Study of mesonic correlation functions at finite baryon chemical potential

<u>Aleksandr Nikolaev</u>

Swansea University, UK

on behalf of FASTSUM collaboration (Gert Aarts, Chris Allton, Davide De Boni, Jonas Rylund Glesaaen, Simon Hands, Benjamin Jäger, Jon-Ivar Skullerud, Liang-Kai Wu)

Swansea University Prifysgol Abertawe

HMEC, Dubna, 16.09.2019

QCD phase diagram

- Thermal transition is well understood nowadays
- Small μ_B/T region is accessible via Taylor series expansion

The picture is from The Phases of Dense Matter, INT, 11.07 - 12.08, 2016

- Direct LQCD simulations at finite chemical potential are inaccessible
- Taylor expansion in μ_B/T is widely used to probe $\mu_B > 0$ region:
 - thermodynamics
 - higher-order susceptibilities
 - curvature of the crossover line
- Expansion may be applied to hadronic correlators to calculate finite μ_B corrections to the spectrum [pioneering paper on this is by QCD-TARO Collaboration, hep-lat/0107002 (2001)]
- Mesons: corrections are $O(\mu_B^2)$
- Baryons: corrections are $O(\mu_B)$

Taylor expansion of the meson correlator

Let's consider $\vec{p} = 0$ non-singlet meson correlator:

$${\cal G}(au) = rac{1}{V}\int d^3ec x \left< J(au,ec x) ar J(0,ec 0)
ight> \,,$$

where $J = \bar{\psi}_u \Gamma \psi_d$, $\langle \ldots \rangle$ – thermodynamic average.

The idea is to perform the Taylor expansion of the correlator itself:

$$\frac{1}{T}G = \frac{1}{T}G\big|_{\mu=0} + \frac{\mu}{T}\frac{\partial G}{\partial \mu}\big|_{\mu=0} + \frac{T}{2}\left(\frac{\mu}{T}\right)^2\frac{\partial^2 G}{\partial \mu^2}\big|_{\mu=0} + O\left(\frac{\mu^3}{T^3}\right)$$

- Expansion of both determinant and correlator
- \dot{G}_{μ} term does not contribute at $\mu = 0$, thus $G(\tau, \mu) = G(\tau)|_{\mu=0} + (\mu^2/2) \left. \ddot{G}_{\mu}(\tau) \right|_{\mu=0}$
- \ddot{G}_{μ} has to be computed
- \ddot{G}_{μ} contains several noisy disconnected terms

Taylor expansion of the meson correlator

• Meson correlator is
$$G(x) = \langle g(x) \rangle$$
, where
 $g(x) = \operatorname{Tr} \left[S_{x;0}^{(u)} \Gamma S_{0;x}^{(d)} \Gamma^{\dagger} \right]$ (after the integration over $d\psi \, d\overline{\psi}$)
 $S_{x;0}^{(f)} = D_{x,0}^{-1}(\mu_f, \, m_f)$

- $\langle g \rangle = (1/Z) \int dU g \det D_{u,d} \det D_s \exp[-S_G]$
- We consider symmetric μ set: $\mu_u = \mu_d$

First derivative in chemical potential:

$$\dot{G}_{\mu}(x) = ig\langle g_{\mu}'(x)ig
angle + ig\langle g(x)\, {
m det}_{\mu}'ig
angle - ig\langle {
m det}_{\mu}'ig
angle \langle g(x)
angle$$

- sum of the first two terms here is purely imaginary
- $\left< \det'_{\mu} \right>$ is quark number density, it is zero at $\mu = 0$

Second derivative of G(x) in chemical potential:

$$\begin{split} \ddot{G}_{\mu}(x) &= \left\langle g_{\mu}^{\prime\prime}(x) \right\rangle \\ &+ \left\langle \frac{\det_{\mu}^{\prime\prime}}{\det} g(x) \right\rangle - \left\langle \frac{\det_{\mu}^{\prime\prime}}{\det} \right\rangle \left\langle g(x) \right\rangle \\ &+ 2 \left\langle \frac{\det_{\mu}^{\prime}}{\det} g_{\mu}^{\prime}(x) \right\rangle - 2 \left\langle \frac{\det_{\mu}^{\prime}}{\det} \right\rangle \left\langle g_{\mu}^{\prime}(x) \right\rangle \\ &- 2 \left(\left\langle \frac{\det_{\mu}^{\prime}}{\det} g(x) \right\rangle - \left\langle \frac{\det_{\mu}^{\prime}}{\det} \right\rangle \left\langle g(x) \right\rangle \right) \left\langle \frac{\det_{\mu}^{\prime}}{\det} \right\rangle \end{split}$$

\ddot{G} structure: connected and disconnected terms

$$\begin{split} \ddot{G}_{\mu}\big|_{\mu=0} &= -2\mathrm{Re} \left\langle \mathrm{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \dot{D} D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \dot{D} D^{-1} \right)_{n,0}^{\dagger} \right] \right\rangle \\ &+ 4\mathrm{Re} \left\langle \mathrm{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \dot{D} D^{-1} \dot{D} D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \right)_{n,0}^{\dagger} \right] \right\rangle \\ &- 2\mathrm{Re} \left\langle \mathrm{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \ddot{D} D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \right)_{n,0}^{\dagger} \right] \right\rangle \\ &- 8 \left\langle \mathrm{Im} \operatorname{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \dot{D} D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \right)_{n,0}^{\dagger} \right] \mathrm{Im} \operatorname{Tr} \left[\dot{D} D^{-1} \right] \right\rangle \\ &+ 2 \left\langle \mathrm{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \right)_{n,0}^{\dagger} \right] \\ &\times \left(2\mathrm{Tr} \left[\dot{D} D^{-1} \right]^{2} + \mathrm{Tr} \operatorname{Tr} \left[\left(\dot{D} D^{-1} \right)^{2} \right] \right) \right\rangle \\ &+ 2 \left\langle \mathrm{Tr} \left[\gamma_{5} \Gamma^{\dagger} \left(D^{-1} \right)_{n,0} \Gamma \gamma_{5} \left(D^{-1} \right)_{n,0}^{\dagger} \right] \right\rangle \\ &\times \left\langle \left(2\mathrm{Tr} \left[\dot{D} D^{-1} \right]^{2} + \mathrm{Tr} \left[\ddot{D} D^{-1} \right] - \mathrm{Tr} \left[\left(\dot{D} D^{-1} \right)^{2} \right] \right) \right\rangle \end{split}$$

For free massless quarks μ^2 -correction may be written analytically:

$$T^{2}\ddot{G}_{\Gamma}(\tau)\Big|_{\mu=0} = \frac{N_{c}T^{3}}{\pi^{2}}\left[a_{\Gamma}^{(1)} + a_{\Gamma}^{(2)} - \frac{1}{12}\left(a_{\Gamma}^{(1)} - a_{\Gamma}^{(2)}\right)h(u)\right]$$

where

$$h(u) = \left[3u(\pi^2 - u^2 - 2) + u(\pi^2 - u^2 + 6)\cos(2u) - 2(\pi^2 - 3u^2)\sin(2u)\right] / \sin^3(u)$$

and $u = 2\pi T (au - 1/2T)$, $-\pi < u < \pi$

- au-dependence is contained in h(u)
- Coefficients $a_{\Gamma}^{(j)}$ depend on the channel

Free analytical expression above provides qualitative check

Free case

• \ddot{G} is well described by one-cosh fit

$$\ddot{G}(au)/T = c_0 + c_1 \cosh[c_2(au T - 1/2)]$$

both in continuum and on lattice

Lattice parameters (Gen2 ensemble)

- N_f = 2 + 1 clover-improved Wilson fermions tree-level improved anisotropic gauge action, mean-field improved Wilson clover fermion action with stout-smeared links
- Anisotropic lattice:

 $a_s = 0.1227(8) \; {
m fm}, \; a_ au = 0.0350(2) \; {
m fm}, \; \xi = a_s/a_ au = 3.5$

- $L_s = 24$, $m_\pi = 384(4)$ MeV, $m_\pi L_s = 5.7$
- $L_{ au}$ is varied to vary temperature (see the table below)
- Tuning and ensembles at the lowest temperatures have been provided by HadSpec

$L_{ au}$	128	40	36	32	28	24	20	16
<i>T</i> [MeV]	44	141	156	176	201	235	281	352
T/T_c	0.24	0.76	0.84	0.95	1.09	1.27	1.52	1.90
N _{cfg}	139	501	501	1000	1001	1001	1000	1001

<u>*G*</u>: connected part only

• For $\gamma_5\gamma_i$ one may see drastic change in behaviour at $T<180~{\rm MeV}$

G: connected part only

ullet For γ_5 and I behaviour changes at $\mathcal{T} \propto 200$ MeV

\ddot{G} : disconnected part

- Disconnected parts vanish in the absence of interactions
- Very noisy despite $N_{st.} = 10000$ Gaussian random vectors

No signal at low $\mathcal T$ for pseudoscalar and scalar mesons

\ddot{G} : disconnected part

- Disconnected parts vanish in absence of interactions
- Very noisy despite $N_{st.} = 10000$ Gaussian random vectors

For ρ -meson the signal is the best compared to other channels

$G(au, \mu)$ for ho-meson

$$\frac{1}{T}G(\tau,\mu) = \frac{1}{T}G(\tau)\big|_{\mu=0} + \frac{T}{2}\Big(\frac{\mu}{T}\Big)^2 \ddot{G}_{\mu}(\tau)\big|_{\mu=0} \quad \text{is plotted below}$$

• At T > 170 MeV μ^2 -correction to the correlator has no effect

$G(au,\,\mu)$ for ho-meson

- At T < 160 MeV μ^2 -correction to the correlator is noticeable
- Mass may be extracted from single cosh fit

The mass of ρ -meson decreases by $\propto 10\%$ at $\mu_q = 280$ MeV.

- High temperatures: good agreement with non-interacting theory
- Low temperatures: results are very noisy
- G
 ^μ in some channels seems to be sensitive to confinement-deconfinement transition
- \bullet Noise reduction techniques for disconnected \ddot{G}_{μ} contributions are needed
- Probably the spectral function for ${\cal G} + \mu^2 \ddot{\cal G}$ will provide more insight