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Thermodynamics of quark-gluon plasma at �nite baryon density.



In this report we will discuss properties of the quark-gluon plasma in the
presence of the baryon chemical potential µB using the Field Correlator
Method. The nonperturbative FCM dynamics includes the Polyakov line,
computed via colorelectric string tension σE (T ) and the quark and gluon
Debye masses, de�ned by the colormagnetic string tension σH(T ). The
resulting QGP thermodynamics at µB ≤ 400 MeV is in a good agreement
with the available lattice data,both pressure and the sound velocity do
not show any sign of a critical behaviour in this region.



Motivation

The main result of heavy ion experiments performed over the last 15
years at RHIC and then at RHIC and LHC is the discovery of a new form
of matter with its properties markedly di�erent from the pre-RHIC era

Instead of the commonly assumed picture of weakly coupled Quark-Gluon
Plasma(QGP) a strongly coupled liquid has emerged, subject to the law
of the relativistic hydrodynamics



Motivation

Another striking discovery was the analysis of the temperature
transition, made in the 2 + 1 QCD lattice computations, which showed a
smooth crossover in the temperature region T = 140÷ 180 MeV

At this moment one of the main sources of information is the Lattice
calculations. The presence of strong interaction in QGP at zero baryon
density was demonstrated in numerous studies. They show that the ratio
of the QGP pressure to the non-interacting case is less than 0.8 and
remains almost constant with increasing temperature.Another striking
discovery in this domain was the analysis of the temperature transition,
made in the 2 + 1 QCD lattice computations, which has shown a smooth
crossover in the temperature region T = 140...180 MeV

Despite such a dramatic progress the question about the structure of the
QCD phase diagram at nonzero baryon density remains open. This
happens mostly because lattice methods in case of Nc = 3 are strongly
restricted in the domain of baryon chemical potentials due to the sign
problem.



Lattice

To circumvent this di�culty in case of Nc = 3 one can use the Taylor
expansion around zero chemical potential

Imaginary chemical potential

In both cases strong limitations due to existence of Roberge�Weiss point
µ
T = ±iπ.

Decrease the number of colours to Nc = 2, where the sign problem is
absent.



The Field Correlator Method

Field Correlator Method (FCM) is applicable in QCD at any chemical
potential and any temperature. In this method the nonperturbative
dynamics in con�nement and decon�nement regions is based on vacuum
properties, described by gluonic �eld correlators and the key role is played
by correlators of colorelectric �elds DE and colormagnetic �elds DH ,
which provide colorelectric con�nement (CEC) with the string tension
σE (T ) and colormagnetic con�nement (CMC) with the string tension
σH(T ). The latter being calculated from �eld correlators and on the
lattice, grows with T , σH(T ) ∼ g4(T )T 2 and insures the strong
interaction at large T mentioned above.



The Field Correlator Method

At zero temperatures in this model exists con�nement(!) thus one can
observe formation of the string between colour objects. And one can �nd
masses of all mesons and baryons. We will not investigate this situation
in details. Because we will focus on decon�nement domain.



The Field Correlator Method
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The Field Correlator Method

In the FCM at �nite temperatures the basic interaction of a quark or a
gluon can be expressed via world lines a�ected by the vacuum �elds and
�nally written in the form of Wilson loops and Polyakov lines. It is
essential that in the decon�ned phase two basic interactions de�ne quark
and gluon dynamics: the colorelectric (CE) interaction, contained in the
Polyakov line L(T), and the colormagnetic (CM) one in the spatial
projection on the Wilson loop.



The Field Correlator Method

Using the T dependent path integral (world line) formalism one can
express thermodynamic potentials via the Wilson loop integral, e.g. for
the gluon pressure one has

Pgl = 2(N2

c − 1)

∫ ∞
0

ds

s

∑
n=1,2..

G n(s) (1)

s-proper time, and for G n(s) one can obtain:

G n(s) =

∫
(Dz)ωonexp(−K )t̂r a <W a

Σ(Cn) > (2)

where K = 1

4

∫ s

0
dτ( dzµ

dτ )2, and W a
Σ(Cn) is the adjoint Wilson loop

de�ned for the gluon path Cn, which has both temporal (i4) and spacial
projections (ij), and t̂r a is the normalized adjoint trace.



The Field Correlator Method

When T > Tc the correlation function between CE and CM �elds is
rather week

< Ei (x)Bk(y)Φ(x , y) ≈ 0 (3)

The expression for the Wilson loops is factorized

<W a
Σ(Cn) >= L

(n)
adj(T ) <W3 > (4)

with L
(n)
adj ≈ Lnadj for T ≤ 1 GeV.



The Field Correlator Method

One can integrate out the z4 part of the path integral
(Dz)ωon = (Dz4)ωonD

3z , with the result

G (n)(s) = G
(n)
4

(s)G3(s) (5)

G n
4

(s) =

∫
(Dz4)ωone

−KL
(n)
adj =

1

2
√
4πs

e−
n2

4T2s L
(n)
adj (6)

This factorization holds also for quarks and will be used below (changing
the adjoint representation for the fundamental one)



The Field Correlator Method

The resulting gluon contribution is

Pgl =
N2

c − 1√
4π

∫ ∞
0

ds

s3/2
G3(s)

∑
n=0,1,2,...

e−
n2

4T2s Lnadj , (7)

G3(s) =

∫
(D3z)xxe

−K3d < t̂r aW
a
3
> (8)

To account for CMC one can introduce an approximate expression for 3d
Green function

G3(s) =
1

(4πs)3/2

√
(M2

adj)s

sinh(M2

adj)s
,Madj ≈ 2MD (9)

where MD is the gluon Debye mass that emerges via magnetic string
tension.



The Field Correlator Method

The full pressure reads as:

Ptot = Pf + Pgl (10)

One can see that the expression should be analytically continued for high
densities. We use the form:

Pq(T , µ)

T 4
= f+(T , µ) + f−(T , µ), (11)

f±(T , µ) =
Nc

3π2

∫ ∞
0

dz
(
z2 + 2z M̄

T

)3/2
1 + exp

(
z + M̄

T + V1(T )
2T ∓ µ

T

) , (12)



The Field Correlator Method

Analytical study of our equations needs some e�orts. But one can see
that in this formalism we obtained Roberge�Weiss point µ

T = ±iπ, due
to the vanishing of denominator in the equation for the pressure

Two limits are simply done,one is the Stefan-Boltzman limit at high T
and another is the free quark limit with M tends to mq and
V1 = 0(L = 1) at extremely low temperatures, at this conditions the
Fermi sphere is forming .



Polyakov line calculations.

One of the ways to calculate L is to evaluate it via the heavy-light mass
MHL. The mass MHL(T ),which is T-dependent due to the temperature
dependent string tension σE (T ) with the relation MHL(T ) ∼

√
σE (T ).

To �nd σE (T ) explicitly one can use a connection between σE and the
quark condensate q̄q

We take the CE string tension in the massless quark limit related to the
chiral condensate as |q̄q(T )| = const(σ(T ))3/2. Introducing a
dimensionless parameter a(T ) as σ(T ) = σ(0)a2(T ), one has

|q̄q(T )| = |q̄q(0)|a3(T ) (13)

.

As a result one has MHL(T ) = MHL(T0) a(T )
a(T0) and L(T ) = exp

(
−MHL(T )

T

)



Polyakov line calculations.

Figure: The Polyakov line as a function of t = T/Tc ,Tc=160 MeV.Grey band
corresponds to LHL within the accuracy limits of a(T). The solid black line is
the � ideal� LFCM



Pressure at zero baryon chemical potentials

Figure: The QGP pressure as a function of T/Tc . The grey band is the lattice
data of Borsanyi et al. and the striped band is the lattice data from Bazavov et
al.



Scale anomaly.

Figure: The anomaly in QGP as a function of T/Tc . The grey band is the
lattice data of Borsanyi et al.



Pressure at �nite baryon chemical potential.

To test ourselves we have calculated the pressure at µB = 100, 200, 300
MeV and µB=400 MeV.



Pressure at �nite baryon chemical potential.

Figure: The QGP pressure as a function of T/Tc for µB = 100 MeV . The grey
band is the lattice data of Borsanyi et al.



Pressure at �nite baryon chemical potential.

Figure: The QGP pressure as a function of T/Tc for µB = 200 MeV . The grey
band is the lattice data of Borsanyi et al.



Pressure at �nite baryon chemical potential.

Figure: The QGP pressure as a function of T/Tc for µB = 300 MeV . The grey
band is the lattice data of Borsanyi et al.



Pressure at �nite baryon chemical potential.

Figure: The QGP pressure as a function of T/Tc for µB = 400 MeV . The grey
band is the lattice data of Borsanyi et al.



Pressure at �nite baryon chemical potential.

As one can see from the last �gure,at su�ciently high baryon densities
the disagreement with the lattice data becomes stronger. One can
improve this situation taking into account the renormaliztion of Polaykov
line with densities



Pressure at �nite baryon chemical potential.

Figure: The ratio of QGP pressure to T 4 as a function of T/Tc for µB = 400
MeV with LFCM(black line) and with Polyakov line that is scaled ,similar to
PhysRevD.76.114509 (dashed line) .



Pressure at �nite baryon chemical potential.

Figure: The ratio of QGP pressure to T 4 as a function of T/Tc for µB = 400
MeV with LFCM(black line) and with Polyakov line that is scaled ,similar to
PhysRevD.76.114509 (dashed line) .



Speed of sound at �nite baryon density.

There are several possibilities to de�ne the speed of sound at nonzero µ ,
and we will focus on the isoentropic de�nition i.e s/n = const:

C 2

s =
n2 ∂

2P
∂T2 − 2sn ∂2P

∂T∂µ + s2 ∂
2P
∂µ2

(ε+ p)

(
∂2P
∂T2

∂2P
∂µ2 −

(
∂2P
∂T∂µ

)2) =
1

κs(ε+ p)
, (14)

where we have de�ned:

s =
∂P

∂T
, n =

∂P

∂µ
, ε+ P = Ts + µn. (15)



The square of the speed of sound at �nite baryon density.

Figure: The width of solid the line is the changing of the speed of sound in the
range µB = 0..300MeV



Conclusions and discussions

We have exploited above the FCM thermodynamics to calculate the QGP
pressure at �nite baryon density in the temperature range 1 < T/Tc < 2
Our basic dynamics was de�ned by two factors; the Polyakov line that is
connected with LHL(T ) = exp(−MHL/T ), and the colormagnetic
con�nement ( CMC) in the exponential form with the CMC quark mass
MD = c

√
σH(T ), where c = 1.6 .

We have demonstrated that the resulting pressure PFCM(T , µ) is in good
agreement with lattice data of the Budapest-Wuppertal and Hot QCD
groups. We have also calculated changing in the speed of the sound All
this implies the absence of a critical point in the studied range of T and
µB from the point of view of FCM method.

It should be noted however that we have used both MD and MHL

independent of µB in the range µB < 400 MeV.



Thank you for your attention!
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