allow allow

Quark Matter under Rotation

sitas sitas sitas sitas sitas sitas sitasitas sitas sitas sitas sitas sitas sitas

Kenji Fukushima The University of Tokyo

— Theory of Hadronic Matter under Extreme Conditions —

1

Rotation in Collisions

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Rotation in Collisions

L is an *intrinsic* property of matter

September 16, 2019 @ JINR, Dubna

Rotation in Collisions Global Polarization of *A*

$$P_{ ext{Vortical}} = rac{1}{2} \left(P_{\Lambda} + P_{\overline{\Lambda}}
ight)$$

 $P_{ ext{Magnetic}} = rac{1}{2} \left(P_{\Lambda} - P_{\overline{\Lambda}}
ight)$
Becattini, Csernai, Wang, ...

Theoretical Formulation

allow allow

Theoretical Formulation

ನಿ, ಜಿಲ್ಲೇವನ್, ಜಿಲ್ಲೇವನ್, ಜಿಲ್ಲೇವ ಜಿಲ್ಲೇವನ್, ಜಿಲ್ಲೇವನ್, ಜಿಲ್ಲಿ

Fluid **Rotating QFT** V.S. $\nabla \times u$

Coordinate Transformation Finite Size (causality)

Theoretical Formulation

$$\begin{bmatrix} i\gamma^{\mu}(\partial_{\mu} + \Gamma_{\mu}) - m \end{bmatrix} \psi = 0$$

$$g_{\mu\nu} = \begin{pmatrix} 1 - (x^{2} + y^{2})\Omega^{2} & y\Omega & -x\Omega & 0 \\ y\Omega & -1 & 0 & 0 \\ -x\Omega & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Solve this in a finite cylinder (radius R)

Not only the affine connection but gamma's changed

Vierbeins are needed !

ALVA, ALVA

Chen-KF-Huang-Mameda, PRD (2015)

Inverse Magnetic Catalysis driven by rotation

More interestingly, Rotation+*B* = (Genuine) Density

$$n = -\frac{\partial\Omega}{\partial\mu}\Big|_{\mu=0} = \frac{eB\omega}{4\pi^2}$$

interpreted as **anomaly Hattori-Yin, PRL (2016)**

Can be given another interpretation from the Floquet theory

allow allow

Jiang-Liao, PRL (2017)

Completely analogous to chemical potential... BUT!

Is it really possible to change the QCD vacuum just by rotation ???

The answer is negative:

Ebihara-Fukushima-Mameda, PLB (2017)

CausalitySystem size should be finite ~ R $\omega R < 1$ Energy dispersion should be gapped ~ J/RInduced chemical potential ~ ωJ Gap is always bigger than the chemical potential

Is it really possible to change the QCD vacuum just by rotation ???

The answer is negative:

Ebihara-Fukushima-Mameda, PLB (2017)

If one wants to see nontrivial effects of rotation, it should be coupled with...

There are still lots of interesting challenges in physics and theoretical computations!

But, these are mostly technical issues, and there seems to be no conceptual problem.

Let's move on to a more subtle thing now...

Switch the gear into...

Two Choices

ALIAN ALIAN

Hydrodynamics with Local Vorticity Vectors

Derivative expansion ? (vorticities are second order) Discrimination of *L* and *S* ?

Kinetic Equations with Local Vorticity Vectors

$$arepsilon_{
m rot} = p - \boldsymbol{\omega} \cdot \left(\boldsymbol{x} \times \boldsymbol{p} + \hbar \lambda \hat{\boldsymbol{p}} \right)$$

= $\boldsymbol{\omega} \cdot \boldsymbol{J}$
 $f(arepsilon) o f(arepsilon_{
m rot})$ Corrections in the Kinetic Eqs.?

Gyromagnetic Effect

September 16, 2019 @ JINR, Dubna

Gyromagnetic Effect

Spin Alignment in response to Rotation

"Gyroscopic" Motion

Quickest Derivation

$$\omega \cdot J = \mu \cdot B$$

Magnetization $M = \chi_B B_{magnetic susceptibility}$ Magnetic moment $\mu = \gamma J_{gyromagnetic ratio}$ $\longrightarrow M = \frac{\chi_B}{\gamma} \omega$ Standard formula
for the Barnett effect

Roughly speaking, the Barnett effect is a transport from the orbital to the spin angular momentum.

To make this phenomenon well-defined, the orbital and the spin components must be well separated.

Decomposition of L and S

ALVA, ALVA

Angular Momentum = Noether Current from Rotational Symmetry

Neither L nor S conserved separately

$$\partial_{\lambda}L^{\lambda\mu\nu} = -\partial_{\lambda}S^{\lambda\mu\nu} = \bar{\psi}\,i\hbar(\gamma^{\mu}\partial^{\nu} - \gamma^{\nu}\partial^{\mu})\psi$$

Decomposition of L and S

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Different decomposition

$$\begin{split} \tilde{L}^{\lambda\mu\nu} &= \frac{1}{2} L^{\lambda\mu\nu} + \frac{1}{2} \bar{\psi} \, i\hbar \big[(x^{\mu} \gamma^{\nu} - x^{\nu} \gamma^{\mu}) \partial^{\lambda} \big] \psi \\ \tilde{S}^{\lambda\mu\nu} &= J^{\lambda\mu\nu} - \tilde{L}^{\lambda\mu\nu} \end{split}$$

$$\partial_{\lambda} \tilde{L}^{\lambda\mu\nu} = \partial_{\lambda} \tilde{S}^{\lambda\mu\nu} = 0$$
 Separately conserved?

Belinfante angular momentum (Only the orbital part remains, and the spin part turns out to be trivial...)

Decomposition of L and S We believe the former decomposition makes sense:

- 1) Reduced to ordinary L and S in non-rela limit
- 2) S is related to the axial current

$$S^{0ij} = \epsilon^{ijk} \frac{\hbar}{2} \bar{\psi} \gamma^k \gamma_5 \psi = \epsilon^{ijk} \frac{j_5^k}{2}$$

Corresponding Spin Operator:

$$\boldsymbol{S} \rightarrow \hbar \lambda \left(\hat{\boldsymbol{p}} - \hbar \lambda \frac{\hat{\boldsymbol{p}}}{2p} \times \boldsymbol{\nabla} \right)$$

Torque from gyromagnetic effect

Chen-Son-Stephanov, PRL (2015)

Relativistic Barnett Effect Spin Expectation Value

Energy in a rotating fluid $\varepsilon_{\rm rot} = p - \boldsymbol{\omega} \cdot (\boldsymbol{x} \times \boldsymbol{p} + \hbar \lambda \hat{\boldsymbol{p}})$

$$\langle \boldsymbol{S} \rangle = \int_{\boldsymbol{p}} \lambda \hbar \left(\hat{\boldsymbol{p}} - \lambda \hbar \frac{\hat{\boldsymbol{p}}}{2p} \times \boldsymbol{\nabla} \right) f(\varepsilon_{\text{rot}})$$

$$= -\hbar \lambda (\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f'(\boldsymbol{p}) - \hbar^2 \boldsymbol{\omega} \int_{\boldsymbol{p}} f'(\boldsymbol{p})$$

$$\langle \boldsymbol{S} \rangle_{\perp}$$
"Transverse" Barnett Effect Chiral Vortical Effect ~ Barnett Effect Chiral Vortical Effect ~ Barnett Effect Chiral Vortical Effect ~ Chiral Vortical Vortical ~ Chiral Vortical Vortical ~ Chiral Vortical Vortical ~ Chiral Vortical ~

Relativistic Barnett Effect

ALIAN ALIAN

Spin Expectation Value

$$\begin{split} \boldsymbol{S}_{\perp} &= -\hbar \sum_{R,L} \lambda(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f_{\lambda}'(p) \\ &= \frac{\hbar}{2} (\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \left[f_R(p) - f_L(p) \right] = \frac{\hbar}{2} (\boldsymbol{\omega} \times \boldsymbol{x}) n_5 \end{split}$$

 $j_5 = n_5 v$

Transverse Barnett appears for massless and chirally imbalanced fermions

Relativistic Barnett Effect

Elen Alexander a Alexander

Magnetic moment

$$\langle \boldsymbol{\mu} \rangle = \langle \boldsymbol{\mu}_L \rangle + \langle \boldsymbol{\mu}_S \rangle$$
$$= \langle \boldsymbol{\mu}_L \rangle_{\text{mech}} - \hbar \lambda \frac{q_e}{6} (\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} f'(\boldsymbol{p})$$
$$\text{up to } O(\hbar^1)$$
$$\downarrow \boldsymbol{\mu} \quad \textbf{Eddy magnetic moment}$$
$$Fukushima-Pu-Qiu, PRA (2018)$$

Eddy Magnetization

allow allow

Possible Evidence for Free Precession of a Strongly Magnetized Neutron Star in the Magnetar 4U 0142+61

K. Makishima,^{1, 2, 3} T. Enoto,^{4, 5} J. S. Hiraga,² T. Nakano,¹ K. Nakazawa,¹ S. Sakurai,¹ M. Sasano,¹ and H. Murakami¹

¹Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ²Research Center for the Early Universe, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ³MAXI team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁴High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁵NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771, USA (Dated: February 19, 2018)

Magnetars are a special type of neutron stars, considered to have extreme *dipole* magnetic fields reaching ~ 10^{11} T. The magnetar 4U 0142+61, one of prototypes of this class, was studied in broadband X-rays (0.5–70 keV) with the *Suzaku* observatory. In hard X-rays (15–40 keV), its 8.69 sec pulsations suffered slow phase modulations by ±0.7 sec, with a period of ~ 15 hours. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ~ 1.6×10^{-4} in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong *toroidal* magnetic field, ~ 10^{12} T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.

PRL112, 171102 (2014)

Eddy Magnetization

ALVA, ALVA

Precession has been measured

Spherically non-symmetric moment of inertia inferred

Deformation is assumed to be sustained by (toroidal) field energy

 $B \sim 10^{16}$ gauss

Stronger than the surface *B* of magnetar ! How can it be created? ← Chiral Barnett Effect?

Subtlety in Hydro

Can we compute the same quantities in hydro?

YES, BUT NO!

$$T_{\text{hydro}}^{\mu\nu} = (E+P)u^{\mu}u^{\nu} - P g^{\mu\nu} + \hbar n_5(u^{\mu}\omega^{\nu} + u^{\nu}\omega^{\mu})$$

$$L_{\text{hydro}}^{ij} = x^i T_{\text{hydro}}^{0j} - x^j T_{\text{hydro}}^{0i}$$

$$\boldsymbol{L}_{\mathrm{hydro}} = (E+P)(\boldsymbol{x} \times \boldsymbol{u}) - \hbar n_5(\boldsymbol{\omega} \times \boldsymbol{x})$$

Is this consistent with kinetic theory results?

Subtlety in Hydro

ANDER ANDER

$$L_{\text{hydro}} = (E + P)(\boldsymbol{x} \times \boldsymbol{u}) - \hbar n_5(\boldsymbol{\omega} \times \boldsymbol{x})$$

$$P = E/3$$

$$\mathbf{x} \times (\boldsymbol{\omega} \times \boldsymbol{x}) \frac{4}{3} \int_{\boldsymbol{p}} p(f_R + f_L) - 2\langle \boldsymbol{S} \rangle_{\perp}$$

$$= \langle \boldsymbol{L} \rangle_{\text{mech}} \quad \mathbf{OK} \quad \text{Twice bigger !?}$$

The difference comes from the energy momentum tensor. In hydro the energy momentum tensor is a symmetrized one. Belinfante form? Should be pseudo-gauge invariant...

Becattini-Florkowski-Speranza, PLB (2019)

Summary of the Talk

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Rotation ~ **Density**

- □ Phase Diagram
- Finite-size System / Inhomogeneous Condensates

Rotation ~ Magnetic Field

- □ Barnett Effect expected
- □ Chiral Vortical Effect is nothing but the Barnett Effect.
- \Box Decomposition of *L* and *S* still assumed...
- **□** Ideas testable in optics and electron vortex systems

Works along these lines ongoing