QCD at finite isospin density - The “analytic phase diagram”

+
A

mπ |µI |

T

〈π−〉 6= 0 〈ūγ5d〉 6= 0

〈ūγ5d〉 = 0



THE PHASE DIAGRAM OF QCD WITH

ISOSPIN ON THE LATTICE

Brandt, Endrödi, Schmalzbauer (2018)

[Lattice setup, symmetry breaking patterns, Pion BEC,

Pionic source λ, Chiral restoration, Order parameters ]

https://inspirehep.net/record/1644793


NI -QCD on the lattice - Setup

• QCD with Nf = 2 + 1 improved dynamical staggered quarks with physical

quark masses at various T , µI and values of the I.R. regulator λ

Sud = ψ̄Mud ψ, ψ = (u, d)>,

Mud = γµ(∂µ + iAµ)1 + mud1 + µIγ4τ3 + iλγ5τ2 ,

• Explicit, unphysical symmetry breaking term in Mud couples to the charged

pion field π±, the coupling λ referred to as “pionic source”

Sud = Sud(λ = 0) + λπ±, π± ≡ ψ̄iγ5τ2ψ = ūγ5d − d̄γ5u .

• N3
s × Nt lattices with spacing a, temperature T = 1/(Nta) and spatial

volume V = (Nsa)3, gauge coupling β = 6/g2 and

Z =

∫
DUµ e−βS

Sym
G (detMud)1/4 (detMs)1/4 , Uµ = exp(iaAµ)

Mud light quark matrix (in the u and d quarks basis), Ms s quark matrix.



nI -QCD on the lattice - Symmetry breaking patterns

• SUV (2)× UV (1) flavor symmetry group for QCD with light quark matrix

Mud |µi=λ=0 = γµ(∂µ + iAµ)1 + mud1

• At µI 6= 0

, λ 6= 0

−→ Mud = Mud |µi=λ=0 + µIγ4τ3

+ iλγ5τ2

SUV (2)× UV (1) −→ Uτ3 (1)× UV (1)

−→ ∅× UV (1)

ψ̄γ5τ2ψ
ψ̄γ5τ1ψ

V • Spontaneous breaking with pion

condensate 〈ψ̄γ5τ1,2ψ〉
−→ Appearance of Goldstone mode

• Explicit breaking via pionic source λ,

−→ pseudo-Goldstone boson

(λ necessary trigger for spontaneous

breaking to occurr at finite V )
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nI -QCD on the lattice - Breaking of Uτ3(1) symmetry

• Spontaneous, by 〈π±〉, and explicit, by λ, breaking of the Uτ3(1) symmetry

is completely analogous to the spontaneous, by
〈
ψ̄ψ
〉
, and explicit, by mud

breaking of the standard chiral symmetry at µI = 0

Pion condensation Chiral symmetry breaking

Uτ3 (1)→ ∅ breaking pattern←−−−−−−−−→ SUL(2)⊗ SUR(2)→ SUV (2)

1
# Goldstones←−−−−−−−−→ 3

〈ψ̄γ5τ2ψ〉 condensates←−−−−−−−−→ 〈ψ̄ψ〉

λ→ 0
explicit breaking←−−−−−−−−→ m→ 0

ρ| /D(µI )+m|2 (0)
Banks-Casher←−−−−−−−−→ ρ( /D)(0)

• While in nature mud > 0, λ is unphysical: the limit λ→ 0 must be taken!



nI -QCD on the lattice - Observables

• The pion condensate and quark condensate obtainable from Z, via

differentiation and measurable with noisy-estimator techniques〈
π±
〉

=
T

V

∂ logZ
∂λ

=
T

2V
tr

λ

| /D(µI ) + mud |2 + λ2〈
ψ̄ψ
〉

=
T

V

∂ logZ
∂mud

=
T

2V
Re tr

/D(µI ) + mud

| /D(µI ) + mud |2 + λ2

then becoming, after appropriate multiplicative/additive renormalization,

Σψ̄ψ =
mud

m2
πf

2
π

[〈
ψ̄ψ
〉
T ,µI
−
〈
ψ̄ψ
〉

0,0

]
+ 1

Σπ =
mud

m2
πf

2
π

〈
π±
〉
T ,µI

• The renormalized Polyakov loop Pr (T , µI ) = Z ·
〈

1
V

∑
nx ,ny ,nz

Tr
Nt−1∏
nt=0

Ut(n)

〉
with Z =

(
P?

P(T?,µI =0)

)T?/T

, and T? = 162 MeV, hence P? = 1



RESULTS

[Phase diagram in the µI − T plane, Chiral crossover,

Pion condensation, Deconfinement, BCS phase]



nI -QCD result for 〈π±〉 and
〈
ψ̄ψ
〉

- The λ→ 0 extrapolation

Nt = 6



nI -QCD result - Continuum limit and the µI −T phase diagram

• BEC phase boundary, µI ,c(T ),

by points where Σπ becomes

nonzero.

• µI ,c(T , a), 4th order polynomial

in (T − T0) with a−dependent

coefficients and T0 = 140 MeV.

• Chiral crossover Tpc(µI ), by

the inflection points of Σψ̄ψ(T )

• Tpc(µI , a), even-in-µI

polynomial, including data up

to µI ,c(0) = mπ/2.



nI -QCD result - Continuum limit and the µI −T phase diagram

• Chiral crossover transition from

Tpc(µI = 0) = 159(4) MeV

• Small downward curvature of the

Tpc(µI ) line

• For T & 160 MeV, no pion

condensation up to µI =120 MeV

• Pion condensation boundary at µI ,c =mπ/2 up to T ≈140 MeV, very flat

at higher temperatures

• Two transition lines meet at µI ,pt = 70(5) MeV in a pseudo-triple point

• From observations at finite a, chiral symmetry restoration and the pion

condensation phase boundary coincide for µI >= µI ,pt = 70(5) MeV



SIGNATURES OF THE BCS PHASE AT

HIGH µI

[2d complex Dirac spectrum]



BCS phase @ high-µI - Motivation: Deconfinement crossover

• Large values of the Polyakov loop within the BEC phase hint to a

superconducting ground state with deconfined quarks, the BCS phase

• T deconf.
c (µI ) slowly decreases and the deconfinement crossover smoothly

penetrates into the BEC phase

• Scenario where the deconfinement transition connects continuously to the

BEC-BCS crossover in the (T , µI ) phase diagram seems to be favored



QCD at finite isospin density - The “numeric phase diagram”

• Prediction, from perturbation theory and in a quark meson model, of a

superfluid state of u and d̄ Cooper pairs (BCS phase) at very high isospin

densities and T = 0, plausibly connected via an analytical crossover to the

a phase with Bose-Einstein condensation of charged pions at µI >= mπ/2

Son, Stephanov (2001) Adhikari, Andersen, Kneschke (2018)

Td

mπ/2 |µI |

T

S
U
V
(2
)
×
U
V
(1
)

Uτ3(1)× UV (1)
SUV (2) explicitly broken

UV (1)
Uτ3

(1) spontaneously broken

Hadronic phase BEC phase

BCS phase

Quark-gluon plasma phase

http://inspirehep.net/record/527756
http://http://inspirehep.net/record/1674331


Signatures of the BCS phase from the complex Dirac spectrum

• Banks-Casher relation extensible to the case of complex Dirac eigenvalues

for QCD at zero-temperature, nonzero isospin chemical potential

• The necessary condition for the derivation is the positivity of the fermionic

measure (→ QCD inequalities → exclusion of symmetry breaking patterns)

• For |µI | � ΛQCD attractive channel between quarks near the Fermi surface

lead to diquark pairing of the BCS type

• The density of the complex Dirac eigenvalues at the origin is proportional

to the BCS gap squared

∆2 =
2π3

3NC
ρ(0)

• ∆ is the BCS gap

• ρ(ν) is a 2d spectral density

• BC relations derived considering Z(M) as function of the quark mass

matrix M

• in the fundamental nI -QCD theory. Suitable derivatives/limits yield ρ(0)

• in the corresponding effective theory. Suitable derivatives/limits yield ∆2

Kanazawa, Wettig, Yamamoto (2013)

https://inspirehep.net/search?p=find+eprint+1211.5332


Complex spectrum of the Dirac operator

[ /D(µI )+mud ]ψn =(νn+mud)ψn︸ ︷︷ ︸
up sector,µI

η5−hermiticity←−−−−−−−−→
chiral symmetry

ψ̃†n [ /D(−µI )+mud ]= ψ̃†n(ν∗n +mud)︸ ︷︷ ︸
down sector,−µI ,ψ̃n=γ5ψn

ψ̃n = η5ψn

• Complex eigenvalues νn ∈ C

• [ /D(µI ), /D
†
(µI )] 6= 0, so left and right eigenvectors of /D(µI ) do not coincide

• ∀ eigenvalue νn in the up sector, complex conjugate ν∗n in the down sector

• Simulations at nonzero quark mass: instead of ρ(0), we look at

ρ(m + i ∗ 0) neglecting corrections at first.



Complex spectrum of /D(µI ) + mud - Measurement & analysis

Measurement

• The spectrum is measured using (Scalable Library for Eigenvalue

Problem Computations), setting it up to obtain, via the Krylov-Schur

method, the eigenvalues of the non-hermitian Dirac operator, which are the

closest (in modulo) to the origin (∼150 eigenvalues per configuration).

Analysis

• Two different strategies were developed for the analysis, they consists in

extrapolating the 2D density ρ(ν) to m + i ∗ 0, by

• Evaluating ρ(ν) in concentric circles centered at m + i ∗ 0 and then

combining results from different extrapolating Ansätze.

• Using kernel density estimation (KDE) as a non-parametric way to estimate

the multivariate probability density function from the measured spectrum.



Complex spectrum of /D(µI ) + mud - Results, qualitatively
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Complex spectrum of /D(µI ) + mud - Results, qualitatively

• Simulations are carried out for physical pion masses, away from the chiral

limit, so we try to extract ρ(m + i0)

• In the BEC phase the spectrum is wide enough in the real direction to

include m + i0, hence ρ(m + i0) 6= 0

• At µI < mπ/2 the eigenvalues are clustered along the imaginary axis, hence

ρ(m + i0) = 0

• At the largest simulated µI there is a tendency ρ(m + i0)→ 0 due to the

eigenvalues drifting away from the real axis.



Complex spectrum of /D(µI ) + mud - Results, quantitatively

• µI - and T - dependence of ρ(m + i0) for two different spatial volume sizes
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Complex spectrum of /D(µI ) + mud - Results, quantitatively

• Match µI - and T - dependence of ρ(m + i0) with the location of the

boundary of the BEC phase and with characteristic points of Polyakov loop
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Complex spectrum of /D(µI ) + mud - Results, quantitatively

• Match µI - and T - dependence of ρ(m + i0) with the location of the

boundary of the BEC phase and with characteristic points of Polyakov loop
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Complex spectrum of /D(µI ) + mud - Results, outlook
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Thank you for your attention!



nI -QCD on the lattice - No sign problem

• In our partition function Z =
∫
DUµ e−βS

Sym
G (detMud)1/4 (detMs)1/4

Mud =

(
/D(µI ) + mud λη5

−λη5 /D(−µI ) + mud

)
, Ms = /D(0) + ms

• detMs ∈ R+ due to the standard η5-hermiticity relation η5Msη5 =M†s
with η5 = γS5 ⊗ γF5 = (−1)nx+ny+nz+nt equivalent of γ5 is the local

staggered spin-flavor structure

• detMud ∈ R+ due to

/D(µI )η5 + η5 /D(µI ) = 0

η5 /D(µI )η5 = /D(−µI )
†

}
=⇒ τ1η5Mud η5τ1 =M†ud

and

M′ud = BMudB =

(
/D(µI ) + mud λ

−λ [ /D(µI ) + mud ]†

)
, B = diag(1, η5)



nI -QCD on the lattice - The λ→ 0 extrapolation

• The idea is...

• λ > 0 triggers pion condensation, but λ is unphysical so a λ→ 0

extrapolation is needed

• The problems are...

1. Observables exhibit pronounced λ-dependence

2. The condition number of the fermion matrix κ(Mud) is strongly affected by

λ, because λ acts as a I.R. regulator

3. Fluctuations in the fermion force are regulated/influenced by λ

• Taking the λ→ 0 limit requires an improvement strategy to be devised

1. To inhibit the observable’s λ dependence

2. To reduce simulation costs

• The needed improvement is a twofold one concerning both

• the valence sector −→ operators modified on the basis of the singular value

representation of /D(µI ) + mud to remove explicit dependence on λ

• the sea sector −→ configurations reweighted to λ = 0 (reweighting factor

to leading order in λ)



nI -QCD on the lattice - Improvement in the sea sector

• λ-dependence from the path integral measure that defines 〈O〉λ
• Manipulate the distribution of configurations by introducing the reweighting

factors to get rid of λ-dependence of detMud

〈O〉λ=0 =
〈OW (λ)〉λ>0

〈W (λ)〉λ>0

,

W (λ) ≡ det
[
| /D(µI ) + mud |2

]1/4

det
[
| /D(µI ) + mud |2 + λ2

]1/4
,

• Mimic the distribution that would have been obtained via at λ = 0

• The need for W (λ) only at small λ values allows us the approximation

logW (λ) = −λV
2T

π± +O(λ4) ≡ logWLO(λ) +O(λ4)

• The reweighting of an observable, to leading order in λ, involves the

exponential of the pion condensate (measured at λ > 0) → no costs!



nI -QCD on the lattice - Singular value representation /D(µI ) + mud

[ /D(µI )+mud ]ψn =(νn+mud)ψn︸ ︷︷ ︸
up sector,µI

η5−hermiticity←−−−−−−−−→
chiral symmetry

ψ̃†n [ /D(−µI )+mud ]= ψ̃†n(ν∗n +mud)︸ ︷︷ ︸
down sector,−µI ,ψ̃n=γ5ψn

ψ̃n = η5ψn

• [ /D(µI ), /D
†
(µI )] 6= 0, so left and right eigenvectors of /D(µI ) do not coincide

• ∀ eigenvalue νn in the up sector, complex conjugate ν∗n in the down sector

• Hermitian operator by taking the modulus squared of /D(µI ) + mud and

considering the eigenproblem

[ /D(µI ) + mud ]†[ /D(µI ) + mud ]ϕn = ξ2
n ϕn

the square root of the eigenvalues of which are the singular values ξn



nI -QCD on the lattice - 〈π±〉 improvement in the valence sector

• 〈π±〉 satisfies a Banks-Casher type relation for λ→ 0 in analogy with the

quark condensate in the chiral limit

• Singular value representation of the pion condensate〈
π±
〉

=
T

2V
tr

λ

| /D(µI ) + mud |2 + λ2

| /D(µI )+mud |2diagonal−−−−−−−−−−−−−→
in the basis ofϕn

λT

2V

〈∑
n

(ξ2
n + λ2)−1

〉
V→∞−−−−→λ

2

〈∫
dξ ρ(ξ)(ξ2 + λ2)−1

〉
λ→0−−−→π

4
〈ρ(0)〉

• Density of singular values 〈ρ(ξ)〉 = lim
V→∞

T

V

〈∑
n

δ(ξ − ξn)

〉
• 〈π±〉 6= 0 equivalent to accumulation of near-zero ξn of /D(µI ) + mud



nI -QCD on the lattice - 〈π±〉 improvement in the valence sector

• Krylov-Schur to obtain lowest O(100) ξn

• Histogram for the integrated spectral

density

N(ξ) =

∫ ξ

0

dξ′ρ(ξ′)

• Statistical error of N(ξ) in each bin via

jackknife

• Polynomial fits to extrapolate N(ξ)/ξ

down to zero and get ρ(0)

• Results used to build another histogram,

the median of which gives ρ(0)

• Observed emergence of a nonzero pion

condensate in the BEC phase



nI -QCD on the lattice -
〈
ψ̄ψ
〉

improvement in the valence sector

• Spectral representation for
〈
ψ̄ψ
〉

in the basis of the ϕn modes

〈
ψ̄ψ
〉(N)

=
T

2V
Re tr

/D(µI )+mud

| /D(µI )+mud |2 +λ2
=

T

2V

(N)∑
n

Reϕ†n[ /D(µI )+mud ]ϕn

ξ2
n+λ2

• [ /D(µI ) +mud ] not diagonal in such basis → various matrix elements needed

• λ dependence accessed via

δ
(N)

ψ̄ψ
≡ ψ̄ψ(N)(λ)−ψ̄ψ(N)(λ=0)=

T

2V

(N)∑
n

Reϕ†n[ /D(µI )+mud ]ϕn·
(

1

ξ2
n+λ2

− 1

ξ2
n

)
• δψ̄ψ dominated by the λ dependence of the terms involving the lowest ξn

• explicit λ→ 0 extrapolation in the operator for only the first N low modes〈
ψ̄ψ
〉

=
〈
ψ̄ψ − δN

ψ̄ψ

〉
+
〈
δN
ψ̄ψ

〉
=⇒ lim

λ→0

〈
ψ̄ψ
〉

= lim
λ→0

〈
ψ̄ψ − δN

ψ̄ψ

〉



nI -QCD on the lattice -
〈
ψ̄ψ
〉

improvement in the valence sector

• δN
ψ̄ψ

, calculated using the N lowest

singular values, on ensembles with various

values of λ

• Improvement achieved via the subtraction〈
ψ̄ψ
〉

=
〈
ψ̄ψ − δN

ψ̄ψ

〉
+
〈
δN
ψ̄ψ

〉
• improvement will be efficient if N is large

enough to ensure that δN
ψ̄ψ
≈ δψ̄ψ

• Optimal value for N balance between

improvement and computational cost

• No significant λ dependence for N & 100

for all ensembles
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