Study of mesonic correlation functions at finite baryon chemical potential

Aleksandr Nikolaev

Swansea University, UK
on behalf of FASTSUM collaboration
(Gert Aarts, Chris Allton, Davide De Boni, Jonas Rylund Glesaaen, Simon Hands, Benjamin Jäger, Jon-Ivar Skullerud, Liang-Kai Wu)

Swansea University Prifysgol Abertawe

HMEC, Dubna, 16.09.2019

QCD phase diagram

- Thermal transition is well understood nowadays
- Small μ_{B} / T region is accessible via Taylor series expansion

The picture is from The Phases of Dense Matter, INT, 11.07-12.08, 2016

- Direct LQCD simulations at finite chemical potential are inaccessible
- Taylor expansion in μ_{B} / T is widely used to probe $\mu_{B}>0$ region:
- thermodynamics
- higher-order susceptibilities
- curvature of the crossover line
- Expansion may be applied to hadronic correlators to calculate finite μ_{B} corrections to the spectrum [pioneering paper on this is by QCD-TARO Collaboration, hep-lat/0107002 (2001)]
- Mesons: corrections are $O\left(\mu_{B}^{2}\right)$
- Baryons: corrections are $O\left(\mu_{B}\right)$

Taylor expansion of the meson correlator

Let's consider $\vec{p}=0$ non-singlet meson correlator:

$$
G(\tau)=\frac{1}{V} \int d^{3} \vec{x}\langle J(\tau, \vec{x}) \bar{J}(0, \overrightarrow{0})\rangle
$$

where $J=\bar{\psi}_{u} \Gamma \psi_{d},\langle\ldots\rangle$ - thermodynamic average.

The idea is to perform the Taylor expansion of the correlator itself:

$$
\frac{1}{T} G=\left.\frac{1}{T} G\right|_{\mu=0}+\left.\frac{\mu}{T} \frac{\partial G}{\partial \mu}\right|_{\mu=0}+\left.\frac{T}{2}\left(\frac{\mu}{T}\right)^{2} \frac{\partial^{2} G}{\partial \mu^{2}}\right|_{\mu=0}+O\left(\frac{\mu^{3}}{T^{3}}\right)
$$

- Expansion of both determinant and correlator
- \dot{G}_{μ} term does not contribute at $\mu=0$, thus

$$
\widehat{G(\tau, \mu)=\left.G(\tau)\right|_{\mu=0}+\left.\left(\mu^{2} / 2\right) \ddot{G}_{\mu}(\tau)\right|_{\mu=0}, ~}
$$

- \ddot{G}_{μ} has to be computed
- \ddot{G}_{μ} contains several noisy disconnected terms
- Meson correlator is $G(x)=\langle g(x)\rangle$, where

$$
\begin{aligned}
& g(x)=\operatorname{Tr}\left[S_{x ; 0}^{(u)} \Gamma S_{0 ; x}^{(d)} \Gamma^{\dagger}\right](\text { after the integration over } d \psi d \bar{\psi}) \\
& S_{x ; 0}^{(f)}=D_{x, 0}^{-1}\left(\mu_{f}, m_{f}\right) \\
& \\
& \langle g\rangle=(1 / Z) \int d U g \operatorname{det} D_{u, d} \operatorname{det} D_{s} \exp \left[-S_{G}\right]
\end{aligned}
$$

- We consider symmetric μ set: $\mu_{u}=\mu_{d}$

First derivative in chemical potential:

$$
\dot{G}_{\mu}(x)=\left\langle g_{\mu}^{\prime}(x)\right\rangle+\left\langle g(x) \operatorname{det}_{\mu}^{\prime}\right\rangle-\left\langle\operatorname{det}_{\mu}^{\prime}\right\rangle\langle g(x)\rangle
$$

- sum of the first two terms here is purely imaginary
- $\left\langle\operatorname{det}_{\mu}^{\prime}\right\rangle$ is quark number density, it is zero at $\mu=0$

Second derivative of $G(x)$ in chemical potential:

$$
\begin{aligned}
\ddot{G}_{\mu}(x)= & \left\langle g_{\mu}^{\prime \prime}(x)\right\rangle \\
& +\left\langle\frac{\operatorname{det}_{\mu}^{\prime \prime}}{\operatorname{det}} g(x)\right\rangle-\left\langle\frac{\operatorname{det}_{\mu}^{\prime \prime}}{\operatorname{det}}\right\rangle\langle g(x)\rangle \\
& +2\left\langle\frac{\operatorname{det}_{\mu}^{\prime}}{\operatorname{det}} g_{\mu}^{\prime}(x)\right\rangle-2\left\langle\frac{\operatorname{det}_{\mu}^{\prime}}{\operatorname{det}}\right\rangle\left\langle g_{\mu}^{\prime}(x)\right\rangle \\
& -2\left(\left\langle\frac{\operatorname{det}_{\mu}^{\prime}}{\operatorname{det}} g(x)\right\rangle-\left\langle\frac{\operatorname{det}_{\mu}^{\prime}}{\operatorname{det}}\right\rangle\langle g(x)\rangle\right)\left\langle\frac{\operatorname{det}_{\mu}^{\prime}}{\operatorname{det}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\ddot{G}_{\mu}\right|_{\mu=0}=-2 \operatorname{Re}\left\langle\operatorname{Tr}\left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1} \dot{D} D^{-1}\right)_{n, 0} \Gamma_{5}\left(D^{-1} \dot{D} D^{-1}\right)_{n, 0}^{\dagger}\right]\right\rangle \\
& +4 \operatorname{Re}\left\langle\operatorname { T r } \left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1} \dot{D} D^{-1} \dot{D} D^{-1}\right)_{n, 0}^{\left.\left.\Gamma \gamma_{5}\left(D^{-1}\right)_{n, 0}^{\dagger}\right]\right\rangle}\right.\right. \\
& -2 \operatorname{Re}\left\langle\operatorname{Tr}\left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1} \ddot{D} D^{-1}\right)_{n, 0} \Gamma \gamma_{5}\left(D^{-1}\right)_{n, 0}^{\dagger}\right]\right\rangle \\
& -8\left\langle\operatorname{Im} \operatorname{Tr}\left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1} \dot{D} D^{-1}\right)_{n, 0} \Gamma \gamma_{5}\left(D^{-1}\right)_{n, 0}^{\dagger}\right] \operatorname{Im} \operatorname{Tr}\left[\dot{D} D^{-1}\right]\right\rangle \\
& +2\left\langle\operatorname{Tr}\left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1}\right)_{n, 0} \Gamma \gamma_{5}\left(D^{-1}\right)_{n, 0}^{\dagger}\right]\right. \\
& \left.\quad \times\left(2 \operatorname{Tr}\left[\dot{D} D^{-1}\right]^{2}+\operatorname{Tr} \operatorname{Tr}\left[\left(\dot{D} D^{-1}\right)^{2}\right]\right)\right\rangle \\
& +2\left\langle\operatorname{Tr}\left[\gamma_{5} \Gamma^{\dagger}\left(D^{-1}\right)_{n, 0} \Gamma \gamma_{5}\left(D^{-1}\right)_{n, 0}^{\dagger}\right]\right\rangle \\
& \quad \times\left\langle\left(2 \operatorname{Tr}\left[\dot{D} D^{-1}\right]^{2}+\operatorname{Tr}\left[\ddot{D} D^{-1}\right]-\operatorname{Tr}\left[\left(\dot{D} D^{-1}\right)^{2}\right]\right)\right\rangle
\end{aligned}
$$

For free massless quarks μ^{2}-correction may be written analytically:

$$
\left.T^{2} \ddot{G}_{\Gamma}(\tau)\right|_{\mu=0}=\frac{N_{c} T^{3}}{\pi^{2}}\left[a_{\Gamma}^{(1)}+a_{\Gamma}^{(2)}-\frac{1}{12}\left(a_{\Gamma}^{(1)}-a_{\Gamma}^{(2)}\right) h(u)\right]
$$

where

$$
\begin{array}{r}
h(u)=\left[3 u\left(\pi^{2}-u^{2}-2\right)+u\left(\pi^{2}-u^{2}+6\right) \cos (2 u)\right. \\
\left.-2\left(\pi^{2}-3 u^{2}\right) \sin (2 u)\right] / \sin ^{3}(u)
\end{array}
$$

and $u=2 \pi T(\tau-1 / 2 T),-\pi<u<\pi$

- τ-dependence is contained in $h(u)$
- Coefficients $a_{\Gamma}^{(j)}$ depend on the channel

Free analytical expression above provides qualitative check

Free case

- \ddot{G} is well described by one-cosh fit

$$
\ddot{G}(\tau) / T=c_{0}+c_{1} \cosh \left[c_{2}(\tau T-1 / 2)\right]
$$

both in continuum and on lattice

continuum, $c_{2} \sim 7$

lattice, $c_{2} \sim 7.4$

Lattice parameters (Gen2 ensemble)

- $N_{f}=2+1$ clover-improved Wilson fermions tree-level improved anisotropic gauge action, mean-field improved Wilson clover fermion action with stout-smeared links
- Anisotropic lattice:

$$
a_{s}=0.1227(8) \mathrm{fm}, a_{\tau}=0.0350(2) \mathrm{fm}, \xi=a_{s} / a_{\tau}=3.5
$$

- $L_{s}=24, m_{\pi}=384(4) \mathrm{MeV}, m_{\pi} L_{s}=5.7$
- L_{τ} is varied to vary temperature (see the table below)
- Tuning and ensembles at the lowest temperatures have been provided by HadSpec

L_{τ}	128	40	36	32	28	24	20	16
$T[\mathrm{MeV}]$	44	141	156	176	201	235	281	352
T / T_{c}	0.24	0.76	0.84	0.95	1.09	1.27	1.52	1.90
$N_{\text {cfg }}$	139	501	501	1000	1001	1001	1000	1001

\ddot{G} : connected part only

- For $\gamma_{5} \gamma_{i}$ one may see drastic change in behaviour at $T<180 \mathrm{MeV}$

vector

axial-vector

\ddot{G} : connected part only

- For γ_{5} and I behaviour changes at $T \propto 200 \mathrm{MeV}$

pseudo-scalar

scalar

\ddot{G} : disconnected part

- Disconnected parts vanish in the absence of interactions
- Very noisy despite $N_{\text {st. }}=10000$ Gaussian random vectors

pseudo-scalar

scalar

No signal at low T for pseudoscalar and scalar mesons

- Disconnected parts vanish in absence of interactions
- Very noisy despite $N_{\text {st. }}=10000$ Gaussian random vectors

vector

axial-vector

For ρ-meson the signal is the best compared to other channels

$G(\tau, \mu)$ for ρ-meson

$$
\frac{1}{T} G(\tau, \mu)=\left.\frac{1}{T} G(\tau)\right|_{\mu=0}+\left.\frac{T}{2}\left(\frac{\mu}{T}\right)^{2} \ddot{G}_{\mu}(\tau)\right|_{\mu=0} \quad \text { is plotted below }
$$

- At T $>170 \mathrm{MeV} \mu^{2}$-correction to the correlator has no effect

- At $\mathrm{T}<160 \mathrm{MeV} \mu^{2}$-correction to the correlator is noticeable
- Mass may be extracted from single cosh fit

$\mathrm{T}=156 \mathrm{MeV}$

$\mathrm{T}=141 \mathrm{MeV}$

The mass of ρ-meson decreases by $\propto \mathbf{1 0 \%}$ at $\mu_{q}=280 \mathrm{MeV}$.

Conclusions

- High temperatures: good agreement with non-interacting theory
- Low temperatures: results are very noisy
- \ddot{G}_{μ} in some channels seems to be sensitive to confinement-deconfinement transition
- Noise reduction techniques for disconnected \ddot{G}_{μ} contributions are needed
- Probably the spectral function for $G+\mu^{2} \ddot{G}$ will provide more insight

