Lattice study of QCD phase diagram in (B, T, μ) space

A.Yu. Kotov

in collaboration with

V.V. Braguta, M.N. Chernodub, A.A. Nikolaev, A.V. Molochkov

The II International Workshop on Theory of Hadronic Matter Under Extreme Conditions

16-19 September 2019

Magnetic fields in nature

Souvenir magnet 5×10^{-3} T

Max permanent magnet 1.25 T

Magnetic field to levitate 16 T a frog

Human produced pulsed 2.8×10^3 T magnetic field $10^8 - 10^{11}$ T

Heavy ion collisions

 $10^{14} \mathrm{T} \sim m_\pi^2$

QCD and Magnetic Field

[P.Costa, M.Ferreira, C. Providência, 2018]

Can be studied in effective models What can LQCD tell us about the phase diagram in μ , B, T?

LQCD in T - B plane

Magnetic Catalysis

[Gusynin V., Miransky V., Shovkovy I., 1994]

- Inverse Magnetic Catalysis
- CEP?

[F.Bruckmann et al., 2013]

LQCD in $T - \mu$ plane

Sign problem!

• Curvature of pseudocritical line $T_c(\mu_B) = T_c(0) - A_2\mu_B^2 + A_4\mu_B^4 + O(\mu_B^6)$

[R. Bellwied et al., 2015]

[HotQCD, 2018]

Lattice setup

•
$$\mu_s = 0$$
, $\mu_u = \mu_d = \mu_I \rightarrow i \mu_I$

Lattice setup

Physical masses of u, d, s quarks

•
$$\mu_s = 0$$
, $\mu_u = \mu_d = \mu_I \rightarrow i\mu_I$

• Fix
$$eB = \frac{6\pi n_B}{(N_s a)^2} \in [0.1, 1.5] \text{ GeV}^2$$

• Fix
$$\frac{\mu_I}{\pi T} \in [0.00, 0.275]$$

•
$$n_B \in \mathbb{Z} \longrightarrow$$
 discrete values of $T = \frac{1}{N_t a}$

Lattice setup

Physical masses of u, d, s quarks

•
$$\mu_s = 0$$
, $\mu_u = \mu_d = \mu_I \rightarrow i \mu_I$

• Fix
$$eB = \frac{6\pi n_B}{(N_s a)^2} \in [0.1, 1.5] \text{ GeV}^2$$

• Fix
$$\frac{\mu_I}{\pi T} \in [0.00, 0.275]$$

•
$$n_B \in \mathbb{Z} \longrightarrow \text{discrete values of } T = \frac{1}{N_t a}$$

Renormalized observables:

- Light quark chiral condensate $\langle \bar{\psi}\psi
 angle^r$
- Polyakov loop L^r

Chiral condensate

Inflection point:

$$\langle \bar{\psi}\psi
angle_I^r(T) = A_1 + B_1 \arctan\left(rac{T-T_c}{\delta T_c}
ight)$$

- eB grows, T_c decreases
- Large eB transition is sharper, but still a crossover
- Finite volume effects are under control
- Finite lattice step has small effect on T_c , δT_c

Critical temperature vs $\mu_I/\pi T$

Chiral thermal width

 $\delta T_c^{\mathrm{ch}}(\mu_B, B) = \delta T_c^{\mathrm{ch}}(0, B) - \delta A_2^{\mathrm{ch}}(B) \mu_B^2 + O(\mu_B^4)$

Critical temperature and width of the chiral crossover

Polyakov loop

$$\langle L \rangle^{r}(T) = A_{2} - B_{2} \arctan\left(\frac{T - T_{c}}{\delta T_{c}}\right)$$

Confining crossover, critical temperature T_c

Confining crossover, width δT_c

 $\delta T_c^{\text{conf}}(\mu_B, B) = \delta T_c^{\text{conf}}(0, B) - \delta A_2^{\text{conf}}(B) \mu_B^2 + O(\mu_B^4)$

Chiral and deconfining crossover at real μ_B

Results and conclusions

- QCD phase diagram with nonzero T, eB, μ
- Simulations with imaginary $\mu_u = \mu_d = i\mu_I$, $\mu_s = 0$
- Critical temperature: mild interplay between eB and μ_B :
 - Inverse Magnetic Catalysis
 - Mild dependence of curvature A_2 on eB, peak $eB \approx 0.6 \text{GeV}^2$
- Width of the transition:
 - ► Magnetic field makes the transition sharper (chiral and deconfining transitions merge at large eB) at μ_I ≠ 0
 - No signatures of CEP or first order transition
 - Chiral thermal width (Behaviour changes at $eB_c \approx 0.6 \text{GeV}^2$):
 - $eB < eB_c$: δT_c^{ch} slightly decreases with μ_B
 - $eB > eB_c$: δT_c^{ch} increases with μ_B
 - Baryonic matter always weakens the deconfining crossover

Backup

Details of lattice setup

- Lattice size: 6×24^3 , 6×32^3 , 8×32^3
- Stout improved staggered $N_f = 2 + 1$ fermions
- Tree level Symanzik gauge action
- Physical masses of u, d, s quarks

▶
$$q_u = 2/3e$$
, $q_d = q_s = -1/3e$

▶ Data for eB = 0 are taken from [C. Bonati et al., 2014]

•
$$\mu_s = 0$$
, $\mu_u = \mu_d = \mu_I \rightarrow i\mu_I$

• O(100) configurations per each T, μ_I , eB

Obserbables and renormalization

Light quark chiral condensate:

$$\langle \bar{\psi}\psi \rangle_{I} = \frac{T}{V} \frac{\partial \log Z}{\partial m_{I}} = \langle \bar{u}u \rangle + \langle \bar{d}d \rangle$$
$$\langle \bar{\psi}\psi \rangle_{I} = \frac{\left[\langle \bar{\psi}\psi \rangle_{I} - \frac{2m_{I}}{m_{s}} \langle \bar{s}s \rangle\right] (T, eB, \mu)}{\left[\langle \bar{\psi}\psi \rangle_{I} - \frac{2m_{I}}{m_{s}} \langle \bar{s}s \rangle\right] (0, 0, 0)}$$

Polyakov loop ($\langle L \rangle = exp(-F_Q/T)$):

$$L(\vec{x}) = \frac{1}{3V} \operatorname{tr} \prod_{\tau=1}^{N_{\tau}} U_4(\vec{x}, \tau)$$

Renormalized with GF [P.Petreczky and H.-P. Schadler, 2016]

$$L^{r}(\vec{x}) = L(\vec{x})[V_{t=f}(x,\mu)]$$

Thermodynamic properties of heavy quarks

$$|\langle P
angle| = e^{-\Omega_Q/T}$$

 $d\Omega_Q = -S_Q dT - N_Q d\mu - M_Q dB$

Single-quark entropy

Single-quark magnetization

Single-quark magnetization

