

HMEC 2019

Vorticity

3FD Mode

Phys. Input 3FD vorticity

Summary

Particle Polarization and Structure of Vortical Field in Relativistic Heavy-Ion Collisions

Multi-Fluid Dynamics

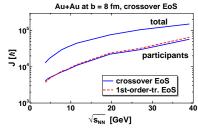
Yuri B. Ivanov, V. D. Toneev, A. A. Soldatov BLTP JINR/MEPhl/Kurchatov Institute

"The II International Workshop on Theory of Hadronic Matter Under Extreme Conditions", September 16 - 19, 2019, JINR BLTP

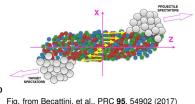
Vorticitical motion of nuclear matter

Vorticity

HMEC 2019


Vorticity

Polarization 3FD Mode


3FD Phys. Input 3FD vorticity Polarization

Summary

Large angular momentum

Relativistic nuclear collision

rig. Ironi becallini, et al., Pho 93, 54902 (2017

Vortical motion: $\vec{\omega} = (1/2)\vec{\nabla} \times \vec{v} = \text{Vorticity}$

Relativistic Kinematic Vorticity

$$\omega_{\mu
u}=rac{1}{2}(\partial_{
u}u_{\mu}-\partial_{\mu}u_{
u})$$

 $u_{\mu} =$ collective local 4-velocity of the matter

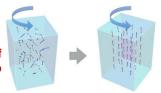
Observation of vorticitical motion

Vorticity

HMEC 2019

Vorticity

Polorizatio


3FD Mod 3FD Phys. Input 3FD vorticity

Summary

Vorticity induces alignment of particle spin along its direction

analogy wiht Barnett effect (1915): magnetization by rotation

 a fraction of orbital momentum of body rotation is transformed into spin angular momentum

Reverse effect:

Einstein-de Haas effect (1915):

rotation by magnetization

Global \wedge and $\bar{\wedge}$ polarization

Vorticity

HMEC 2019

Vorticity

Polarization

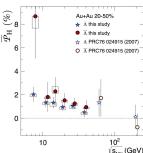
3FD Mode

Phys. Input 3FD vorticity Polarization

Summary

Due to parity violating weak decays

$$\Lambda \longrightarrow p + \pi^-$$
 and $\bar{\Lambda} \longrightarrow \bar{p} + \pi^+$,


 Λ and $\bar{\Lambda}$ hyperons are self-analyzing

 $p\left(\bar{p}\right)$ direction is associated with $\Lambda\left(\bar{\Lambda}\right)$ spin in its rest frame

$$\frac{dN}{d\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\Lambda}\mathbf{P}_{\Lambda}^*\cos\theta^*)$$

* means Λ 's rest frame, $\alpha_{\Lambda} = 0.642$ is Λ 's decay constant

 Global Λ and Λ̄ polarization was measured by STAR collaboration [Nature 548, 62 (2017)]

Thermodynamic approach to ∧ polarization

Vorticity
HMEC 2019

Relativistic Thermal Vorticity

Vorticity

Polarization

3FD Mode 3FD Phys. Input

Phys. Input 3FD vorticity Polarization

Summary

$$arpi_{\mu
u}=rac{1}{2}(\partial_{
u}\hat{eta}_{\mu}-\partial_{\mu}\hat{eta}_{
u}),$$

where $\hat{\beta}_{\mu}=\hbar\beta_{\mu}$ and $\beta_{\mu}=u_{\nu}/T$ with T= the local temperature.

 ϖ is related to mean spin vector, $\Pi^{\mu}(p)$, of a spin 1/2 particle in a relativistic fluid [F. Becattini, et al., Annals Phys. 338, 32 (2013)]

$$\Pi^{\mu}(p) = \frac{1}{8m} \frac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_{F} (1 - n_{F}) \, p_{\sigma} \epsilon^{\mu\nu\rho\sigma} \partial_{\nu} \hat{\beta}_{\rho}}{\int_{\Sigma} \Sigma_{\lambda} p^{\lambda} n_{F}},$$

 n_F = Fermi-Dirac distribution function, integration over the freeze-out hypersurface Σ .

"'an educated ansatz for the Wigner function of the Dirac field"

Three-Fluid Dynamics (3FD)

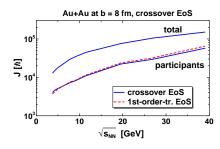
Vorticity

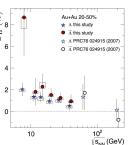
HMEC 2019

Vorticity

Polarizatio

3FD Model


Phys. Input 3FD vorticity


Summary

• Is the **3FD*** **model** with the thermodynamic approach for polarization consistent with observed Λ polarization?

[*] Ivanov, Russkikh and Toneev, PRC 73, 044904 (2006)

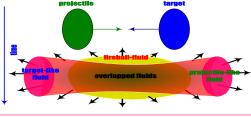
• Why does the polarization decrease with $\sqrt{s_{NN}}$ while J increases?

3FD Equations of Motion

Vorticity

HMEC 2019

Vorticity


Polarizatio

3FD Mode 3FD Phys. Input 3FD vorticity

Summary

Produced particles
populate mid-rapidity

⇒ fireball fluid

Target-like fluid:
$$\partial_{\mu}J_{t}^{\mu}=0$$
 $\partial_{\mu}T_{t}^{\mu\nu}=-F_{tp}^{\nu}+F_{ft}^{\nu}$ Leading particles carry bar. chargeexchange/emission

Projectile-like fluid: $\partial_{\mu} J^{\mu}_{\rho} = 0$, $\partial_{\mu} T^{\mu\nu}_{\rho} = -F^{\nu}_{\rho t} + F^{\nu}_{f\rho}$

Fireball fluid:
$$J_f^\mu = 0$$
, $\partial_\mu T_f^{\mu\nu} = F_{pt}^\nu + F_{tp}^\nu - F_{fp}^\nu - F_{ft}^\nu$

Baryon-free fluid Source term Exchange

The source term is delayed due to a formation time τ

Total energy-momentum conservation:

$$\partial_{\mu}(T_{p}^{\mu\nu}+T_{t}^{\mu\nu}+T_{t}^{\mu\nu})=0$$

Hydrodymanic densities

Vorticity

HMFC 2019

Vorticity

Summary

Baryon current:

 $J^{\mu}_{\alpha} = n_{\alpha} u^{\mu}_{\alpha}$

 n_{α} = baryon density of α -fluid

 u^{μ}_{α} = 4-velocity of α -fluid

 $T^{\mu\nu}_{\alpha} = (\varepsilon_{\alpha} + P_{\alpha}) u^{\mu}_{\alpha} u^{\nu}_{\alpha} - g_{\mu\nu} P_{\alpha}$ ε_{α} = energy density

Energy-momentum tensor:

 P_{α} = pressure

+ Equation of state:

$$P = P(n, \varepsilon)$$

Physical Input

Vorticity

HMEC 2019

Vorticity

Polarization

3FD Mod

Phys. Input 3FD vorticity

Polarization

Summary

 Equation of State crossover EoS and 1st-order-phase-transition (1PT) EoS [Khvorostukhin, Skokov, Redlich, Toneev, (2006)]

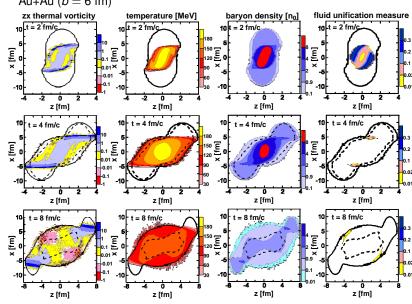
- Friction

 calculated in hadronic phase (Satarov, SJNP 1990)
 fitted to reproduce the baryon stopping in QGP phase
- Freeze-out Freeze-out energy density $\varepsilon_{frz} = 0.4 \text{ GeV/fm}^3$

All parameters of the 3FD model are exactly the same as in calculations of other (bulk and flow) observables

Vorticity

Au+Au (b=6 fm)


vorticity in reaction plane at $\sqrt{s_{NN}} = 7.7$ GeV

HMEC 2019

Vorticity

Phys. Input 3FD vorticity

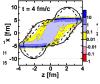
Summary

fluid unification measure = $1 - (n_p + n_p)/n_B$ [= 0 if p and t fluids are unified]

observations

Vorticity

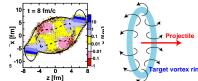
HMEC 2019

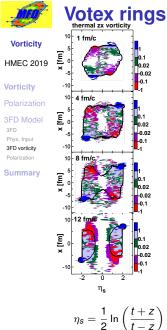

Vorticity

Polarization

3FD Phys. Input 3FD vorticity Polarization

Summary


Vorticity reaches peak values at the participant-spectator border



- the vorticity in the participant bulk gradually dissolves in the course of time
- Conclusion: relative polarization of Λ hyperons should be higher in the fragmentation regions than in the midrapidity region

Ring-like structure in

• fragmentation regions

at high

Central (b= 2 fm) Au+Au at $\sqrt{s_{\it NN}}=$ 39 GeV

at high energies strong votex rings

[Ivanov, Soldatov, PRC 97, 044915 (2018)] are formed even in central collisions

because of transparency of colliding nuclei

Femto-vortex sheets at lower energies [Baznat, Gudima, Sorin, Teryaev, PRC 93 (2016) 031902]

longitudinal space-time rapidity

Vorticity

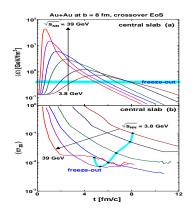
HMEC 2019

Vorticity

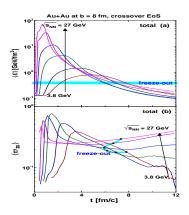
Polarization

Polarization

3FD Phys. Input 3FD vorticity


Polarization Summary

Estimation of Polarization

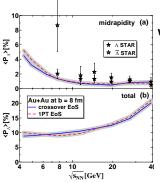

based on mean vorticity $\langle\varpi_{\mu\nu}\rangle$ and isochronous freeze-out. $\langle\varpi_{\mu\nu}\rangle$ averaged over

"midrapidity", i.e. central slab:

$$|x| < R - b/2, |y| < R - b/2, |z| < R/\gamma_{cm}$$

total participant region

Midrapidity and Total Polarization


Vorticity

HMEC 2019

Vorticity

3FD Mode 3FD Phys. Input 3FD vorticity

Summary

Estimation of uncertainty:

- \sim 20% (for midrapidity)
- \sim 30% (for total)

Ivanov, Toneev, Soldatov, PRC 100 (2019)

with the energy, $\sqrt{s_{NN}}$, rise

- the vorticity is stronger pushed out to the fragmentation regions
- (a) therefore, the midrapidity polarization decreases
- (b) while the total polarization increases
- votex rings in fragmentation regions become more pronounced

Summary

Vorticity

HMEC 2019

Vorticity

Polarization

3FD MOO 3FD Phys. Input 3FD vorticity

Summary

- Global A polarization is consistent with our understanding of collision dynamics within 3FD
- vorticity is pushed out to fragmentation regions, therefore
 - the midrapidity polarization decreases
 - while the total polarization increases with energy rise
- Prediction: the Λ polarization should be stronger at peripheral rapidities than that in the midrapidity region
- Prediction: at high collision energies, strong vortex rings are formed in fragmentation regions
- Prediction: Midrapidity polarization at NICA/FAIR energies is higher than at BES RHIC

Vorticity

HMFC 2019

Vorticity

Polarizatio

3FD Mode 3FD Phys. Input

Phys. Input 3FD vorticity Polarization

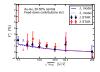
Summary

THANK YOU for your ATTENTION!

Results of thermodynamic $\Lambda(\bar{\Lambda})$ polarization

PICR model

A in STAR


▼ ⊼ in STAR

Vorticity

HMFC 2019

Vorticity

Summary

4.5

4.0

2.5 2.0 1.0 0.5

√s(GeV) PICR hydrodynamics

UrQMD+vHLLE model Karpenko, Becattini, EPJC 77, 213 (2017)

Xie. Wang, Csernai PRC 95,031901 (2017)

Li, Pang, Wang, Xia Sun and Ko. PRC 96, 054908 (2017)

AMPT model

STAR 2018 √s_{NN} (GeV)

consistent with our

PRC 96, 024906 (2017) Global A polarization is understanding of collision

+Au R s =7.7 GeV. b=7.5fm STAR ovn A STAR exp. 7 15 t [fm/c]

AMPT model

Wei. Deng. Huang. PRC99,014905(2019) dynamics However

 Problem with Λ̄ polarization at 7.7 GeV, if any

There are other approaches

PHSD Model

Kolomeitsev, Toneev, Voronyuk PRC 97, 064902 (2018)

Polarization due to axial vortical effect

Vorticity

HMEC 2019

Vorticity

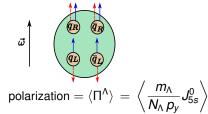
Polarization

3FD Model 3FD Phys. Input 3FD vorticity

Polarization

Summary

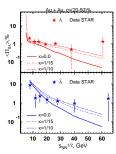
Summary


Relativistic Kinematic Vorticity = $\omega_{\mu\nu} = \frac{1}{2} (\partial_{\nu} \mathbf{u}_{\mu} - \partial_{\mu} \mathbf{u}_{\nu})$

 $u_{\mu} =$ collective local 4-velocity of the matter,

is relevant to the axial vortical effect

[Rogachevsky, Sorin, Teryaev, PRC **82**, 054910 (2010) Gao, Liang, Pu, Wang and Wang, PRL 109, 232301 (2012)]


strange axial current
$$=J_{5s}^{
u}=N_{c}\int d^{3}x\,\left(rac{\mu_{s}^{2}}{2\pi^{2}}+\kapparac{\mathcal{T}^{2}}{6}
ight)\epsilon^{
ulphaeta\gamma}\mathbf{u}_{lpha}\partial_{eta}\mathbf{u}_{\gamma}$$

 μ_s = chemical potential of s-guark, T = temperature,

 κ = a variable parameter,

 $p_V = \Lambda$'s momentum transverse to reaction plane

Baznat, Gudima, Sorin, Teryaev

PRC 97, 041902 (2018)