Quark Matter under Rotation

Kenji Fukushima

The University of Tokyo

- Theory of Hadronic Matter under Extreme Conditions -

Rotation in Collisions

L remains longer than B

L is ubiquitous in the nature Deformed Nuclei Neutron Stars Electron Vortices ...

Rotation in Collisions

L is an intrinsic property of matter

Rotation in Collisions

Global Polarization of Λ

$$
\begin{aligned}
& P_{\text {Vortical }}=\frac{1}{2}\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \\
& P_{\text {Magnetic }}=\frac{1}{2}\left(P_{\Lambda}-P_{\bar{\Lambda}}\right)
\end{aligned}
$$

Becattini, Csernai, Wang, ...

September 16,2019@ JINR, Dubna

Theoretical Formulation

Fluid

Rotating QFT

Coordinate Transformation Finite Size (causality)

Theoretical Formulation

Fluid

$\nabla \times u$

Rotating QFT

Coordinate Transformation Finite Size (causality)

Theoretical Formulation

$$
\left[i \gamma^{\mu}\left(\partial_{\mu}+\Gamma_{\mu}\right)-m\right] \psi=0
$$

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1-\left(x^{2}+y^{2}\right) \Omega^{2} & y \Omega & -x \Omega & 0 \\
y \Omega & -1 & 0 & 0 \\
-x \Omega & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Solve this in a finite cylinder (radius R)
Not only the affine connection but gamma's changed
Vierbeins are needed !

Theoretical Formulation

Theoretical treatment for deformed nuclei
Cranking Hamiltonian $\quad H_{\text {rot }}=H-\omega J_{z}$
Chemical Potential Like

Angular Momentum

Theoretical Formulation

Theoretical treatment for deformed nuclei
Cranking Hamiltonian $\quad H_{\text {rot }}=H-\omega J_{z}$
Chemical Potential Like

Angular Momentum
μ

Rotation ~ Density

Chen-KF-Huang-Mameda, PRD (2015)

Inverse Magnetic Catalysis driven by rotation

More interestingly,
Rotation $+\boldsymbol{B}=($ Genuine) Density

$$
n=-\left.\frac{\partial \Omega}{\partial \mu}\right|_{\mu=0}=\frac{e B \omega}{4 \pi^{2}}
$$

interpreted as anomaly
Hattori-Yin, PRL (2016)
Can be given another interpretation from the Floquet theory

Rotation ~ Density

Jiang-Liao, PRL (2017)

Completely analogous to chemical potential... BUT!

Rotation ~ Density

Is it really possible to change the QCD vacuum just by rotation ???

The answer is negative:
Ebihara-Fukushima-Mameda, PLB (2017)
Causality System size should be finite $\sim \boldsymbol{R}$
$\omega R<1 \quad$ Energy dispersion should be gapped $\sim \boldsymbol{J} / \boldsymbol{R}$
Induced chemical potential $\sim \omega J$
Gap is always bigger than the chemical potential

Rotation ~ Density

Is it really possible to change the QCD vacuum just by rotation ???

The answer is negative:
Ebihara-Fukushima-Mameda, PLB (2017)
If one wants to see nontrivial effects of rotation, it should be coupled with...
$\mu_{\text {Gauge CVE }}^{\mu}$
B
Chiral Pumping Effect
T
Gravity CVE

There are still lots of interesting challenges in physics and theoretical computations!

But, these are mostly technical issues, and there seems to be no conceptual problem.

Let's move on to a more subtle thing now...

Switch the gear into...

Two Choices

Hydrodynamics with Local Vorticity Vectors
Derivative expansion? (vorticities are second order)
Discrimination of L and S ?

Kinetic Equations with Local Vorticity Vectors

$$
\begin{aligned}
& \varepsilon_{\mathrm{rot}}=p-\underline{\boldsymbol{\omega} \cdot(\boldsymbol{x} \times \boldsymbol{p}+\hbar \lambda \hat{\boldsymbol{p}})} \\
& =\omega \cdot \boldsymbol{\omega} \\
& f(\varepsilon) \rightarrow f\left(\varepsilon_{\mathrm{rot}}\right) \quad \text { Corrections in the Kinetic Eqs.? }
\end{aligned}
$$

Barnett Effect

Gyromagnetic Effect

September 16, 2019 @ JINR, Dubna

Barnett Effect

 Gyromagnetic Effect

Barnett Effect

 Spin Alignment in response to Rotation"Gyroscopic" Motion

Barnett Effect

Quickest Derivation

$$
\omega \cdot J=\mu \cdot B
$$

Magnetization

$$
\boldsymbol{M}=\underset{\text { magnetic susceptibility }}{\chi_{B} \boldsymbol{B}}
$$

Magnetic moment $\boldsymbol{\mu}=\underset{\text { gyromagnetic ratio }}{\gamma \boldsymbol{J}}$

Roughly speaking, the Barnett effect is a transport from the orbital to the spin angular momentum.

To make this phenomenon well-defined, the orbital and the spin components must be well separated.

HOW?

Decomposition of L and S

Angular Momentum
$=$ Noether Current from Rotational Symmetry

$$
J^{\lambda \mu \nu}=\int_{\bar{\psi} i \hbar\left(\gamma^{\lambda} x^{\mu} \partial^{\nu}-\gamma^{\lambda} x^{\nu} \partial^{\mu}\right) \psi}^{\sum_{\frac{1}{2}} \bar{\psi} i \hbar \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \psi}
$$

Neither L nor S conserved separately

$$
\partial_{\lambda} L^{\lambda \mu \nu}=-\partial_{\lambda} S^{\lambda \mu \nu}=\bar{\psi} i \hbar\left(\gamma^{\mu} \partial^{\nu}-\gamma^{\nu} \partial^{\mu}\right) \psi
$$

Decomposition of L and S

Different decomposition

$$
\begin{aligned}
& \tilde{L}^{\lambda \mu \nu}=\frac{1}{2} L^{\lambda \mu \nu}+\frac{1}{2} \bar{\psi} i \hbar\left[\left(x^{\mu} \gamma^{\nu}-x^{\nu} \gamma^{\mu}\right) \partial^{\lambda}\right] \psi \\
& \tilde{S}^{\lambda \mu \nu}=J^{\lambda \mu \nu}-\tilde{L}^{\lambda \mu \nu}
\end{aligned}
$$

$$
\partial_{\lambda} \tilde{L}^{\lambda \mu \nu}=\partial_{\lambda} \tilde{S}^{\lambda \mu \nu}=0
$$

Separately
conserved?
Belinfante angular momentum (Only the orbital part remains, and the spin part turns out to be trivial...)

Decomposition of L and S

We believe the former decomposition makes sense:

1) Reduced to ordinary L and S in non-rela limit
2) S is related to the axial current

$$
S^{0 i j}=\epsilon^{i j k} \frac{\hbar}{2} \bar{\psi} \gamma^{k} \gamma_{5} \psi=\epsilon^{i j k} \frac{j_{5}^{k}}{2}
$$

Corresponding Spin Operator:

$$
\boldsymbol{S} \rightarrow \hbar \lambda\left(\hat{\boldsymbol{p}}-\hbar \lambda \frac{\hat{\boldsymbol{p}}}{2 p} \times \boldsymbol{\nabla}\right)
$$

Chen-Son-Stephanov, PRL (2015)
Torque from gyromagnetic effect

Relativistic Barnett Effect

Spin Expectation Value
Energy in a rotating fluid $\varepsilon_{\mathrm{rot}}=p-\boldsymbol{\omega} \cdot(\boldsymbol{x} \times \boldsymbol{p}+\hbar \lambda \hat{\boldsymbol{p}})$

$$
\langle\boldsymbol{S}\rangle=\int_{\boldsymbol{p}} \lambda \hbar\left(\hat{\boldsymbol{p}}-\lambda \hbar \frac{\hat{\boldsymbol{p}}}{2 p} \times \nabla\right) f\left(\varepsilon_{\mathrm{rot}}\right)
$$

Vilenkin (1978)

$$
=-\hbar \lambda(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f^{\prime}(p)-\hbar^{2} \boldsymbol{\omega} \int_{\boldsymbol{p}} f^{\prime}(p)
$$

$\begin{aligned} &\langle\boldsymbol{S}\rangle \\ & \perp \text { "Transverse" Barnett Effect } \begin{aligned} \text { Chiral Vortical Effe } \\ \sim\end{aligned} \\ & \sim \text { Barnett Effect }\end{aligned}$

Relativistic Barnett Effect

Spin Expectation Value

$$
\begin{gathered}
\langle\boldsymbol{S}\rangle_{\perp}=-\hbar \sum_{R, L} \lambda(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f_{\lambda}^{\prime}(p) \\
=\frac{\hbar}{2}(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}}\left[f_{R}(p)-f_{L}(p)\right]=\frac{\hbar}{2}(\boldsymbol{\omega} \times \boldsymbol{x}) n_{5} \\
\boldsymbol{j}_{5}=n_{5} \boldsymbol{v} \\
\text { Transverse Barnett appears } \\
\text { for massless and chirally } \\
\text { imbalanced fermions }
\end{gathered}
$$

Relativistic Barnett Effect

Magnetic moment

$$
\langle\boldsymbol{\mu}\rangle=\left\langle\boldsymbol{\mu}_{L}\right\rangle+\left\langle\boldsymbol{\mu}_{S}\right\rangle
$$

$$
=\left\langle\boldsymbol{\mu}_{L}\right\rangle_{\mathrm{mech}}-\hbar \lambda \frac{q_{e}}{6}(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} f^{\prime}(p)
$$

up to $O\left(\hbar^{1}\right)$

Eddy magnetic moment
Fukushima-Pu-Qiu, PRA (2018)

Eddy Magnetization

Possible Evidence for Free Precession of a Strongly Magnetized Neutron Star in the Magnetar 4U 0142+61

K. Makishima, ${ }^{1,2,3}$ T. Enoto,,${ }^{4,5}$ J. S. Hiraga, ${ }^{2}$ T. Nakano, ${ }^{1}$ K. Nakazawa, ${ }^{1}$ S. Sakurai, ${ }^{1}$ M. Sasano, ${ }^{1}$ and H. Murakami ${ }^{1}$
${ }^{1}$ Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{2}$ Research Center for the Early Universe, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{3}$ MAXI team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
${ }^{4}$ High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
${ }^{5}$ NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771, USA
(Dated: February 19, 2018)

Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching $\sim 10^{11} \mathrm{~T}$. The magnetar $4 \mathrm{U} 0142+61$, one of prototypes of this class, was studied in broadband X-rays ($0.5-70 \mathrm{keV}$) with the Suzaku observatory. In hard X-rays ($15-40 \mathrm{keV}$), its 8.69 sec pulsations suffered slow phase modulations by $\pm 0.7 \mathrm{sec}$, with a period of ~ 15 hours. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by $\sim 1.6 \times 10^{-4}$ in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, $\sim 10^{12} \mathrm{~T}$, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.

PRL112, 171102 (2014)

September 16, 2019 @ JINR, Dubna

Eddy Magnetization

Precession has been measured

Spherically non-symmetric moment of inertia inferred

Deformation is assumed to be sustained by (toroidal) field energy

$$
B \sim 10^{16} \text { gauss }
$$

Stronger than the surface \boldsymbol{B} of magnetar !
How can it be created? \leftarrow Chiral Barnett Effect?

Subtlety in Hydro

Can we compute the same quantities in hydro?

YES, BUT NO!

$$
\begin{aligned}
& T_{\text {hydro }}^{\mu \nu}=(E+P) u^{\mu} u^{\nu}-P g^{\mu \nu}+\hbar n_{5}\left(u^{\mu} \omega^{\nu}+u^{\nu} \omega^{\mu}\right) \\
& L_{\text {hydro }}^{i j}=x^{i} T_{\text {hydro }}^{0 j}-x^{j} T_{\text {hydro }}^{0 i}
\end{aligned}
$$

$$
\boldsymbol{L}_{\mathrm{hydro}}=(E+P)(\boldsymbol{x} \times \boldsymbol{u})-\hbar n_{5}(\boldsymbol{\omega} \times \boldsymbol{x})
$$

Is this consistent with kinetic theory results?

Subtlety in Hydro

$$
\begin{aligned}
& \boldsymbol{L}_{\mathrm{hydro}}=(E+P)(\boldsymbol{x} \times \boldsymbol{u})-\hbar n_{5}(\boldsymbol{\omega} \times \boldsymbol{x}) \\
& \boldsymbol{x} \times(\boldsymbol{\omega} \times \boldsymbol{x}) \frac{4}{3} \int_{\boldsymbol{p}} p\left(f_{R}+f_{L}\right) \\
& =\langle\boldsymbol{L}\rangle_{\text {mech }} \quad \text { OK } \\
& =2\langle\boldsymbol{S}\rangle_{\perp} \\
& \text { Owice bigger !? }
\end{aligned}
$$

The difference comes from the energy momentum tensor. In hydro the energy momentum tensor is a symmetrized one. Belinfante form? Should be pseudo-gauge invariant...

Becattini-Florkowski-Speranza, PLB (2019)

Summary of the Talk

Rotation ~ Density

\square Phase Diagram
\square Finite-size System / Inhomogeneous Condensates
Rotation ~ Magnetic Field
\square Barnett Effect expected
\square Chiral Vortical Effect is nothing but the Barnett Effect.
\square Decomposition of L and S still assumed...
\square Ideas testable in optics and electron vortex systems

Works along these lines ongoing

