Holographic non-conformal models for QCD and effective quark-antiquark potentials.

Anastasia Golubtsova^a

based on works with

Irina Aref'eva (MI RAS, Moscow), Giuseppe Policastro (ENS, Paris) 1803.06764 and Vu H. Nguen (BLTP JINR) 1906.12316

The II International Workshop on Theory of Hadronic Matter Under Extreme Conditions

a BLTP JINR, Dubna

Dubna September 19

Outline

- 1 Motivation
- - The set up
 - The holographic backgrounds with T=0
 - The holographic Wilson loops
 - The holographic duals with $T \neq 0$: black holes
 - Free energy of the holographic dual at $T \neq 0$

Conventional picture of QGP dynamics

Figure: from Strickland 1410.5786

Holographic picture

- d-dim Gauge theory at strong coupling \Leftrightarrow (d+1)-dim Gravity Particularly, $4d \mathcal{N} = 4 \text{ SYM} \Leftrightarrow \text{SUGRA in } AdS_5$
- The scenario of a heavy-ion collision can be represented as a shock wave collision (Lorentz contracted pancakes) in which trapped surface (the black hole) is formed.
- After the collision the shocks slowly decay, leaving the plasma described by hydrodynamics.
- The temperature of the the Yang-Mills theory is identified with the Hawking temperature of the black hole.
- NOTE: At high T QCD is nearly conformal theory: the AdS/CFT correspondence.
- The viscosity-to-entropy ratio for QGP

$$\eta/s = \frac{1}{4\pi}$$

Lattice calculations

Lattice shows that QCD exhibits a quasi-conformal behavior at $T>300 {\rm MeV}$ and the equation of state $\sim E=3P$ (a traceless conformal energy-momentum tensor).

Figure: from Bazavov et.al.'1407.6387. The comparison for the trace anomaly, the pressure, and the entropy density stout.

Holographic picture for deviations from confomality

- d-dim CFT has a description in terms of d+1-dim gravity in AdS
- An operator $\mathcal{O}(x)$ corresponds to a dynamical bulk field $\phi(x,u)$
- $\phi(x,0)$ a source for the \mathcal{O} in the CFT

$$S = \int dx^d du \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_{GYH}.$$

- $\phi(x,u) = \alpha u^{d-\Delta} + \ldots \Leftrightarrow S_{CFT} = S_0 + \int d^4x \alpha \mathcal{O}(x)$
- $\alpha = 0$ undeformed CFT, bulk scalar const., spacetime is AdS
- $\alpha \neq 0$ corresponds to relevant coupling for the CFT; deform. AdS

The holographic bottom-up models

- Buchel, Heller, Myers '1503.07114 $N=2^*$ SYM
- Janik, Plewa, Soltanpanahi, Spalinski'1503.07149 $V = cosh(\phi) + \phi^2 + \phi^4 + \phi^6$.
- Improved holographic QCD Gursoy, Kiritsis' 07, Gubser'08

For asymptotically AdS UV
$$\lambda \to 0$$
 $V(\lambda) = V_0 + v_1 \lambda + v_2 \lambda^2 + \dots$ For confinement in the IR $\lambda \to \infty$ $V(\lambda) \sim \lambda^Q (\log \lambda)^P$

- Perturbative analysis near extrema of the potential Gursoy et al.'17, Kiritsis et al' 16'17'18'19
- Single exponent potential $V=V_0(1-X^2)e^{-\frac{8}{3}X\phi}$, X<0 Gursoy, Jarvinen, Policastro'16
- Two exponent potential $V=C_1e^{2k\phi}+C_2e^{\frac{32}{9k}\phi}$, $C_1<0,C_2>0,k>0$ Aref'eva, AG, Policastro'19

Outline

- 1 Motivation
- 2 The holographic non-conformal models
 - The set up
 - The holographic backgrounds with T=0
 - The holographic Wilson loops
 - The holographic duals with $T \neq 0$: black holes
 - lacksquare Free energy of the holographic dual at T
 eq 0
- 3 Summary

The gravity duals

$$S = \frac{1}{2\kappa^2} \int d^4x \int du \sqrt{-g} \left(R - \frac{4}{3} (\partial \phi)^2 + V(\phi) \right) - \frac{1}{\kappa^2} \int_{\partial} d^4x \sqrt{-\gamma},$$

$$V_{GJP} = V_0 (1 - X^2) e^{-\frac{8}{3}X\phi}, \quad X < 0.$$

$$V_{AGP} = C_1 e^{2k\phi} + C_2 e^{\frac{32}{9k}\phi}; C_1 < 0, C_2 > 0, k > 0$$

■ V_{GJP} : $ds^2=e^{2A(u)}\left(-f(u)dt^2+\delta_{ij}dx^idx^j\right)+\frac{du^2}{f(u)}$, Chamblin, Reall'99

$$e^A = e^{A_0} \lambda^{\frac{1}{3X}}, \quad f = 1 - C_2 \lambda^{-\frac{4(1-X^2)}{3X}}, \quad \lambda = e^\phi = (C_1 - 4X^2 \frac{u}{\ell})^{\frac{3}{4X}}.$$

lacktriangledown V_{AGP}: new holographic backgrounds Aref'eva, AG, Policastro'19

The holographic non-conformal models

The holographic backgrounds with T=0

$$\begin{array}{rcl} ds^2 & = & F_1^{\frac{8}{9k^2-16}} F_2^{\frac{9k^2}{2(16-9k^2)}} \left(-dt^2 + d\vec{y}^{\; 2} \right) + F_1^{\frac{32}{9k^2-16}} F_2^{\frac{18k^2}{16-9k^2}} du^2 \\ \phi & = & -\frac{9k}{9k^2-16} \log F_1 + \frac{9k}{9k^2-16} \log F_2 \end{array}$$

•
$$F_1 = \sqrt{\left|\frac{C_1}{2E_1}\right|} \sinh(\mu_1 |u - u_{01}|), \mu_1 = \sqrt{\left|\frac{3E_1}{2}(k^2 - \frac{16}{9})\right|},$$

 $F_2 = \sqrt{\left|\frac{C_2}{2E_2}\right|} \sinh(\mu_2 |u - u_{02}|), \mu_2 = \sqrt{\left|\frac{3E_2}{2}((\frac{16}{9})^2 \frac{1}{k^2} - \frac{16}{9})\right|},$
 $E_1 + E_2 = 0, E_1 < 0, E_2 > 0$

•
$$F_1 = \sqrt{\frac{3}{4}(k^2 - \frac{16}{9})C_1}(u - u_{01}), F_2 = \sqrt{\frac{4}{3}(\frac{16}{9k^2} - 1)C_2}|u - u_{02}|,$$

 $E_1 = E_2 = 0$

- two types of backgrounds: 1) on $u \in (u_{02}, u_{01}), 2)$ $u \in (u_{01}, +\infty)$.
- boundaries of the solutions correspond to fixed points.
- $u_{01} = u_{02} \Rightarrow$ special flow : $u \in (u_0, +\infty)$ with AdS UV fixed point

The phase trajectories

$$X(\phi) = \frac{\beta(\lambda)}{3\lambda} = \frac{\phi'}{A'}$$

 $\lambda = e^{\phi}$ – the running coupling.

The X-function on exact solutions AGP'19

$$X = \frac{1}{3} \left(\frac{F_2}{F_1} \right)^{\frac{9k}{16 - 9k^2}} \frac{\lambda'}{\mathcal{A}'}.$$

Holographic RG flow equation Kiritsis et al.'0812.0792

$$\frac{dX}{d\phi} \quad = \quad -\frac{4}{3} \left(1 - X^2\right) \left(1 + \frac{3}{8X} \frac{d \log V}{d\phi}\right)$$

The holographic non-conformal models

The holographic backgrounds with T=0

$$\frac{dX}{d\phi} = -\frac{4}{3}\left(1 - X^2\right)\left(1 + \frac{3}{8X}\frac{d\log V}{d\phi}\right)$$

The holographic non-conformal models

The holographic backgrounds with T=0

Holographic running coupling

Figure: The coupling constant on the energy A on the dilaton plotted using the solutions for \mathcal{A} and ϕ : a) $0 < u < u_{01}$; b) $u > u_{01}$.

The holographic Wilson loops

The expectation value of the holographic WL can be defined through the Nambu-Goto action \mathcal{S}_{NG}

$$\langle W(\mathcal{C}) \rangle \sim e^{-\mathcal{S}_{NG}}$$

Maldacena'98

The expectation value of the WL of size $T \times \ell$ is related with $q \bar{q}$ -potential

$$\langle W \rangle \sim e^{-V_{q\bar{q}}(\ell)T}$$

The potential of the quark antiquark interaction as

$$V_{q\bar{q}} = \frac{1}{T} \mathcal{S}_{NG}$$

The Nambu-Goto action is defined as

$$S_{NG} = -\frac{1}{2\pi\alpha'} \int d^2\sigma \sqrt{-\det h}, \quad h_{\alpha\beta} = e^{\frac{4}{3}\phi} G_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu},$$

 $G_{\mu\nu}$ is the background metric, the world-sheet coordinates σ^{α} , $\alpha=0,1$, and the embedding functions $X^{\mu}=X^{\mu}(\sigma^{\alpha})$

Holographic Wilson loops

AG&Vu Nguen'19 TMPh

We choose the following gauge

$$\sigma^0 = t, \quad \sigma^1 = x_1, \quad u = u(x_1)$$

The Nambu-Goto action in the string frame

$$\frac{\ell}{2} = \int du \frac{ce^{3A}}{\sqrt{e^{4A + \frac{8}{3}\phi} - c^2}}$$

and for the Nambu-Goto action we have the following relation

$$\frac{S_{NG}}{2} = \frac{T}{2\pi\alpha'} \int du \frac{e^{7A + \frac{8\phi}{3}}}{\sqrt{e^{4A + \frac{8\phi}{3}} - c^2}}.$$

Let us define the so-called effective potential with u'=0 as

$$V_{eff} = e^{2\mathcal{A} + \frac{4}{3}\phi} = F_1^{\frac{4(2-3k)}{9k^2 - 16}} F_2^{\frac{3k(3k-8)}{2(16-9k^2)}}.$$

In terms of V_{eff} the quark-antiquark distance can be presented as

$$\frac{\ell}{2} = \int du \, e^{-2\phi} \frac{V_{eff}(u) \sqrt{V_{eff}(u)}}{\sqrt{\frac{V_{eff}^2(u)}{V_{eff}^2(u_*)} - 1}}$$

and the string action is given by

$$\frac{S_{NG}}{2} = \frac{T}{2\pi\alpha'} \int du \frac{e^{-2\phi} V_{eff}^3(u) \sqrt{V_{eff}(u)}}{\sqrt{V_{eff}^2(u) - V_{eff}^2(u_*)}}.$$

- Require the function V_{eff} to be decreasing on the region (u_{01}, u_*) .
- ullet To observe a confinement in the IR region, that implies $\ell \to +\infty$ with $\mathcal{S}_{NG} \to +\infty$, V_{eff} needs have a local minimum. Expanding in the Taylor series at the point u_{min} , with $u_{min}=u_*$ one has

$$\frac{V_{eff}^{2}(u)}{V_{eff}^{2}(u_{min})} = 1 + \frac{V''(u_{min})}{V_{eff}(u_{min})}(u - u_{min})^{2} + \mathcal{O}(u - u_{min})^{2}.$$

The holographic Wilson loops

Figure: V_{eff} as a function of u for the holographic RG flows: **a),b)** defined on $(u_{02};u_{01})$ with $u_{02}=-1$, $u_{01}=0$ for small and big k, correspondingly; **c),d)** defined on $(u_{01};+\infty)$ with $u_{01}=0$ for small and big k, correspondingly; **e)** with coinciding points $u_{01}=u_{02}=0$.

The effective $q\bar{q}$ -potential

■ The holographic background on (u_{02},u_{01}) is confining with k<2/3

$$\frac{\ell}{2} = \int_{u_{min}}^{u_{01}} \frac{e^{-2\phi}V_{eff}^2(u_{min})du}{\sqrt{V_{eff}''(u_{min})}(u_{min} - u)} \sim \frac{e^{-2\phi(u_{min})}V_{eff}^2(u_{min})}{\sqrt{V_{eff}''(u_{min})}} \log(u_{min} - u),$$

and the Nambu-Goto action is given by

$$S_{NG} = \int_{u_{min}}^{u_{(\Lambda)}} \frac{e^{-2\phi} V_{eff}^3(u_{min}) du}{\sqrt{V_{eff}''(u_{min})}(u_{min} - u)} \sim \frac{e^{-2\phi(u_{min})} V_{eff}^3(u_{min})}{\sqrt{V_{eff}''(u_{min})}} \log(u_{min} - u),$$

so $\ell \to +\infty$ with $S_{NG} \to +\infty$ as $u \to u_{min}$.

$$V_{q\bar{q}\ell\to+\infty} \sim \sigma\ell, \quad \sigma = V_{eff}(u_{min})$$

At large distance one has a linear growth of the quark potential.

■ The holographic background on $(u_{01}, +\infty)$ is non-confining for all k.

Black hole solution, $u = +\infty$ is the horizon, $u_{01} = 0$

- $\mu_2 = \mu_1 = \mu_1$
- Hawking temperature: $T = \frac{1}{2\pi} \frac{\mu}{C^{3/2}}$.

$$ds^{2} = \mathcal{C}\mathcal{X}\left(-e^{-2\mu u}dt^{2} + d\vec{y}^{2}\right) + \mathcal{C}^{4}\mathcal{X}^{4}e^{-2\mu u}du^{2},$$

$$\mathcal{X} = (1 - e^{-2\mu u})^{-\frac{8}{16 - 9k^{2}}}(1 - e^{-2\mu(u - u_{02})})^{\frac{9k^{2}}{2(16 - 9k^{2})}},$$

$$\mathcal{C} \equiv 2^{\frac{16}{(16 - 9k^{2})}}(3\mu)^{\frac{1}{2}}|C_{1}|^{\frac{8}{2(9k^{2} - 16)}}\left(\frac{C_{2}}{k}e^{-2\mu u_{02}}\right)^{\frac{9k^{2}}{4(16 - 9k^{2})}}(16 - 9k^{2})^{-\frac{1}{4}}.$$

$$\phi = \frac{9k}{9k^2 - 16} \log \left[\sqrt{\left| \frac{E_1 C_2}{E_2 C_1} \right| \frac{\sinh(\mu(u - u_{02}))}{\sinh(\mu u)}} \right].$$

Free energy through the holographic on-shell action

$$\begin{split} \frac{I_{reg}^{on-shell}}{\beta V_3} &= -\left(6\mathcal{A}'(u) + \frac{f'(u)}{f(u)}\right)|_{u=\epsilon}.\\ \mathcal{F} &\sim -\frac{1}{2}\left(\mu - \frac{27k^2}{16 - 9k^2}(\sqrt{\Lambda^2 + \mu^2} - \Lambda)\right), \frac{\mu}{\Lambda} = \sinh(-\mu u_{02}). \end{split}$$

Free energy through black hole thermodynamics

$$d\mathcal{F} = -sdT$$
.

$$\mathcal{F} = -\frac{V_3}{8\pi} \left(\mu - \frac{27k^2}{16 - 9k^2} (\sqrt{\Lambda^2 + \mu^2} - \Lambda) \right) ,$$

 $u_{02}
ightarrow 0$, $\Lambda
ightarrow 0$ the free energy $\mathcal{F} = - rac{V_3}{8\pi} \mu.$

The holographic non-conformal models

Free energy of the holographic dual at $T \neq 0$

Free energy

Figure: The dependence of the free energy F on the temperature T for the different shapes of the potential (different k, $C_1 = -2$, $C_2 = 2$).

Free energy of the holographic dual at $T \neq 0$

Holographic WL for $T \neq 0$

The effective potential

$$V_{eff} = Ce^{-\mu u} \left(\frac{4e^{-\mu u_{02}}}{3k} \sqrt{\frac{C_2}{|C_1|}} \right)^{\frac{12K}{9k^2 - 16}} \left(1 - e^{-2\mu(u - u_{02})} \right)^{\frac{3k(8 - 3k)}{2(9k^2 - 16)}} \left(1 - e^{-2\mu u} \right)^{\frac{4(2 - 3k)}{9k^2 - 16}} \left(1 - e^{-2\mu$$

The distance between quarks and the Nambu-Goto action can represented in terms of V_{eff} as

$$\frac{\ell}{2} = \int_{0}^{u_*} du \, \frac{e^{-2\phi} e^{\frac{\mu}{2}u} V_{eff} \sqrt{V_{eff}}}{\sqrt{\frac{V_{eff}^2(u)}{V_{eff}^2(u_*)} - 1}}$$

and

$$S_{NG} = \frac{T}{\pi \alpha'} \int_{0}^{u_*} du \, \frac{e^{-2\phi} e^{\frac{\mu}{2} u} V_{eff}^3 \sqrt{V_{eff}}}{\sqrt{V_{eff}^2(u) - V_{eff}^2(u_*)}},$$

correspondingly.

The holographic non-conformal models

Free energy of the holographic dual at $T \neq 0$

Figure: V_{eff} as a function of u for the holographic RG flows at finite temperature: a),c) we fix k varying $\alpha^1=-\frac{3}{4}\mu$, b),d) we fix $\alpha^1=-\frac{3}{4}\mu$ varying k.

Outline

- 1 Motivation
- 2 The holographic non-conformal models
 - The set up
 - The holographic backgrounds with T = 0
 - The holographic Wilson loops
 - The holographic duals with $T \neq 0$: black holes
 - lacktriangle Free energy of the holographic dual at $T \neq 0$
- 3 Summary

New results

- New viable holographic backgrounds with confinement
- Holographic running coupling mimic QCD
- $\blacksquare q\bar{q}$ -potential has an area law
- Holographic backgrounds with AdS fixed point
- Black hole backgounds work like IR cut-off

New results

- New viable holographic backgrounds with confinement
- Holographic running coupling mimic QCD
- $\blacksquare q\bar{q}$ -potential has an area law
- Holographic backgrounds with AdS fixed point
- Black hole backgounds work like IR cut-off

In progress

- Is it possible to reproduce the whole Cornell potential?
- The hadronic spectrum
- Phase transitions (Aref'eva&Rannu'18, Aref'eva,Rannu&Slepov'19)
- More precise studies of thermal case
- Generalization on non-zero baryonic density

Thank you for attention!