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QCD phase diagram
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@ Thermal transition is well understood nowadays
@ Small ug/T region is accessible via Taylor series expansion

The picture is from The Phases of Dense Matter, INT, 11.07 - 12.08, 2016



Taylor expansion

@ Direct LQCD simulations at finite chemical potential are
inaccessible
@ Taylor expansion in ug/ T is widely used to probe ug >0
region:
e thermodynamics
o higher-order susceptibilities
e curvature of the crossover line
@ Expansion may be applied to hadronic correlators to calculate
finite pp corrections to the spectrum [pioneering paper on this
is by QCD-TARO Collaboration, hep-lat/0107002 (2001)]

o Mesons: corrections are O(u3)

@ Baryons: corrections are O(ug)




Taylor expansion of the meson correlator

Let’s consider p = 0 non-singlet meson correlator:
1 .
G(r) = V/d3>? (4. 2)J(0.0)) .
where J = [y, (...) — thermodynamic average.

The idea is to perform the Taylor expansion of the correlator itself:
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@ Expansion of both determinant and correlator
° Gu term does not contribute at p = 0, thus
G(r, 1) = G(7)] o + (12/2) Gu(T)]

° Gu has to be computed

@ G, contains several noisy disconnected terms



Taylor expansion of the meson correlator

@ Meson correlator is G(x) = (g(x)), where
g(x)="Tr [5)((”0) FSéi) I_T] (after the integration over d) dv))

554 = Dg(r. mr)
o (g)=(1/Z) [ dUg det D, 4 det Ds exp[—Sc]
o We consider symmetric p set: pu, = g

First derivative in chemical potential:

Gu(x) = (gl(x)) + (g(x) det,) — (det,,) (g(x))

@ sum of the first two terms here is purely imaginary

° <detL> is quark number density, it is zero at ;=0




Taylor expansion of the meson correlator

Second derivative of G(x) in chemical potential:
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G structure: and terms
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Free case

For free massless quarks j.>-correction may be written analytically:

. N.T3 1
T6r(r)| =5 [a(rl)+a(r2)—12(a(r1)—a(r2)> h(u)}

n=0 ™

where

h(u) = [Bu(r? — v® —2) + u( 2 — 1% +6) cos(2u)
— 2(n* — 3u®)sin(2u)] /sin*(v)
and u=2nT(r—1/2T), -1 <u<m

e 7-dependence is contained in h(u)

U

o Coefficients al-) depend on the channel

Free analytical expression above provides qualitative check J




Free case

o G is well described by one-cosh fit

G(7)/T = c + ¢ cosh[ca (7T —1/2)]

both in continuum and on lattice
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Lattice parameters (Gen2 ensemble)

o N =2+ 1 clover-improved Wilson fermions
tree-level improved anisotropic gauge action, mean-field improved
Wilson clover fermion action with stout-smeared links

@ Anisotropic lattice:

as = 0.1227(8) fm, a; = 0.0350(2) fm, { = as/a, = 3.5
o Ly =24, m, =384(4) MeV, m;Ls =5.7
@ L, is varied to vary temperature (see the table below)

@ Tuning and ensembles at the lowest temperatures have been
provided by HadSpec

L, 128 40 36 32 28 24 20 16

T [MeV] 44 141 156 176 | 201 235 281 352
T/T. 0.24 076 084 095|109 127 152 1.90
Netg 139 501 501 1000 | 1001 1001 1000 1001




G: connected part only

@ For 757, one may see drastic change in behaviour
at T < 180 MeV
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G: connected part only

@ For 75 and / behaviour changes at T o 200 MeV ]
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G: disconnected part

@ Disconnected parts vanish in the absence of interactions ’

@ Very noisy despite Ns;. = 10000 Gaussian random vectors
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No signal at low T for pseudoscalar and scalar mesons )




G: disconnected part

@ Disconnected parts vanish in absence of interactions

@ Very noisy despite Ns;. = 10000 Gaussian random vectors

¢ T=35L7MeV § T =2010MeV
§ T=2814MeV § T=1739MeV
& T=235McV & T =1563MeV

¢ T=35L7MeV § T =2010MeV
§ T=2814MeV § T =1759MeV
& T=235McV & T =1563 MV
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For p-meson the signal is the best compared to other channels )




G(7, ) for p-meson

%G(T,u) =

o At T > 170 MeV p2-correction to the correlator has no effect
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G(7, ) for p-meson

o At T < 160 MeV j2-correction to the correlator is noticeable

@ Mass may be extracted from single cosh fit
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The mass of p-meson decreases by x10% at /i, = 280 MeV. J




Conclusions

@ High temperatures: good agreement with non-interacting
theory

@ Low temperatures: results are very noisy

@ G, in some channels seems to be sensitive to
confinement-deconfinement transition

@ Noise reduction techniques for disconnected Gu contributions
are needed

o Probably the spectral function for G + u2G will provide more
insight




