

In-medium spectral functions of vector and axialvector mesons from aFRG flow equations

Lorenz von Smekal

Dubna, JINR 17 September 2019

2nd International Workshop on the Theory of Hadronic Matter under Extreme Conditions

Bundesministerium für Bildung und Forschung

- Intro / Motivation, Dileptons in HIC
- Spectral functions from analytically continued (aFRG) flows
- Vector and axial-vector spectral functions
- Fluctuating (axial-)vectors
- Summary and Outlook

courtesy H. van Hees

T. Galatyuk et al., Physik Journal 17 (2018) no. 10

- from all stages of the collision
- measure temperature in QGP, lifetime of fireball...

Dilepton Spectra

dilepton rate (local thermal equilibrium):

$$\frac{dN_{ll}}{d^4x d^4q} = -\frac{\alpha_{\rm em}^2}{\pi^3 M^2} \frac{1}{3} g_{\mu\nu} \operatorname{Im} \Pi_{\rm em}^{\mu\nu} (M, |\vec{q}|; \mu, T)$$

electromagnetic correlator:

$$\Pi_{\rm em}^{\mu\nu}(q;\mu,T) = -i \int d^4x \ e^{iqx} \theta(x^0) \left\langle [j_{\rm em}^{\mu}(x), j_{\rm em}^{\nu}(0)] \right\rangle$$

vector meson dominance & quark counting:

$$\mathrm{Im}\,\Pi^{\mu\nu}_{\mathrm{em}} \left(M \le 1 \mathrm{GeV} \right) \, \sim \, \mathrm{Im}\, D^{\mu\nu}_{\rho} + \frac{1}{9} \mathrm{Im}\, D^{\mu\nu}_{\omega} + \frac{2}{9} \mathrm{Im}\, D^{\mu\nu}_{\phi}$$

deduce medium modifications to the vector spectral function, find signatures of chiral symmetry restoration

Spectral Functions

commutator of interacting fields:

free fields $\left< \left[\phi(x), \phi(0) \right] \right> = \int_0^\infty dm^2 \ \rho(m^2) \ i \Delta(x; m^2)$

> $\rho(p^2) = (2\pi)^3 \sum \delta^4(p - q_{\psi}) \left| \langle \Omega | \phi(0) | \psi \rangle \right|^2 , \quad p_0 > 0$ TECHNISCHE UNIVERSITÄT DARMSTAD

free fields (stable pion):

spectral function:

TECHNISCHE UNIVERSITÄT D**FIMITE lifetime/width:**

Spectral Functions

two-particle thresholds:

(inverse Laplace, try e.g. MEM, but ill-posed numerical problem)

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

Helmholtz International Center

• e.g. quark-meson model:

$$\Gamma_k = \int d^4x \left\{ \bar{\psi} \left(\partial \!\!\!/ + g(\sigma + i\gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi + \frac{1}{2} (\partial_\mu \vec{\phi})^2 + U_k(\phi^2) - c\sigma \right\}, \quad \vec{\phi} = (\sigma, \vec{\pi})$$

(leading order derivative expansion)

• flow of Landau free energy density:

$$\begin{aligned} \partial_k \Omega_k(T,\mu;\phi^2) &= \\ \frac{k^4}{12\pi^2} \Biggl\{ \frac{1}{E_k^{\sigma}} \coth\left(\frac{E_k^{\sigma}}{2T}\right) + \frac{3}{E_k^{\pi}} \coth\left(\frac{E_k^{\pi}}{2T}\right) \\ -\frac{2N_c N_f}{E_k^q} \Biggl[\tanh\left(\frac{E_k^q - \mu}{2T}\right) + \tanh\left(\frac{E_k^q + \mu}{2T}\right) \end{aligned}$$

Bundesministerium für Bildung

und Forschung

• extract mass parameters & running 3- and 4-point vertices

(thermodynamically consistent & symmetry preserving)

Euclidean Mass Parameters

HIC FAIR for FAIR

CRC-TR 211

17 September 2019 | Lorenz von Smekal | p. 11

für Bildung und Forschung

JUSTUS-LIEBIG-

🗐 UNIVERSITÄT

GIESSEN

Analytically Continued aFRG Flows

• e.g. O(4) linear sigma model:

• continue to real time:

 $p_0 = -i(\omega + i\varepsilon)$ (retarded)

solve analytically continued flow equation

 $T=\mu=0:$

CRC-TR 211

K. Kamikado, N. Strodthoff, L.v.S. & J. Wambach, EPJC 74 (2014) 2806

• compare:

Lattice: J. Engels & O. Vogt, NPB 832 (2010) 538

2-PI: D. Röder, J. Ruppert & D.H. Rischke, NPA 775 (2006) 127

Classical-statistical: S. Schlichting, D. Smith & L.v.S., arXiv:1908.00912

• large boson occupancies, universal critical behavior

S. Schlichting, D. Smith & L.v.S., arXiv:1908.00912

Bundesministerium für Bildung

und Forschung

aFRG Flow of Pion and Sigma

JUSTUS-LIEBIG-

🗐 UNIVERSITÄT

GIESSEN

• quark-meson model, $T = \mu = 0$:

Helmholtz International Center

• quark-meson model:

A. Tripolt, N. Strodthoff, L.v.S. & J. Wambach, PRD 89 (2014) 34010

pion SF $ho(\omega, \vec{p})$ below T_c

ightarrow transport coefficients

A. Tripolt, L.v.S. & J. Wambach, PRD 90 (2014) 074031

• gauged linear-sigma model with quarks:

$$\Gamma_{k} = \int d^{4}x \left\{ \bar{\psi} \left(\partial - \mu \gamma_{0} + h_{S} \left(\sigma + i \vec{\tau} \vec{\pi} \gamma_{5} \right) + i h_{V} \left(\gamma_{\mu} \vec{\tau} \vec{\rho}_{\mu} + \gamma_{\mu} \gamma_{5} \vec{\tau} \vec{a}_{1\mu} \right) \right) \psi + U_{k}(\phi^{2}) - c\sigma + \frac{1}{2} \left(D_{\mu} \phi \right)^{\dagger} \left(D_{\mu} \phi \right) + \frac{1}{8} \left(V_{\mu\nu} V_{\mu\nu} \right) + \frac{1}{4} m_{V,k}^{2} \left(V_{\mu} V_{\mu} \right) + \frac{1}{4} \lambda_{k} \left(\partial_{\mu} V_{\mu} \right)^{2} \right\}$$

• aFRG flow equations for (axial-)vector mesons from:

Vector and Axial-Vector SFs

Ch. Jung, F. Rennecke, A. Tripolt, L.v.S. & J. Wambach, PRD95 (2017) 036020

JUSTUS-LIEBIG-

📻 UNIVERSITÄT

GIESSEN

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\textcircled{1} \rho^* \to \pi + \pi$ (2) $\rho^* \to \bar{\psi} + \psi$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \bullet & \rho^* \to \pi + \pi \\ \hline \bullet & \rho^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \bullet & \rho^* \to \pi + \pi \\ \hline \bullet & \rho^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \mathbf{1} \ \rho^* \to \pi + \pi \\ \hline \mathbf{2} \ \rho^* \to \overline{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

 $\begin{array}{c} \textbf{3} \ a_1^* + \pi \to \sigma \\ \textbf{4} \ a_1^* \to \pi + \sigma \\ \textbf{5} \ a_1^* \to \bar{\psi} + \psi \end{array}$

Ch. Jung, F. Rennecke, A. Tripolt, L.v.S. & J. Wambach, PRD95 (2017) 036020

Bundesministerium für Bildung

und Forschung

Bundesministerium für Bildung und Forschung

Bundesministerium für Bildung und Forschung

• spectral representation of conserved current:

$$\langle T_{\rm cov} j_{\mu}(x) j_{\nu}(0) \rangle =$$

 $-i \int_{0}^{\infty} ds \, \frac{\rho(s)}{s} \int \frac{d^4 p}{(2\pi)^4} \, \mathrm{e}^{-\mathrm{i}px} \, \frac{p^2 g_{\mu\nu} - p_{\mu} p_{\nu}}{p^2 - s + \mathrm{i}\epsilon}$

• current-field identity, transverse vector propagator:

$$D_{\mu\nu}^{T,V}(p) = -i \int_0^\infty ds \, \frac{\rho_v(s)}{s} \int \frac{d^4p}{(2\pi)^4} \, e^{-ipx} \, \frac{p^2 g_{\mu\nu} - p_\mu p_\nu}{p^2 - s + i\epsilon}$$
$$= -i \frac{Z}{m_v^2} \, \frac{p^2 g_{\mu\nu} - p_\mu p_\nu}{p^2 - m_v^2 + i\epsilon} + \dots$$

• Euclidean two-point function, single-particle contribution:

$$\Gamma^{(2)T}_{\mu\nu}(p) = -\frac{m_0^2}{p^4} (p^2 + m_v^2) \left(p^2 \delta_{\mu\nu} - p_\mu p_\nu \right) \qquad m_{0,k}^2 = m_{v,k}^2 / Z_k$$

Bundesministerium für Bildung und Forschung

new processes/imaginary parts contribute to SFs:

 $T = 150 \text{ MeV}, \mu = 0 \text{ MeV}$

rho meson

a₁ meson

Fluctuating (Axial-)Vectors

Fluctuating (Axial-)Vectors

Summary and Outlook

- Spectral functions from analytically contd. aFRG flows effective theories (chiral, linear)
- Vector and axial-vector SFs at finite T and μ

melting-rho scenario

• Fermionic spectral functions

R.-A. Tripolt, J. Weyrich , L. v. S. & J. Wambach, Phys. Rev. D98 (2018) 094002

• Electromagnetic spectral function

R.-A. Tripolt, Ch. Jung, N. Tanji, L. v. S. & J. Wambach, Nucl. Phys. A982 (2019) 775

• SFs in nuclear matter, parity doubling

Ch. Jung, PhD thesis, JLU 2019

Summary and Outlook

• SFs in nuclear matter, parity doubling

Ch. Jung, PhD thesis, JLU 2019

Self-consistent spectral functions

O(4)-model, Ch. Jung, N. Wink, J. Pawlowski, & L.v.S., in preparation

Thank you for your attention!

Bundesministerium für Bildung und Forschung