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QCD WITH ISOSPIN

[Physical motivation, numerical advantages,

analytic results for the phase diagram]|



A nonzero isospin density nj = n, — nq describes an asymmetry between
the densities of up and down quarks

. ) ")
e hence between the densities of protons and neutrons 00 00

e hence between the densities of 7t and 7= W@ W@



A nonzero isospin density nj = n, — nq describes an asymmetry between
the densities of up and down quarks

.. ) ")
e hence between the densities of protons and neutrons 00 00

e hence between the densities of 7+ and 7= W@ W@

The n < 0 case is relevant for
e the initial state of heavy ion collisions

e imbalance between produced charged pions

e structure of cold neutron stars

e very low proton fraction




Isospin chemical potential

Consider QCD with three flavors of fermions in the grand canonical en-
semble, where quark chemical potentials are the conjugated quantities to
the quark densities

_me _ _ s
Hu 3 oy Hd 3 iy s 3 Hs

e Consider zero baryon number and strangeness, but nonzero isospin

/J,BZO, LLSZO, Ml = Huy = —d

e One can then define a pion chemical potential p; = iy — pta = 244
to which corresponds the isospin density nj = n, — ng



Chemical potential & positivity of the measure
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Imaginary chemical potential and finite fermion density on the lattice

Mark Alford, Anton Kapustin, and Frank Wilczek
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
(Received 7 August 1998; published 29 January 1999)

Standard lattice fermion algorithms run into the well-known sign problem with a real chemical potential. In
this paper we investigate the possibility of using an imaginary chemical potential and argue that it has
advantages over other methods, particularly for probing the physics at finite temperature as well as density. As
a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard
model with an imaginary chemical potential. We also note that systems with a net imbalance of isospin may be
simulated using a real chemical potential that couples to /3 without suffering from the sign problem.

& Alford, Kapustin, Wilczek (1999)

e Systems with net imbalance of isospin n; # 0 can be simulated with
standard Monte Carlo importance sampling techniques using p; € R
that couples to 3 = 3!



QCD at finite isospin density
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QCD at Finite Isospin Density
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QCD at finite isospin chemical potential x; has no fermion sign problem and can be studied on the
lattice. We solve this theory analytically in two limits: at low s;, where chiral perturbation theory is
applicable, and at asymptotically high wu;, where perturbative QCD works. At low isospin density the
ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing.
The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition
from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase
diagram in the space of temperature and chemical potentials of isospin and baryon number.

& Son, Stephanov (2001)

Non trivial phase diagram drawn on the basis of analytic computations in

e the nj — 0 limit «<— Chiral Perturbation Theory

e the n; — oo limit +— Perturbative QCD


http://inspirehep.net/record/527756

QCD at finite isospin density - The n, — 0 limit from YPT

e In the limit |1/| < m, xPT applies

e Charged pions are the lightest hadrons that couple to the isospin chemical
potential. xPT describes their effective dynamics

e At T =0, if the isospin chemical potential exceeds the critical value
wi.c = my/2, sufficient energy is pumped into the system so that charged
pions can be created

e Due to the bosonic nature of pions, a Bose-Einstein condensate (BEC) is

formed

e \PT also predicts that the transition between the vacuum and the BEC
state is of second order with the universality class O(2)



QCD at finite isospin density - The n, — oo limit from p-QCD

e In the limit |x| > Agcp p-QCD applies

e Perturbation theory predicts that the attractive gluon interaction forms
Cooper-pairs (BCS superconductivity) of u and d quarks in the
pseudoscalar channel

e Transition between the BEC and BCS states expected to be an analytic
crossover since the resulting pair has the same quantum numbers as the
pion condensate

e At asymptotically large 1, decoupling of the gluonic sector and emergence
of a first-order deconfinement phase transition



QCD at finite isospin density - The “analytic phase diagram”
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THE PHASE DIAGRAM OF QCD WITH
ISOSPIN ON THE LATTICE

& Brandt, Endrddi, Schmalzbauer (2018)

[Lattice setup, symmetry breaking patterns, Pion BEC,

Pionic source )\, Chiral restoration, Order parameters |


https://inspirehep.net/record/1644793

N;-QCD on the lattice - Setup

e QCD with Nf =2+ 1 improved dynamical staggered quarks with physical
quark masses at various T, p; and values of the I.R. regulator A

5ud ZQZMud’lpa 7/}: (U7 d)T7
Muag = 7u(Op + iAL) L+ mugl + p17a73 + iXysT2,

e Explicit, unphysical symmetry breaking term in M4 couples to the charged
pion field 7%, the coupling \ referred to as “pionic source”

Sud = Sud(A = 0) + Am™, 7" = ivsmatp = Gysd — dysu.

e N3 x N, lattices with spacing a, temperature T = 1/(N,a) and spatial
volume V = (Nsa)3, gauge coupling 3 = 6/g2 and

Z= /DU e SE" (det Myg)V/* (det M4, U, = exp(iaA,,)

M q light quark matrix (in the u and d quarks basis), M s quark matrix.



n;-QCD on the lattice - Symmetry breaking patterns

e SUy(2) x Uy(1) flavor symmetry group for QCD with light quark matrix
Mud|u,:)\:o = Yu(0p + iAL) 1 + mygl
o At L # 0 — My = MUd‘p,,v:/\:O + U1Y4T3

SUY(2) x Uy (1) — Un,(1) x Uy(1)

e Spontaneous breaking with pion

condensate (1571 21))
— Appearance of Goldstone mode

YysTIY



n;-QCD on the lattice - Symmetry breaking patterns

e SUy(2) x Uy(1) flavor symmetry group for QCD with light quark matrix
Mud|u,:)\:o = Yu(0p + iAL) 1 + mygl
e At u #0, )\7&0 — My = Mud‘ui:/\zo+1Ll’}/473+i>\’y5T2

SUy(2) x Uy(1) — U (1) x Uy(1) — @ x Uy(1)

e Spontaneous breaking with pion

condensate (1571 21))
— Appearance of Goldstone mode

e Explicit breaking via pionic source A,
— pseudo-Goldstone boson
B (A necessary trigger for spontaneous
Vi breaking to occurr at finite V)




n-QCD on the lattice - Breaking of U, (1) symmetry

e Spontaneous, by (7%), and explicit, by A, breaking of the U,(1) symmetry
is completely analogous to the spontaneous, by (¥¢), and explicit, by m,q

breaking of the standard chiral symmetry at pu; =0

Pion condensation

Unp(l) > @ Xeeking pattem,

] Coldstones

(ysmapp) e
Ay  Selict breaking,
p|w(ﬂl)+m\2(0) (M

e While in nature myy > 0, A is unphysical:

Chiral symmetry breaking

SUL(2) ® SUR(2) — SUy(2)

the limit A — 0 must be taken!



n;-QCD on the lattice - Observables

e The pion condensate and quark condensate obtainable from Z, via
differentiation and measurable with noisy-estimator techniques

<ﬂ_i> T 6|ogZ T i A
VoA 2V 1D () + mugl2 + A2
- TologZ T D) + mug
=— — Re tr
() V omyg 2V |D(pa1) + mug|? + A2

then becoming, after appropriate multiplicative/additive renormalization,

Mmyd

iy = m2 £2 [<1M’>T,u, - <1/;1/1>070} +1
Y=

mfruﬂf <7T >T,/L[

Ny,ny,n;

Ne—1
e The renormalized Polyakov loop P, (T, ;) = Z - < S Tr H Ut(n)>

T./T
with Z = (m) ,and T, =162 MeV, hence P, =1



RESULTS

[Phase diagram in the ;;, — T plane, Chiral crossover,

Pion condensation, Deconfinement, BCS phase]



n-QCD result for (7*) and (¢ A — 0 extrapolation
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n;-QCD result - Continuum limit and the i, — T phase diagram

e BEC phase boundary, u (T),
by points where ¥ becomes
nonzero.

o 1.c(T,a), 41 order polynomial
in (T — Tp) with a—dependent
coefficients and Tg = 140 MeV.
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e Chiral crossover T,c(pr), by
the inflection points of X7,(T)

o Tpoc(py,a), even-in-fy
polynomial, including data up
to p.c(0) = my /2.
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n;-QCD result - Continuum limit and the i, — T phase diagram

"

e Chiral crossover transition from
Toc(ptr = 0) = 159(4) MeV
e Small downward curvature of the
pion

' Toc(fur) line
condensation A

e For T 2 160 MeV, no pion
L /// condensation up to ;=120 MeV
0.2 0.4 0.6 0.8
e/ m,

L chiral Crossover

T (MeV)
N
o

e Pion condensation boundary at jij c=m;/2 up to T~140MeV, very flat
at higher temperatures

e Two transition lines meet at fi; o = 70(5) MeV in a pseudo-triple point

e From observations at finite a, chiral symmetry restoration and the pion
condensation phase boundary coincide for pi; >= i pr = 70(5) MeV



SIGNATURES OF THE BCS PHASE AT
HIGH 1

[2d complex Dirac spectrum]



BCS phase @ high-;;, - Motivation: Deconfinement crossover

e Large values of the Polyakov loop within the BEC phase hint to a
superconducting ground state with deconfined quarks, the BCS phase

o Tdeconf-(41)) slowly decreases and the deconfinement crossover smoothly
penetrates into the BEC phase

e Scenario where the deconfinement transition connects continuously to the
BEC-BCS crossover in the (T, 1i/) phase diagram seems to be favored

e
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QCD at finite isospin density - The “numeric phase diagr

e Prediction, from perturbation theory and in a quark meson model, of a
superfluid state of u and d Cooper pairs (BCS phase) at very high isospin

densities and

T =0, plausibly connected via an analytical crossover to the

a phase with Bose-Einstein condensation of charged pions at p; >= m; /2

T

Ta

SUV(2) x Uy (1)

& Son, Stephanov (2001) ¢ Adhikari, Andersen, Kneschke (2018)

Quark-gluon plasma phase

U, (1) x Uy (1)
SUy (2) explicitly broken ‘\\
Uy (1)
Urg (1) spontancously broken So N
Hadronic phase BEC phase

™2 |121]


http://inspirehep.net/record/527756
http://http://inspirehep.net/record/1674331

Signatures of the BCS phase from the complex Dirac spectrum

e Banks-Casher relation extensible to the case of complex Dirac eigenvalues
for QCD at zero-temperature, nonzero isospin chemical potential
e The necessary condition for the derivation is the positivity of the fermionic
measure (— QCD inequalities — exclusion of symmetry breaking patterns)
e For || > Agcp attractive channel between quarks near the Fermi surface
lead to diquark pairing of the BCS type

e The density of the complex Dirac eigenvalues at the origin is proportional
to the BCS gap squared
273

=—p(0
a0

& Kanazawa, Wettig, Yamamoto (2013)

AZ

e A is the BCS gap
e p(v) is a 2d spectral density

e BC relations derived considering Z(M) as function of the quark mass
matrix M

e in the fundamental n;-QCD theory. Suitable derivatives/limits yield p(0)
e in the corresponding effective theory. Suitable derivatives/limits yield A?


https://inspirehep.net/search?p=find+eprint+1211.5332

Complex spectrum of the Dirac operator

[B(1t1)+ Mud] on = (Vn+ Mug) o <Z 2L T B (—101) + M) = 05 (V] + M)

chiral symmetry

up sector, down sector, — 1/, ¥n="s5tn

Complex eigenvalues v, € C

[B(1), B (11)] # 0, so left and right eigenvectors of [B(4;) do not coincide

V eigenvalue v, in the up sector, complex conjugate v in the down sector

Simulations at nonzero quark mass: instead of p(0), we look at
p(m+ i 0) neglecting corrections at first.



Complex spectrum of p(x;) + m,y - Measurement & analysis

Measurement

e The spectrum is measured using [ISMERE (Scalable Library for Eigenvalue
Problem Computations), setting it up to obtain, via the Krylov-Schur
method, the eigenvalues of the non-hermitian Dirac operator, which are the
closest (in modulo) to the origin (~150 eigenvalues per configuration).

Analysis

e Two different strategies were developed for the analysis, they consists in
extrapolating the 2D density p(v) to m+ i %0, by

e Evaluating p(v) in concentric circles centered at m + i % 0 and then
combining results from different extrapolating Ansatze.

e Using kernel density estimation (KDE) as a non-parametric way to estimate

O learn the multivariate probability density function from the measured spectrum.



Complex spectrum of »(x;) + m,y - Results, qualitatively

T=148 [MeV], A/Im=0.27, N,s=24,N:=6
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Complex spectrum of p(x;) + m,y - Results, qualitatively

e Simulations are carried out for physical pion masses, away from the chiral
limit, so we try to extract p(m + i0)

e In the BEC phase the spectrum is wide enough in the real direction to
include m + i0, hence p(m +i0) # 0

e At py < my, /2 the eigenvalues are clustered along the imaginary axis, hence
p(m+i0) =0

o At the largest simulated i there is a tendency p(m + i0) — 0 due to the
eigenvalues drifting away from the real axis.



Complex spectrum of p(s;) + m,y - Results, quantitatively

e 1~ and T- dependence of p(m + i0) for two different spatial volume sizes

p(mua) [GeV?]
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T T
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Complex spectrum of p(s;) + m,y - Results, quantitatively

e Match py- and T- dependence of p(m + i0) with the location of the
boundary of the BEC phase and with characteristic points of Polyakov loop

T I I
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Complex spectrum of p(s;) + m,y - Results, quantitatively

e Match py- and T- dependence of p(m + i0) with the location of the
boundary of the BEC phase and with characteristic points of Polyakov loop
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Complex
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spectrum of p(u;) + m,y - Results, outlook
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Complex spectrum of »(x;) + m,y - Results, outlook
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Complex spectrum of »(x;) + m,y - Results, outlook

T ~ 113 MeV
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Complex spectrum of »(x;) + m,y - Results, outlook

A— 0 I —0

V — o0 a— 0



Thank you for your attention!



n-QCD on the lattice - No sign problem

e In our partition function Z = [ DU, e 85" (det/\/lud)l/4 (det M5)1/4

_ D) + mug )5 - .
Mud_ ( —)\7’]5 w(—ul) + mud) ’ Ms_m(o) —+ s

e det M, € RT due to the standard ns-hermiticity relation 95 Mns = M|
with 5 = 78 @ A& = (=1)»*m+n:+ne equivalent of s is the local
staggered spin-flavor structure

e det M,y € RT due to

B(pr)ns + nsP () =0

_ aqT
oDt yns = Blpir)' } = s Mug 571 = M 4

and

D(r) + mug A

'd = BM 4B = ( “x (D) + mugl

) , B =diag(1,75)



n;-QCD on the lattice - The A — 0 extrapolation

e Theidea is...

e )\ > 0 triggers pion condensation, but A is unphysical soa A — 0
extrapolation is needed
e The problems are...
1. Observables exhibit pronounced A-dependence
2. The condition number of the fermion matrix kK(M.q) is strongly affected by
A, because A acts as a |.R. regulator
3. Fluctuations in the fermion force are regulated/influenced by A
e Taking the A — 0 limit requires an improvement strategy to be devised
1. To inhibit the observable's \ dependence
2. To reduce simulation costs
e The needed improvement is a twofold one concerning both
e the valence sector — operators modified on the basis of the singular value
representation of [P(ju/) + mua to remove explicit dependence on A
e the sea sector — configurations reweighted to A = 0 (reweighting factor
to leading order in \)



n;-QCD on the lattice - Improvement in the sea sector

e )\-dependence from the path integral measure that defines (O),

e Manipulate the distribution of configurations by introducing the reweighting
factors to get rid of A-dependence of det M 4

(OW(A)rs0

(W(A\)aso
det [|B(ur) + mual?]"*

W(N) =

det [|D(p1) + mual? + A?]

(O) oo =

1/4°

e Mimic the distribution that would have been obtained via at A =10

e The need for W/(A) only at small X values allows us the approximation

AV
log W(\) = fﬁwi + O(X*) = log Wo(A) + O(M)
e The reweighting of an observable, to leading order in A, involves the

exponential of the pion condensate (measured at A > 0) — no costs!



n;-QCD on the lattice - Singular value representation »(;) + m,q

[B(1t1)+ M) n = (Vn+ M) 2™ ST D 101) + M) = G5 (V5 + M)

chiral symmetry

up sector, down sector, — 1/, ¥n="5tn

o [D(), IDT(M)] # 0, so left and right eigenvectors of [J(p;) do not coincide
e VY eigenvalue v, in the up sector, complex conjugate v} in the down sector

e Hermitian operator by taking the modulus squared of (/) + m,q and
considering the eigenproblem

[w(/'“) + mud]T[m(,ul) + mud] $n = €r21 Pn

the square root of the eigenvalues of which are the singular values &,



n;-QCD on the lattice - (7*) improvement in the valence sector

e (1F) satisfies a Banks-Casher type relation for A — 0 in analogy with the
quark condensate in the chiral limit

e Singular value representation of the pion condensate

<7Ti> :ltr A
2V D) + mual? + N2

L muq|? diagona AT o
St T (5710 1)

in the basis of ¢,
n

o 2 ([ aentene + 0

2252 (0(0))

V—oo

e Density of singular values (p(§)) = lim — <Z5§ &n) >

e (1F) # 0 equivalent to accumulation of near-zero &, of P(j1) + myg



n;-QCD on the lattice - (7*) improvement in the valence sector

004 F 1 e Krylov-Schur to obtain lowest O(100) &,
- : e Histogram for the integrated spectral
X002 i ] density
g [ ]
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ni-QCD on the lattice - (¢1) improvement in the valence sector

e Spectral representation for (1)) in the basis of the ¢, modes

™) o
@W(N):lRe tr Plu)+me T 3 Reph [D (1) + mudlpn
2V |D(pr)+mua2+22 2V . 2422

o [D(11) + muq] not diagonal in such basis — various matrix elements needed

e )\ dependence accessed via

(N)
_ _ T 1 1
000 = GNP M(A=0)= 55 Z Rep}[B (1 yrmuglpn: (W—€2>

e i, dominated by the A dependence of the terms involving the lowest &,

e explicit A — 0 extrapolation in the operator for only the first N low modes

o) = (Fo=oy) + (88) = fim (P0) = fim (50 -5, )

A—0



n;-QCD on the lattice -

') improvement in the valence sector

T T T T

0.06 - .

23004 - —
<
>
I

0.02 - —

1 L [ Ll 1]

[¢] 50 100 150

A/m,=1.31%
0.87 &

0.44 %
L 0.17F ]
0.06 -4 T=113 MeV 0.10%
[ w/m, = 0.5 1

I P P B |
0 50 100 150

51%,111’ calculated using the N lowest
singular values, on ensembles with various
values of \

Improvement achieved via the subtraction

improvement will be efficient if N is large
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Optimal value for N balance between
improvement and computational cost

No significant A dependence for N 2 100
for all ensembles
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