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Original Papers

Original statements are based on common work with
George Prokhorov and Oleg Teryaev (JINR, Dubna)

“Instability at Unruh temperature as manifestation of
singularity in complex momentum plane”arXiv:1906.03529

and “ Unruh effect for fermions from
the Zubarev density operator” arXiv:1903.09697 [hep-th]
and as well as on some other papers by the same authors:
arXiv:1807.03584, 1805.12029 ...
see also theTalk by G. Prokhorov at this Conference



Explanation of words

One considers a sequence of states (media),
accelerated (~a 6= 0) and thermal (T 6= 0).

beginnng with T > TUnruh where
TUnruh ≡ a

2π
and ending at T < TUnruh

Below T = TUnruh quantum corrections give
negative contribution to the energy density

Conjectured “Unruh instability” of these states
is their decay into Minkowskian vacuum plus particles
Reservations



Motivation

We consider thermodynamics of accelerated (~a 6= 0) media
and develop a technique to obtain one-loop exact results in
Quantum Statistical Physics,
evaluation of the Unruh temperature being an example

Consideration of the“Unruh instability” is the first attempt
on nonperturbative application of the technique

Predecessors: the topic “Fast thermalization and Unruh
temperature” was pioneered by D. Kharzeev (2005) and
Castorina+D.Kharzeev+H. Satz (2007)
Also, discussed in holography (see, e,g, I. Aref’eva)

At a closer look, our pictures differ considerably



Outline of the Talk

Anomalies and quantum statistical physics (QSP)

Finite-size perturbative expansions in QSP

Instability at T < TUnruh



Quantum effects and hydrodynamics (“recent”)

Pioneering paper: D.T. Son, P. Surowka arXiv:0906.5044

Hydro: expansion in derivatives plus conservation laws:

∂µsµ ≥ 0, ∂µJµV = 0, ∂µJµA = e2Canom(~E · ~H), ∂µΘµν = ...

(sµ is entropy current, ~E , ~H electric, magnetic fields)

Result: extra pieces in currents uniquely fixed by Canom

(JµAxial)hydro = nA · uµ + µ2Canomε
µνρσuν∂ρuσ + ...

where µ is the chemical potential.

No superfluidity assumed, ideal fluids



Trading equilibrium for new interaction

In thermodynamics,

Ĥ → Ĥ − µQ̂

Instead, could think in terms of new 4d interaction:

µQ̂ → µuαĴα, or eAα → eAα + µuα

where µ is chem.potential, uα is 4-velocity of the fluid

(A.V. Sadofyev, V.I. Shevchenko, V.I.Z., arXiv:1012.1958)

Starting from the triangle anomaly
chiral effects of Son&Surowka are reproduced



Some details
In U(1) case chiral anomaly can be reformulated as
conservation of “extended current”:

∂α
(
Jα5 − e2Canomε

αβγδAβ∂γAδ

)
= 0

Making the substitution eAα → eAα + µuα reproduces all
the chiral effects in the current

The example cannot be systematically generalized since
ideal fluid corresponds to (unknown) strong interactions
between constituents.

If one starts from free particles one can hope to develop
systematic pert. theory in, say, µ,Ω. A first example was
elaborated in fact long time ago.



“Statistical perturbation theory”, systematic

Alexander Vilenkin (1980), rotation case
< Jµ(~x) > = Tr

(
ρ̂Jµ(~x , t)

)
where Jµ = 1

2 [Ψ̄, γµΨ] is the current density operator and

ρ̂ = C exp
(
− β

(
Ĥ − ~̂M · ~Ω− ΣiµiN̂i

))
ρ̂ is the statistical operator, built on conserved operators
β ≡ T−1, ~̂M is angular momentum, ~Ω is angular velocity
µi is chemical potential, N̂i is number of charged particles

Chiral vortical effect (~JA ∼ ~Ω) is the same as for fluid
Hint on unversality of the results of “statistical pert.th.”



(Polynomial) Sommerfeld Integrals

Statistical average < j5 > reduces to a Sommerfeld integral
:

< J5 > =
1

4π2

∫ +∞

−∞
ε2dε·

( 1
1 + eβ(ε−(µ+Ω/2))

− 1
1 + eβ(ε−(µ−Ω/2)

)
Linear in Ω term is polynomial in µ, reproduces anomaly:

< ~J5 > =
µ2

4π2
~Ω

Polynomial Sommerfeld integrals in QSPh play role of
anomalies in QFTh, producing exact one-loop results
We build up our next steps on this observation.



Zubarev density operator

In the spirit of the discussion above one introduces the
Lorentz-invariant density operator

ρ̂ =
1
Z

exp
(
− βαP̂α +

1
2
ω̄αβ Ĵαβ + ζQ̂

)
where βα = uα/T , ω̄αβ = −1/2

(
∂αββ − ∂ββα

)
, ζ = µ/T

D. N. Zubarev, TMF (1979)....reviewed F.Becattini et al.
e-Print: arXiv:1704.02808
Consider first no rotation, no charge case.

ρ̂ =
1
Z

exp
(
− βµP̂µ − αzK̂ z

)
where αµ = uα∂αuµ/T , K̂ z is the boost operator



Inclusion of acceleration a 6= 0 as a challenge

The density operator looks rather paradoxical:

constant a implies horizon, but we work in Minkowski

first-order interaction is exponentiated, but can be put
to zero by choice of coordinates

Not included into L&L textbook
Perturbative technique is developed by F. Becattini et al
see, F. Becattini, e-Print: arXiv:1712.08031 + references

We find new polynomial Sommerfeld integrals and new
exact one-loop results



Quasi-dispersive representation for ε

Within the approach developed, the energy density for
massless fermions is given by:

ε =
a4

120π2 + +
T 4

π2

(∫ +∞

−∞

x3dx
ex+iy + 1

+ (y → −y)
)

(1)

+2iy
T 4

π2

(∫ ∞
−∞

x2dx
ex+iy + 1

− (y → −y)
)

(2)

where “dispersive integrals” are in fact noval polynomial
Sommerfeld integrals
the “subtraction term” is calculated perturbatively, via use
of the Zubarev density operator No free parameters left



“Emergent horizon”

ε =
7π2T 4

60
+

T 2a2

24
− 17a4

960π2

In field theory:

< T 0
0 > =

7π2

60β4
Rρ

4
+

1
24β2

Rρ
4
− 17

960π2ρ4

where ρ = 1/a is distance to the horizon, β = a/T ,
a,T are independent at price of conical singularity.
Casimir effect due to the horizon is reproduced by
statistical pert.th. in Minkowskian space

ε =
1

120

(
T 2 −

( a
2π
)2
)

(17a2 + 28π2T 2)

ε vanishes at the Unruh temperature, as it should do



Acceleration as imaginary chemical potential

Our “central equation” above incorporates generalization of
Fermi-distribution to the cases of ~Ω, ~a 6= 0.
For simplicity consider ~Ω||~a
Rotation (as mentioned also by some other authors):

µ → µ± Ω

2

Acceleration:
µ → µ± Ω

2
± i
|a|
2

as is suggested by field theory
When expanded in ia, odd powers vanish.
However, non-perturbatively there is a pole at a/T = 2π



“Unruh Instability”

We used the same non-pert. expression for ε to analytically
continue to negative ε The observations/speculations are:

Energy of quantum levels becomes negative.
Suggesting instability of the state. By analogy with,
say, super-radiance

If applied to heavy-ion-collision physics, would imply
decay of the state with large acceleration (mechanical
energy) into a thermal state

Energy becomes negative smoothly, discontinuity in
the second derivative of the energy with respect to
temperature. Somewhat similar to second-order phase
transition



Statistical pert. th. versus field-theory expansion

After submission of our paper we found out that
(somewhat) similar ideas are contained in
“Vacua on the Brink of Decay”
G. L. Pimentel, A. M. Polyakov, G. M. Tarnopolsky
e-Print: arXiv:1803.09168

who considered 2d problems with external e-m or grav. field
when lowest quantum level becomes negative. Rather
striking similarity of conclusions.

In particular, the main conclusion is that the decay of the
“old” vacuum is soft, or controllable, through analytic
contnuation



“Aanalyticity in integer numbers”

Smoothness of the transitions in the two cases is similar
However, unlike the standard analyticity the
“thermodynamic analyticity” in terms of finite-size pert.
expansion does not have imaginary part or singularities,
like log. Instead, for example, the polynomial changes from
containing even powers of acceleration into containing odd
powers.



Mystery of the quantum-classical similarity

In both cases, the classical solution seems to be unstable as
well.
In our case, in negative region we need a conical ingularity
with angle larger than 2π.

In case of Plimentel et al., they get g00 < 0

However, Plimentel et al. make a point that collapse in
their case is controllable, i.e. smooth. And enjoy similarity
of the critical exponents, classical and quantum. By
classical instability they understand the Choptuik
observations on collapse of matter into a back hole.



Conclusions

Concentrating on the instability:

Analytical continuation to negative energies of
quantum corrections has been worked out within
“finite-size perturbative expansions in statistical
physics”

There are rather reasonable argument in favor of an
instability at the Unruh temperature if temperature is
smaller that the acceleration

The transition seems to be smooth

There are interesting parallels with stanard FT
approach to instabilities


