

Exploring the partonic phase at finite chemical potential within an extended off-shell PHSD transport approach

Elena Bratkovskaya (GSI Darmstadt & Uni. Frankfurt)

Pierre Moreau, Olga Soloveva, Lucia Oliva, Taesoo Song, Wolfgang Cassing

"The II International Workshop on Theory of Hadronic Matter Under Extreme Conditions" JINR, Dubna, Russia Dubna, September 16 - 19, 2019

1

Experiment: Heavy-ion collisions

Heavy-ion collisions

,re-creation' of the Big Bang conditions in the laboratory: matter at high pressure and temperature

□ Heavy-ion accelerators:

Large Hadron Collider -LHC (CERN): Pb+Pb up to 574 A TeV Relativistic-Heavy-Ion-Collider -RHIC (Brookhaven): Au+Au up to 21.3 A TeV Facility for Antiproton and Ion Research – FAIR (Darmstadt) (Under construction) Au+Au up to 10 (30) A GeV Nuclotron-based Ion Collider fAcility – NICA (Dubna) (Under construction) Au+Au up to 60 A GeV

Future NICA complex

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD

Search for the critical point

 Study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma

Search for signatures of chiral symmetry restoration

Search for the critical point

Study of the in-medium properties of hadrons at high baryon density and temperature

Theory: lattice QCD data for $\mu_B = 0$ **and finite** $\mu_B > 0$

Deconfinement phase transition from hadron gas to QGP with increasing T and μ_B

IQCD: J. Guenther et al., Nucl. Phys. A 967 (2017) 720

Degrees-of-freedom of QGP

effective degrees-of-freedom

Free quarks and gluons

0.6

 \leftarrow

0.8

pQCD

pQCD

Lattice

Thermal QCD

0.4T [GeV]

0.2

Bag model, $B=(150 \text{MeV})^4$

How to learn about degrees-of-freedom of QGP? - HIC experiments *

Dynamical QuasiParticle Model (DQPM)

DQPM describes **QCD** properties in terms of **,resummed' single-particle Green's functions** (propagators G^R) – in the sense of a two-particle irreducible (2PI) approach:

 Degrees-of-freedom: interacting quasiparticles - quarks and gluons with Lorentzian spectral functions:

 $\rho_j(\omega, \mathbf{p}) = \frac{\gamma_j}{\tilde{E}_j} \left(\frac{1}{(\omega - \tilde{E}_j)^2 + \gamma_j^2} - \frac{1}{(\omega + \tilde{E}_j)^2 + \gamma_j^2} \right)$ $\equiv \frac{4\omega\gamma_j}{(\omega^2 - \mathbf{p}^2 - M_z^2)^2 + 4\gamma_z^2\omega^2}$

$$\rho = -2 \operatorname{Im} G^{R} \qquad \qquad \tilde{E}_{j}^{2}(\mathbf{p}) = \mathbf{p}^{2} + M_{j}^{2} - \gamma_{j}^{2}$$

Resummed properties of the quasiparticles are specified by scalar complex self-energies:

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2\gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_q \omega$

- Real part of the self-energy: thermal mass (M_g, M_q)
- Imaginary part of the self-energy: interaction width of partons (γ_g , γ_q)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Parton properties

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

Masses:

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}}g^{2}(T,\mu_{B})\left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$M_{g}^{2}(T,\mu_{B}) = \frac{g^{2}(T,\mu_{B})}{6}\left(\left(N_{c}+\frac{1}{2}N_{f}\right)T^{2}+\frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

➔ DQPM :

only one parameter (c = 14.4) + (T, μ_B) - dependent coupling constant has to be determined from lattice results

Widths:

$$\gamma_{q(\bar{q})}(T,\mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$
$$\gamma_g(T,\mu_B) = \frac{1}{3} N_c \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$

Coupling: input: IQCD entropy density as a function of temperature for µ_B
 → Fit to lattice data at µ_B=0 with

$$g^2(s/s_{SB}) = d\left((s/s_{SB})^e - 1\right)^f$$

$$s_{SB}^{QCD} = 19/9\pi^2 T^3$$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM at finite (T, μ_q): scaling hypothesis

□ Scaling hypothesis for the effective temperature T* for N_f = N_c = 3 μ_a^2

$$\mu_u = \mu_d = \mu_s = \mu_q$$

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

Coupling:

$$g(T/T_c(\mu=0)) \longrightarrow g(T^{\star}/T_c(\mu))$$

□ Critical temperature $T_c(\mu_q)$: obtained by assuming a constant energy density ε for the system at $T=T_c(\mu_q)$, where ε at $T_c(\mu_q=0)=156$ GeV is fixed by IQCD at $\mu_q=0$

$$\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1-\alpha \ \mu_q^2} \approx 1-\alpha/2 \ \mu_q^2 + \cdots$$

! Consistent with lattice QCD:

IQCD: C. Bonati et al., PRC90 (2014) 114025

$$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$$

IQCD $\kappa = 0.013(2)$

 $\leftarrow \sim \kappa_{DOPM} \approx 0.0122$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM: parton properties

➔ Lorentzian spectral function:

D Masses and widths as a function of (T, μ_B)

DQPM thermodynamics at finite (T, μ_q)

Entropy and baryon density in the quasiparticle limit (G. Baym 1998):

$$s^{dqp} = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[d_g \frac{\partial n_B}{\partial T} \left(\operatorname{Im}(\ln - \Delta^{-1}) + \operatorname{Im} \Pi \operatorname{Re} \Delta \right) \right]$$

$$+ \sum_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_q^{-1}) + \operatorname{Im} \Sigma_q \operatorname{Re} S_q \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

Blaizot, Iancu, Rebhan, Phys. Rev. D 63 (2001) 065003

Partonic interactions in DQPM

Partonic interactions: matrix elements

DQPM partonic cross sections → leading order diagrams

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

P. Moreau et al., PRC100 (2019) 014911

Differential cross sections

• At lower s: off-shell σ < on -shell σ since $\omega_3 + \omega_4 < \sqrt{s}$

P. Moreau et al., PRC100 (2019) 014911

DQPM (T, \mu_q): transport properties at finite (T, μ_q)

Transport coefficients: shear viscosity

Shear viscosity η /s at finite T, $\mu_q=0$

DQPM: Relaxation Time Approximation (RTA) and Kubo formalism

Hydro: Bayesian analysis, S. Bass et al., NPA967 (2017) 67

RTA lQCD N_f=0 0.5 RTA 2γ Kubo RTA Γ^{ON} 0.4

Shear viscosity η /s at finite (T, μ_{q})

 \geq Very weak dependence of shear viscosity on $\mu_{\rm R}$

P. Moreau et al., PRC100 (2019) 014911

Transport coefficients: bulk viscosity

Bulk viscosity ζ/s at finite T, μ_q =0

DQPM: Relaxation Time Approximation (RTA) and Kubo formalism

Hydro: Bayesian analysis, S. Bass et al., NPA967 (2017) 67

Bulk viscosity ζ /s at finite (T, μ_q)

> Very weak dependence of bulk viscosity on μ_B

QGP: in-equilibrium -> off-equilibrium

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

Initial A+A collisions

 $N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons$

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

 Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential

dissolution of pre-hadrons \rightarrow partons

- Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

□ Hadronic phase: hadron-hadron interactions – off-shell HSD

LUND string mod

□ For each cell in PHSD :

In order to extract (T, μ_B) use IQCD relations (up to 4th order) - Taylor series :

(1)

$$\Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T) \right) \left(\frac{\mu_B}{T} \right)^2 + \cdots$$

* Use baryon number susceptibilities χ_n from IQCD

obtain (*T*, μ_B) by solving the system of coupled equations using ε^{PHSD} and n_B^{PHSD}
 * Done by the Newton-Raphson method

Illustration for a HIC ($\sqrt{s_{NN}} = 19.6$ GeV)

BI

Au + Au $\sqrt{s_{NN}}$ = 19.6 GeV – b = 2 fm – Section view

Illustration for a HIC ($\sqrt{s_{NN}} = 17$ GeV)

PHS

2.5

2.0

- 1.5

- 1.0

- 0.5

Traces of the QGP at finite μ_q in observables in high energy heavy-ion collisions

Results for HICs with PHSD 4.0 and 5.0

- Comparison between three different results:
 - **1)** PHSD 4.0 : only $\sigma(T)$ and $\rho(T)$
 - $\sigma(T)$ parton interaction cross sections $\rho(T)$ – spectral function of partons \rightarrow (masses and widths)

2) PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$

In v.5.0: + angular dependence of diff. partonic cross sections PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$

3)

Results for HICs ($\sqrt{s_{NN}}$ = 200 GeV)

P. Moreau et al., PRC100 (2019) 014911

Results for HICs ($\sqrt{s_{NN}} = 17$ GeV)

P. Moreau et al., PRC100 (2019) 014911

(a)

0

0

(b)

(C)

(d)

2.5

3.0

Results for HICs ($\sqrt{s_{NN}}$ = 7.6 GeV)

P. Moreau et al., PRC100 (2019) 014911

P. Moreau et al., PRC100 (2019) 014911

Results for v_2 for HICs ($\sqrt{s_{NN}} = 200$ GeV)

v_2 of charged hadrons with PHSD v4.0 and v5.0

- \succ very weak dependence of v₂ on μ_B
- > visible influence on v₂ for explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of d σ /dcos θ at larger p_T

O. Soloveva, preliminary results

Results for v₁, v₂ for HICs ($\sqrt{s_{NN}}$ = 27 GeV)

- > very weak dependence of v_1 , v_2 on μ_B
- > small influence on v₁, v₂ of explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of d σ /dcos θ due to the relatively small QGP volume
- strong flavor dependence of v₁, v₂

O. Soloveva, preliminary results

- $\Box (T, \mu_B)$ -dependent partonic cross sections and masses/widths of quarks and gluons have been implemented in PHSD
- **High-** μ_B region is probed at low bombarding energies or high rapidity regions
- But, QGP fraction is small at low bombarding energies:
 → no effects of (T, μ_B)-dependent partonic cross sections and masses/widths seen in 'bulk' observables dN/dy, p_T-spectra

Given Series Flow harmonics v_1, v_2 show :

visible sensitivity to the explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of d σ /dcos θ , however, weak dependence on μ_B

Outlook:

- $\succ\,$ More precise EoS at large μ_B
- > Possible 1st order phase transition at even larger μ_B ?!

High- μ_B region of QCD phase diagram \rightarrow challenge for NICA !

Thank you for your attention!

