Lattice study of electromagnetic conductivity of quark-gluon plasma in external magnetic field

V.V. Braguta

JINR, ITEP

16 September, 2019,

The II International Workshop on Theory of Hadronic Matter Under Extreme Conditions

Outline

- Introduction
- Details of the calculation
- Few words about CME in Dirac semimetals
- CME in QCD
- Conclusion

In collaboration with

- D. Boyda
- M. Katsnelson
- A. Kotov
- N. Astrakhantsev
- A. Nikolaev
- M. D'Elia
- F. Negro
- F. Sanfilippo

Chiral Magnetic Effect

"A system with a nonzero chirality responds to a magnetic field by inducing a current along the magnetic field. This is the Chiral Magnetic Effect."

[K. Fukushima, D. Kharzeev, H.J. Warringa, 2008]

Dynamical CME is manifested through electromagnetic conductivity

•
$$\vec{E}, \vec{B}$$

• $\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) - \frac{\rho_5}{\tau}, \tau$ - chirality-changing scattering time

•
$$\vec{E}, \vec{B}$$

• $\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) - \frac{\rho_5}{\tau}, \tau$ - chirality-changing scattering time
• $\rho_5 = \frac{e^2 \tau}{4\pi^2} (\vec{E}, \vec{B})$
• $\rho_5 \sim \mu_5 B \Rightarrow \mu_5 \sim \frac{e^2 \tau}{4\pi^2} \frac{(\vec{E}, \vec{B})}{B}$

•
$$\vec{E}, \vec{B}$$

• $\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) - \frac{\rho_5}{\tau}, \tau$ - chirality-changing scattering time
• $\rho_5 = \frac{e^2 \tau}{4\pi^2} (\vec{E}, \vec{B})$
• $\rho_5 \sim \mu_5 B \Rightarrow \mu_5 \sim \frac{e^2 \tau}{4\pi^2} \frac{(\vec{E}, \vec{B})}{B}$
• $\vec{J} = \sigma \vec{E} + \frac{e^2}{2\pi^2} \vec{B} \times \mu_5$
• $\sigma_{\parallel}^{CME} \sim eB\tau$

- Manifestation of CME: rise of the conductivity with B
- Anomaly related quantum phenomenon (classically $\sigma_{\parallel}^{CME} = 0$)

- \vec{E}, \vec{B} $\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) \frac{\rho_5}{\tau}, \tau \text{ chirality-changing scattering time}$ $\rho_5 = \frac{e^2 \tau}{4\pi^2} (\vec{E}, \vec{B})$ $\rho_5 \sim \mu_5 B \Rightarrow \mu_5 \sim \frac{e^2 \tau}{4\pi^2} \frac{(\vec{E}, \vec{B})}{B}$ $\vec{J} = \sigma \vec{E} + \frac{e^2}{2\pi^2} \vec{B} \times \mu_5$ $\sigma_{\parallel}^{CME} \sim eB\tau$
- ► Manifestation of CME: rise of the conductivity with *B*
- Anomaly related quantum phenomenon (classically $\sigma_{\parallel}^{CME} = 0$)
- Observed in experiment (Dirac and Weyl semimetals)
 - Q. Li et al., Nature Phys. 12 (2016) 550-554
 - H. Li et al., Nat. Comm. 7, 10301 (2016)

- \vec{E}, \vec{B} $\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) \frac{\rho_5}{\tau}, \tau \text{ chirality-changing scattering time}$ $\rho_5 = \frac{e^2 \tau}{4\pi^2} (\vec{E}, \vec{B})$ $\rho_5 \sim \mu_5 B \Rightarrow \mu_5 \sim \frac{e^2 \tau}{4\pi^2} \frac{(\vec{E}, \vec{B})}{B}$ $\vec{J} = \sigma \vec{E} + \frac{e^2}{2\pi^2} \vec{B} \times \mu_5$ $\sigma_{\parallel}^{CME} \sim eB\tau$
- ► Manifestation of CME: rise of the conductivity with *B*
- Anomaly related quantum phenomenon (classically $\sigma_{\parallel}^{CME} = 0$)
- Observed in experiment (Dirac and Weyl semimetals)
 - Q. Li et al., Nature Phys. 12 (2016) 550-554
 - H. Li et al., Nat. Comm. 7, 10301 (2016)
- Observed in heavy-ion collision experiments(?)
 - B. I. Abelev et al. (STAR), Phys.Rev.Lett. 103, 251601 (2009)
 - B. Abelev et al. (ALICE), Phys.Rev.Lett. 110, 012301 (2013)

Lattice simulations of strongly correlated system

Dirac semimetals (strongly correlated system)

- Two Fermi-points (Na₃Bi, Cd₃As₂)
- Dispersion relation: $E^2 = v_{\parallel}^2 (k_x^2 + k_y^2) + v_{\perp}^2 k_z^2, v_{\parallel}, v_{\perp} \sim 10^{-3}$
- Coulomb interaction $\alpha_{eff} \sim \frac{\alpha_{em}}{v} > 1$

Lattice simulations of strongly correlated system

Dirac semimetals (strongly correlated system)

- Two Fermi-points (Na₃Bi, Cd₃As₂)
- Dispersion relation: $E^2 = v_{\parallel}^2 (k_x^2 + k_y^2) + v_{\perp}^2 k_z^2, v_{\parallel}, v_{\perp} \sim 10^{-3}$
- Coulomb interaction $\alpha_{eff} \sim \frac{\alpha_{em}}{v} > 1$
- QCD (strongly correlated system)
 - $\alpha_{\rm eff} \sim 1$

Lattice simulations of strongly correlated system

Dirac semimetals (strongly correlated system)

- Two Fermi-points (Na₃Bi, Cd₃As₂)
- Dispersion relation: $E^2 = v_{\parallel}^2 (k_x^2 + k_y^2) + v_{\perp}^2 k_z^2, v_{\parallel}, v_{\perp} \sim 10^{-3}$
- Coulomb interaction $\alpha_{eff} \sim \frac{\alpha_{em}}{v} > 1$
- QCD (strongly correlated system)
 - $\alpha_{\rm eff} \sim 1$

Lattice simulation can be used to study both systems

Details of the simulations

Staggered fermions (four Fermi points)

$$\begin{split} S_{f} &= \bar{\Psi}_{x} D_{x,y} \Psi_{y} = \\ \sum_{x} \left(m \bar{\Psi}_{x} \Psi_{x} + \frac{1}{2} \eta_{4}(x) [\bar{\Psi}_{x} \Psi_{x+\hat{a}} - \bar{\Psi}_{x+4} \Psi_{x}] + \frac{1}{2} \sum_{i=1}^{3} \eta_{i}(x) [\bar{\Psi}_{x} \Psi_{x+\hat{i}} - \bar{\Psi}_{x+1} \Psi_{x}] \right) \end{split}$$

For Dirac Semimetals: two Fermi-points

$$Z = \int DU \exp(-S_G(U)) \left(\det(\hat{D}(U) + m)\right)^{1/2}$$

For QCD: u,d,s-quarks at physical quark masses

$$Z = \int DU \exp(-S_G(U)) \left(\det(\hat{D}_u(U) + m_u) \right)^{1/4} \left(\det(\hat{D}_d(U) + m_d) \right)^{1/4} \left(\det(\hat{D}_s(U) + m_s) \right)^{1/4}$$

Conductivity in lattice simulations

•
$$J_i = \sigma_{ij} E_j$$

► Electromagnetic conductivity $\sigma_{ij} = \lim_{\omega \to 0} \frac{1}{\omega} \int_0^\infty dt \int d^3x \ e^{i\omega t} \langle [J_i(x), J_j(0)] \rangle$ $\rho_{ij} = -\frac{1}{\pi} Im G_R^{ij}(\omega, \vec{k} = 0)$ $\sigma_{ii} = \pi \lim_{\omega \to 0} \frac{1}{\omega} \rho_{ii}(\omega)$

• Analytic continuation $G_E(\omega, \vec{p}) = -G_R(i\omega, \vec{p}), \quad \omega > 0$

• On lattice we measure

$$C_{E}(\tau) = \int d^{3}x \langle J_{i}(\tau, \vec{x}) J_{j}(0, \vec{0}) \rangle$$

$$C_{E}(\tau) = \int_{0}^{\infty} d\omega \rho(\omega) \frac{ch(\frac{\omega}{2T} - \omega\tau)}{sh(\frac{\omega}{2T})}, \quad \tau \in (0, \frac{1}{T})$$

Conductivity with staggered fermions

Correlation function for staggered fermions

$$C_{ij}(\tau) = rac{1}{L_s^3} \langle J_i(\tau) J_j(\mathbf{0}) \rangle,$$

$$J_i(\tau) = \frac{1}{4} e \sum_f q_f \sum_{\vec{x}} \eta_i(x) \left(\bar{\Psi}_x^f U_{x,i} \Psi_{x+i}^f + \bar{\Psi}_{x+i}^f U_{x,i}^+ \Psi_x^f \right)$$

Two branches of staggered correlator

$$\begin{split} C^{e}_{ij}(\tau = 2n \times a) &= \int d^{3}y \left(\langle A_{i}(\tau, \vec{y}) A_{j}(0, \vec{0}) \rangle - \langle B_{i}(\tau, \vec{y}) B_{j}(0, \vec{0}) \rangle \right) \\ C^{o}_{ij}(\tau = (2n+1) \times a) &= \int d^{3}y \left(\langle A_{i}(\tau, \vec{y}) A_{j}(0, \vec{0}) \rangle + \langle B_{i}(\tau, \vec{y}) B_{j}(0, \vec{0}) \rangle \right. \\ A_{i} &= e \sum_{f} q_{f} \bar{\psi}^{f} \gamma_{i} \psi^{f}, \quad B_{i} = e \sum_{f} q_{f} \bar{\psi}^{f} \gamma_{\mathbf{5}} \gamma_{\mathbf{4}} \gamma_{i} \psi^{f} \end{split}$$

Conductivity with staggered fermions

Typical plot for the staggered correlation function

Conductivity with staggered fermions

The strategy of the calculation

- Measure $C_E^{even,odd}(\tau)$ on two branches
- Reconstruct the $\rho^{even,odd}(\omega)$ (Backus-Gilbert method)

$$C_{E}^{even,odd}(t) = \int_{0}^{\infty} d\omega \rho^{even,odd}(\omega) \frac{ch(\frac{\omega}{2T} - \omega t)}{sh(\frac{\omega}{2T})}$$

• Calculate
$$\rho(\omega) = \frac{1}{2}(\rho^{even}(\omega) + \rho^{odd}(\omega))$$

(what corresponds to the $\langle J_{el}(\tau)J_{el}(0)\rangle$)

• Calculate the conductivity $\sigma = \pi \frac{\rho(\omega)}{\omega} \Big|_{\omega \sim 0}$

Backus-Gilbert method for the spectral function

• Problem: find $\rho(\omega)$ from the integral equation

$$C(x_i) = \int_0^\infty d\omega \rho(\omega) K(x_i, \omega), \quad K(x_i, \omega) = \frac{ch\left(\frac{\omega}{2T} - \omega x_i\right)}{sh\left(\frac{\omega}{2T}\right)}$$

• Define an estimator $\tilde{\rho}(\bar{\omega})$ ($\delta(\bar{\omega}, \omega)$ - resolution function):

$$ilde{
ho}(ar{\omega}) = \int_0^\infty d\omega \hat{\delta}(ar{\omega},\omega)
ho(\omega)$$

• Let us expand $\delta(\bar{\omega}, \omega)$ as

$$\delta(\bar{\omega},\omega) = \sum_{i} b_{i}(\bar{\omega}) K(x_{i},\omega) \quad \tilde{\rho}(\bar{\omega}) = \sum_{i} b_{i}(\bar{\omega}) C(x_{i})$$

Goal: minimize the width of the resolution function

$$b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j},$$
$$W_{ij} = \int d\omega K(x_i, \omega) (\omega - \bar{\omega})^2 K(x_j, \omega), R_i = \int d\omega K(x_i, \omega)$$

Regularization by the covariance matrix S_{ij}:

$$W_{ij}
ightarrow \lambda W_{ij} + (1-\lambda)S_{ij}, \quad 0 < \lambda < 1$$

Backus-Gilbert method for the spectral function

We calculate the estimator of the spectral function

$$ar{
ho}(ar{\omega})=\int d\omega\delta(\omega,ar{\omega})
ho(\omega)$$

BG method average the spectral function over the width \sim 3.5 imes T

For very narrow spectral density BG method underestimates conductivity,

- But lattice studies give the width ~ 4T or larger
 - G. Aarts et al, JHEP02, 186 (2015)
 - B. B. Brandt et al, Phys. Rev. D93, 054510 (2016)
 - H.-T. Ding, et al, Phys. Rev.D94, 034504 (2016)

Chiral symmetry breaking in Dirac semimetals

Phase transition in Dirac semimetal at $\alpha_{eff}^{c} \simeq 1.14$

Phys. Rev. B94, 205147 (2016), Annals Phys. 391 (2018) 278-292

Semimetal phase $\alpha_{eff} < 1.14$: $\langle \bar{\psi}\psi \rangle = 0$, M = 0, $E^2 = v_F^2 \vec{p}^2$

Insulator phase $\alpha_{eff} > 1.14$: $\langle \bar{\psi}\psi \rangle \neq 0$, $M \neq 0$, $E^2 = v_F^2 \bar{p}^2 + M^2$

We can study CME in both phases

Conductivity in the semimetal phase

• Rise of σ_{\parallel} with $B \Rightarrow$ we observe CME

• Decrease of σ_{\perp} with $B \Rightarrow$ we observe magnetoresistance

Conductivity in the transition region

► CME in the transition region has smaller magnitude

Conductivity in the insulator phase

▶ We don't observe CME in the insulator phase

CME and chiral symmetry breaking

Chiral symmetry is important for CME

Lattice simulation of QCD: details

- Stout smeared staggered 2 + 1 fermions
- Physical pion m_{π} and strange m_s quark masses
- ► *T* ≈ 200, 250 MeV
- Lattice sizes and steps:

<i>a</i> , fm	Ls	Nt
0.988	48	10
0.0618	64	16

Conductivity at zero magnetic field eB = 0

- First calculation of the conductivity at physical pion mass
- Agreement with previous papers

Conductivity at nonzero magnetic field $eB \neq 0$

We observe CME and magnetoresistance in QGP

The contribution of different quarks

- The conductivity scale as q_f^3
- $\sigma_d/q_d^3 \simeq \sigma_s/q_s^3$, $\sigma_u/q_u^3 > \sigma_{d,s}/q_{d,s}^3$ $(|q_u| = \frac{2}{3}, |q_d| = |q_s| = \frac{1}{3})$
- Large mass of s-quark does not influence the conductivity

Comparison with other studies

P.V. Buividovich et al., Phys.Rev.Lett. 105 (2010) 132001

- No CME in QGP and there is CME in the confinement phase
- Disagreement with our results (small magnetic fields? eB < 0.36 GeV²; complicated spectral function in confinement)

Conclusion:

- Observe CME in Dirac semimetals (semimetal phase)
- ► No CME in the phase with broken chiral symmetry
- The first calculation of the conductivity in QCD at physical pion mass
- Observe CME and magnetoresistance in QGP

