Heavy ion collisions at NICA-FAIR energies and possible signals of two QCD phase transitions

<u>Kyrill Bugaev,</u> V. Sagun, B. Grinyuk, A. Zhokhin, A. Ivanytskyi, D. Savchenko, G. Zinovjev Bogolyubov ITP and TSNU, Kiev, Ukraine

E. Nikonov Laboratory for Information Technologies, JINR, Dubna, Russia

L. Bravina, E. Zabrodin University of Oslo, Oslo, Norway

S. Kabana

University of Nantes and SUBATECH, Nantes, France

D. Blaschke

University of Wroclaw, Wroclaw, Poland,

BLTP, Dubna and MEPhI, Moscow, RF

A. Taranenko

MEPhI, Moscow, RF Dubna, September 17, 2019

Outline

- **1. Motivation and introduction**
- 2. Novel and Old Irregularities at chemical freeze out
- 3. Shock adiabat model of A+A collisions
- 4. Newest results and possible evidence for two phase transitions
- **5.** Conclusions

Experiments on A+A Collisions

Are aimed to study the QCD phase diagram

AGS (BNL) up to 4.9 GeV SPS (CERN) 6.1 - 17.1 GeV RHIC (BNL) 62, 130, 200 GeV

> Ongoing HIC experiments LHC (CERN) > 1 TeV (high energy) RHIC (BNL) low energy SPS (CERN) low energy

Future HIC experiments NICA(JINR, Dubna) SIS300 = FAIR (GSI) J-PARC

Present Status of A+A Collisions

In 2000 CERN claimed indirect evidence for a creation of new matter In 2010 RHIC collaborations claimed to have created a quark-gluon plasma/liquid

However, up to now we do not know:

1. whether deconfinement and chiral symmetry restoration are the same phenomenon or not?

2. are they phase transitions (PT) or cross-overs ?

3. what are the collision energy thresholds of their onset?

In order to answer these questions we need a very good tool to analyze the data!

Recently Suggested Signals of QCD Phase Transitions 2014-2018

During 2013-2017 our group developed a very accurate tool to analyze data

D. Oliinychenko, KAB, A. Sorin, Ukr. J. Phys. 58 (2013)

KAB, D. Oliinychenko, A. Sorin, G.Zinovjev, EPJ A 49 (2013)

KAB et al., Europhys. Lett. 104 (2013)

KAB et al., Nucl. Phys. A 970 (2018)

KAB et al., Universe 5, (2019)

The high quality description of data allowed us to elucidate new irregularities at CFO from data and

to formulate new signals of two QCD phase transitions

D. Oliinychenko et al., Ukr. J Phys. 59 (2014)

KAB et al., Phys. Part. Nucl. Lett. 12 (2015)

KAB et al., EPJ A 52 (2016) No 6

KAB et al., EPJ A 52 (2016) No 8

KAB et al., Phys. Part. Nucl. Lett. 15 (2018)

First work on evidence of two **QCD** phase transitions

Most successful version of the **Hadron Resonance Gas Model (HRGM)**

Recently Suggested Signals of QCD Phase Transitions 2016

Our results

1-st order PT of Chiral Symmetry Restoration in hadronic phase occurs at about $\sqrt{s} \sim 4.3-4.9$ GeV

and 2-nd order deconfinement PT exists at $\sqrt{s} \sim 9$ GeV

Giessen group results (recall E. Bratkovskaya talk at this meeting!)

W. Cassing et al., Phys. Rev. C 93, 014902 (2016); Phys. Rev. C 94, 044912 (2016).

1-st order PT of ChSR in hadronic phase occurs at about $\sqrt{s} \sim 4$. GeV and 2-nd order deconfinement PT exists at $\sqrt{s} \sim 10$ GeV

Hard to locate them due to cross-over in Parton-Hadron-String-Dynamics model!

HRG: a Multi-component Model

HRG model is a truncated Statistical Bootstrap Model with the excluded volume correction a la VdWaals for all hadrons and resonances known from Particle Data Group.

For given temperature T, baryonic chem. potential, strange charge chem. potential, chem. potential of isospin 3-rd projection => thermodynamic quantities => all charge densities, to fit data.

Chemical freeze-out - moment after which hadronic composition is fixed and only strong decays are possible. I.e. there are no inelastic reactions.

> Thanks to Jean Cleymans for great introduction to HRGM!

Why Van der Waals or Hard-core Repulsion EoS?

1. Hard-core repulsion EoS (= VdWaals without attraction) has the same energy per particle as an ideal gas => there is no problems to convert its energy into ideal gas energy

Proof: if particles stay apart, they do not interact, if particles touch each other, potential energy is infinite and => such configurations do not contribute into partition

Why Van der Waals or Hard-core Repulsion EoS?

3. Almost in the whole hadronic phase the mixture of stable hadrons and resonances behaves as a mixture of ideal gases with small hard-core radii due to approximate cancellation of attraction and repulsion terms among the quantum second virial coefficients of hadrons

R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons. *Nucl. Phys. A* 1992, *546*, 718

HRG: a Multi-component Model

Traditional HRG model: one hard-core radius R=0.25-0.3 fm A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006)777

Overall description of data (mid-rapidity or 4π multiplicities) is good!

But there are problems with K+/pi+ and Λ /pi- ratios at SPS energies!!! => Two component model was suggested

HRG: a Multi-component Model

Traditional HRG model: one hard-core radius R=0.25-0.3 fm A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006)777

Overall description of data (mid-rapidity or 4π multiplicities) is good!

Two hard-core radii: R_pi =0.62 fm, R_other = 0.8 fm G. D. Yen. M. Gorenstein, W. Greiner, S.N. Yang, PRC (1997)56 Or: R_mesons =0.25 fm, R_baryons = 0.3 fm A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006) 777 PLB (2009) 673

Two component models do not solve the problems! Hence we need more sophisticated approach.

Induced Surface Tension EOS

pressure

$$\frac{p}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \qquad \text{new term}$$
induced surface tension

$$\frac{\Sigma}{T} = \sum_{i} R_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \cdot \exp\left(\frac{(1 - \alpha)S_{i}\Sigma}{T}\right)$$

 R_k, V_k and S_k are hard-core radius, eigenvolume and eigensurface of hadron of sort k

Advantages

1. It allows one to go beyond the Van der Waals approximation, since it reproduces 2-nd, 3-rd and 4-th virial coefficients of the gas of hard spheres for $\alpha = 1.245$.

2. Number of equations is 2 and it does not depend on the number of different hard-core radii!

V.V. Sagun, K.A.Bugaev, A.I. Ivanytskyi, D.R. Oliinychenko, EPJ Web Conf 137 (2017);

K.A.Bugaev, V.V. Sagun, A.I. Ivanytskyi, E. G. Nikonov, G.M. Zinovjev et. al., Nucl. Phys. A 970 (2018) 133-155

V.V. Sagun, K.A.Bugaev, A.I. Ivanytskyi, et al., Eur. Phys. J. A 54, 100 (2018).

Wide Resonances Are Important

The resonance width is taken into account in thermal densities.

In contrast to P. Braun-Munzinger & Co we found that wide resonances are VERY important in a thermal model. For instance, description of pions cannot be achieved without σ meson: $m_{\sigma} = 484 \pm 24$ MeV, width $\Gamma_{\sigma} = 510 \pm 20$ MeV

R. Garcia-Martin, J. R. Pelaez and F. J. Yndurain, PRD (2007) 7

$$n_X^{tot} = n_X^{thermal} + n_X^{decay} = n_X^{th} + \sum_Y n_Y^{th} Br(Y \to X)$$

 $Br(Y \to X)$ is decay branching of Y-th hadron into hadron X

From our experience =>

It is more instructive to fit the ratios of yields since the systematic uncertainties cancel!

Data and Fitting Parameters

111 independent hadronic ratios measured at AGS, SPS and RHIC energies

of published ratios measured at mid-rapidity depends on energy =>

$\sqrt{s_{NN}}$	N_{rat}	
(GeV)	FO	
2.7	4	
3.3	5	
3.8	5	-
4.3	5	-
4.9	8	-
6.3	9	-
7.6	10	-
8.8	11	-
9.2	5	-
12	10	-
17	13	-
62.4	5	-
130	11	
200	10	-
Sum	111	-

of local fit parameters cannot be larger
than 4 (for all energies) or larger
than 5 (for energies above 2.7 GeV)

of local fit parameters for each collision energy = 3 (no γ_{s} factor) T, mu_B, mu_I3 Total # for 14 energies = 42

of fit parameters with γ_{S} factor is 4 Total # for 14 energies = 56

of global fit parameters = 4
R_pi, R_K, R_mesons, R_baryons

Examples of Hadron Multiplicity Ratios for IST EoS, Multicomponent and Onecomponent Van der Waals EoS (2018)

Blue barsIST EoS (will be presented in a moment)Red barsMulticomponent Van der Waals EoSGreen barsOne-component Van der Waals EoS (a la P. Braun-Munzinger et al),

One-component Van der Waals EoS always gives the worst results!

IST EOS Results for LHC energy

V.V. Sagun et al., Eur. Phys. J. A (2018) 54: 100

Radii are taken from the fit of AGS, SPS and RHIC data => single parameter Tcfo=150+-7MeV

In all our fits (anti)protons and (anti)Ξ-s do not show any anomaly compared to J. Stachel et.al. fit, since we have right physics!

=> There is no proton yield puzzle in a realistic HRGM!

In contrast to J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014) (anti)nuclei are NOT included into the fit!

Combined fit of AGS, SPS, RHIC and LHC data $\chi^2_{tot}/dof \simeq 64.8/60 \simeq 1.08$ Compare with J. Stachel et al. fit quality for Tcfo = 156 MeV $\chi^2/dof = 2.4$ with our one! **Possible solution of (anti)nuclei puzzle was presented in my talk** on Crete on 28.08.2019

Strangeness Enhancement as Deconfinement Signal

In 1982 J. Rafelski and B. Müller predicted that enhancement of strangeness production is a signal of deconfinement. Phys. Rev. Lett. 48(1982)

In 1991 J. Rafelski introduced strangeness fugacity γ_{s} factor Phys. Lett. 62(1991)

which quantifies strange charge chemical oversaturation (>1) or strange charge chemical undersaturation (<1)

Idea: if s-(anti)quarks are created at QGP stage, then their number should not be changed during further evolution since s-(anti)quarks number is small and since density decreases => there is no chance for their annihilation! **Hence, we should observe chemical enhancement of strangeness with** $\gamma_{s} > 1$

However, until 2013 the situation with strangeness was unclear:

The second s

P. Braun-Munzinger & Co found that γ_s factor is about 1 **F. Becattini & Co** found that γ_s factor is < 1

Systematics of Strangeness Suppression

Include γ_{s} factor $\phi_{i}(T) \rightarrow \phi_{i}(T)\gamma_{s}^{s_{i}}$, into thermal density

where s_i is number of strange valence quarks plus number of strange valence anti-quarks.

Thus, it is a strangeness fugacity which accounts for 2-nd conservation law

Single component model F. Becattini, J. Manninen and M. Gazdzicki, PRC 73 (2006) 044905

Typical values of $\chi^2/dof > 2$ at given energy!

Strangeness Irregularities

Explanation of such peculiar behavior was found in 2017. See

KAB et al., Phys. Part. Nucl. Lett. 15 (2018)

The fact that in A+A collisions $\gamma_s > 1$ is responsible for the difference with LQCD

and FRG results on phase diagram! Hence in A+A collisions the (3)CEP can be displaced!

Jump of CFO Pressure at AGS Energies

• Temperature T_{CFO} as a function of collision energy \sqrt{s} is rather non smooth

• Significant jump of pressure ($\simeq 6$ times) and energy density ($\simeq 5$ times)

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 12(2015) [arXiv:1405.3575]; Ukr. J. Phys. 60 (2015)

Trace Anomaly Peaks (Most Recent)

At chemical FO (large µ)

Lattice QCD (vanishing µ)

WupBud EOS arXiv: lat 1007.2580

Model from V.V. Sagun et al., Eur. Phys. J. A (2018) 54: 100,

arXiv:1703.00009 [hep-ph]

Are these trace anomaly peaks related to each other?

Shock Adiabat Model for A+A Collisions

A+A central collision at 1< Elab<30 GeV Its hydrodynamic model

Works reasonably well at these energies.

H. Stoecker and W. Greiner, Phys. Rep. 137 (1986)

Yu.B. Ivanov, V.N. Russkikh, and V.D. Toneev, Phys. Rev. C 73 (2006)

From hydrodynamic point of view this is a problem of arbitrary discontinuity decay: in normal media there appeared two shocks moving outwards

Generalized Shock Adiabat Model

In case of unstable shock transitions which appear at the 1-sf order PT more complicated flows appear:

K.A. Bugaev, M.I. Gorenstein, B. Kampher, V.I. Zhdanov, Phys. Rev. D 40, 9, (1989) K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, Phys. Lett. B 255, 1, 18 (1991)

Collision axis

Remarkably

Z model has stable RHT adiabat, which leads to quasi plateau!

shock $01 \pm \text{compression simple wave}$

In each point of simple wave $\frac{s}{\rho_B} = \text{const}$

If during expansion entropy conserves, then unstable parts lead to entropy plateau!

FIG. 9. The entropy per baryon as a function of the bombarding energy per nucleon of the colliding nuclei for models W and Z. The points 1, 2, 3, 4 on curve W correspond to those on the generalized adiabatic as displayed in Fig. 7. The point 1 on curve Z marks the boundary to the mixed phase.

Highly Correlated Quasi-Plateaus

For realistic EoS at mixed phase entropy per baryon should have a plateau!

Since the main part of the system entropy is defined by thermal pions => thermal pions/baryon should have a plateau!

Also the total number of pions per baryons should have a (quasi)plateau!

K.A. Bugaev, M.I. Gorenstein, B. Kampher, V.I. Zhdanov, Phys. Rev. D 40, 9, (1989) K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, Phys. Lett. B 255, 1, 18 (1991)

Entropy per baryon has wide plateaus due to large errors

Quasi-plateau in total number of pions per baryon ?

Thermal pions demonstrate 2 plateaus

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 12(2015)

Transitions to Mixed Phase

Main results:constant pressure inside mixed phase+2 sets of plateaux!

K.A. Bugaev et al., arXiv:1405.3575[hep-ph]

GSA Model explains irregularities at CFO as a signature of mixed phase

QGP EOS is MIT bag model with coefficients been fitted with condition $T_c = 150$ MeV at vanishing baryonic density! HadronGas EOS is a simplified HRGM discussed above.

Strangeness Irregularities

urface tension

 $V_{eff} = V | 1$ V_k and S_kare eigenvolu α switches exclud

 $p = T\phi \exp$

-of phases => T = const, 46 = const

If There Are 2 Phase Transitions, then

1. What kind of phase exists at $\sqrt{s} = 4.9-9.2$ GeV?

2. Can we get any info about its properties?

Possible Interpretations

- 1. The phase emerging at $\sqrt{s} = 4.9-9.2$ GeV has no Hagedorn mass spectrum, since strange hadrons are not in chemical equilibrium.
- 2. 1800 of massless dof may evidence either about chiral symmetry restoration in hadronic sector.
- 3. Or 1800 of massless dof may evidence about tetra-quarks with massive strange quark!? see Refs. in R.D. Pisarski, 1606.04111 [hep-ph]
- 4. Or 1800 of massless dof may evidence about the gluonic quasiparticles with small masses (10-20 MeV) V. Voronin and S.N. Nedelko, EPJ A (2015)
- 5. Or 1800 of massless dof may evidence about quarkyonic phase!?
 A. Andronic et. al, Nucl. Phys. A 837, 65 (2010)
- 6. 1800 of massless dof may evidence about something else...

Minima of Shear Viscosity over Entropy at CFO

Minimum of shear viscosity η over entropy density s corresponds to a phase transition

L.P. Csernai, J.I. Kapusta & L.D.McLerran PRL 97 (2006)

G. Kadam and S. Pawar, Adv.High Energy Phys (2019) 6795041

Used parameterizations $T(\sqrt{s})$ and $\mu(\sqrt{s})$ from

KAB et al., Ukr. J. Phys. 60, 181 (2015)

M. Gazdzicki, M.I. Gorenstein and K.A. Bugaev, Phys. Lett. B 567 (2003)

Suggestions for RHIC BESII, NICA and FAIR: measure p_T spectra and apparent temperature of Kaons and (anti)A hyperons at 4.3-6.3 GeV with high accuracy and small collision energy steps!

Conclusions

 High quality description of the chemical FO data allowed us to find **few novel irregularities** at c.m. energies 4.3-4.9 GeV (pressure, entropy density jumps e.t.c.)

2. HRG model with multicomponent repulsion allowed us to find the **correlated (quasi)plateaus** at c.m. energies 3.8-4.9 GeV which were predicted many years ago.

3. The second set of plateaus and irregularities may be a signal of another phase transition! Then the QCD diagram **3CEP may exist** at the vicinity of c.m. energies 8.8-9.2 GeV.

- 4. Generalized shock adiabat model allowed us to describe entropy per baryon at chemical FO and determine the parameters of the **EOS of new phase from** the data.
- 5. Hopefully, RHIC, FAIR, NICA and J-PARC experiments will allow us to make more definite conclusions

Thank You for Your Attention!

For a summary of two QCD

PT signals see

K.A. Bugaev et al., EPJ

Web of Conf. 182, 02057 (2018)

or

arXiv:1801.08605 [nucl-th]

and references therein

Table 1. The summary of possible PT signals. The column II gives short description of the signal, while the columns III and IV indicate its location, status and references.

No and Type	Signal	C m on σ \sqrt{a} $(C \circ V)$	C m operation $\sqrt{2}$ (CeV)
No and Type	Signal	CIII. energy \sqrt{s} (GeV)	CIII. energy \sqrt{s} (GeV)
1 Hydrodynamic	Highly correlated	Seen at	Seen at
1. Hydrodynamic	quasi-plateaus in ent-	3.8-4.9 GeV [4 5]	7.6-9.2 GeV [4 5]
	ropy/baryon_ther-	Explained by the shock	1.0-5.2 Gev [4, 0].
	mal pion number/ba-	adiabat model [4, 5].	
	rvon and total pion		Require an explanation.
	number/barvon. Sug-		
	gested in $[11, 12]$.		
2. Thermodynamic	Minimum of the	In the one component	
v	chemical freeze-out	HRGM it is seen	
	volume V_{CFO} .	at 4.3-4.9 GeV [13].	Not seen.
		In the multicomponent	
		HRGM it is seen	
		at 4.9 GeV [14].	
		Explained by the shock	
		adiabat model $[4, 5]$.	
3. Hydrodynamic	Minimum of the	Seen at $4.9 \text{ GeV} [4]$.	Seen at $9.2 \text{ GeV} [4]$.
	generalized specific	Explained by the shock	
	volume $X = \frac{\epsilon + p}{\rho_h^2}$ at	adiabat model $[4, 5]$.	Require an explanation
	chemical freeze-out.		
4. Thermodynamic	Peak of the trace	Strong peak is seen	Small peak is seen
	anomaly $\delta = \frac{\epsilon - 3p}{T^4}$.	at 4.9 GeV $[5]$.	at 9.2 GeV $[5]$.
		Is generated	
		by the δ peak	Require an explanation
		on the shock adiabat	
		at high density end of	
		the mixed phase [5].	
5. Thermodynamic	Peak of the bary-	Strong peak is seen	Strong peak is seen
	onic density ρ_b .	at 4.9 GeV [10].	at 9.2 GeV [10].
		ls explained	
C TTI I :		by $\min\{V_{CFO}\}$ [14].	Require an explanation
6. Thermodynamic	Apparent chemical	$\gamma_s = 1$ is seen	$\gamma_s = 1$ is seen at \sqrt{s}
	equilibrium of	at 4.9 Gev [10].	\geq 8.8 GeV [10, 13].
	strange charge.	Explained by ther-	Explained by ther-
		mostatic properties	af OC hoga with
		of finited phase $p_{1} = p_{2} p_{1} p_{1}$	Hagedorn mass
		at $p = const$ [10].	spectrum [10]
7 Fluctuational	Enhancement of		$\frac{1}{2} \frac{1}{2} \frac{1}$
(statistical	fluctuations	N/A	Can be explained by
mechanics)	nactautons		CEP [9] or 3CEP
moonumosj			formation $[10]$
8. Microscopic	Strangeness Horn		Seen at 7.6 GeV. Can
	$(K^+/\pi^+ \text{ ratio})$	N/A	be explained by the on-
		,	set of deconfinement at
			[15]/above [8] 8.7 GeV .

Thank You for Your Attention!

Main Properties of IST EOS

pressure

induced surface tension

 $\frac{p}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \qquad \text{new term}$ $\frac{\Sigma}{T} = \sum_{i} R_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \cdot \exp\left(\frac{(1 - \alpha)S_{i}\Sigma}{T}\right)$

 $\mathbf{R}_{\!\mathbf{k}}, \mathbf{V}_{\!\mathbf{k}}$ and $\mathbf{S}_{\!\mathbf{k}}$ are hard-core radius, eigenvolume and eigensurface of hadron of sort \mathbf{k}

• One component case with $\alpha > 1$

$$\Sigma = pR \exp\left(\frac{(1-\alpha)S\Sigma}{T}\right)$$

$$p = T\phi \exp\left(\frac{\mu - pV_e ff}{T}\right) \Rightarrow$$

$$V_{eff} = V_0 \left[1 + 3\exp\left(\frac{(1-\alpha)S_i\Sigma}{T}\right)\right]$$

Advantages

1. Allows to go beyond the Van der Waals approximation

2. Number of equations is 2 and it does not depend on the number different hard-core radii! α switches excluded and eigen volume regimes high order virial coefficients?

low densities $(\Sigma \rightarrow 0)$: $V_{eff} = 4 V_o$ high densities $(\Sigma \rightarrow \infty)$: $V_{eff} = V_o$

Onset of Deconfinement in Other Models

J. K. Nayak, S. Banik, Jan-e Alam, PRC 82, 024914 (2010)

Che Ming Ko et al., arXiv 1702.07620 [nucl-th]]

1.2 0.45 • \mathbf{K}^{+}/π^{+} Data Neutron relative density fluctuation 0.4 Scenario-I pure hadronic in central Pb+Pb collisions (y=0) 1.0 0.35 Scenrio-II 0.3 0.8 ∆n 0.25 0.6 deconfinement 0.2 0-12% 0-7% starts at 8.7 GeV 0.15 0.4 (Centrality) 0-7% 0.1 0.2 0.05 10 10 100 20 s_{NN}^{1/2} (GeV) $(s_{_{\rm NN}})^{^{1/2}}$ (GeV) **Light nuclei fluctuations are Strangeness Horn and other** enhanced at c.m. energy 8.8 Ge stat, err, only strange particles ratios can => CEP is located nearby! 1.5 be explained, if the onset of deconfinement begins at 1.25 **Counting for thermodynamic** c.m. energy 8.7 GeV! hydrodynamic and fluctuation 0.75 signals we conclude that K.A. Bugaev et al., Phys. Part. Nucl. Lett. 15, 3CEP may exists at 8.8-9.2 GeV 210 (2018), arXiv:1709.05419 [hep-ph] 12 10 14

6

16

What To Measure at FAIR & NICA?

We predicted JUMPS of these ratios at 4.3 GeV due to 1-st order PT and

CHANGE OF their SLOPES at ~ 9-12 GeV due to 2-nd order PT (or weak 1-st order PT?)

To locate the energy of SLOPE CHANGE we need MORE data at 7-13 GeV

Medium with Normal and Anomalous Properties

Normal properties, if

$$\Sigma \equiv \left(rac{\partial^2 p}{\partial X^2}
ight)_{s/
ho_B}^{-1} > 0 = ext{ convex down:}$$

Usually pure phases (Hadron Gas, QGP) have normal properties

Shock adiabat example

 $X = \frac{\varepsilon + p}{\rho_B^2} - \text{generalized specific volume}$ ε is energy density, p is pressure,

 ρ_B is baryonic charge density

Anomalous properties otherwise.

Almost in all substances with liquid-gas phase transition the mixed phase has anomalous properties!

Then shock transitions to mixed phase are unstable and more complicated flows are possible.

Region 1-2 is mixed phase with **anomalous properties.**

Details on Highly Correlated Quasi-Plateaus

- Common width M number of points belonging to each plateau
- \bullet Common beginning i_0 first point of each plateau
- For every M, i_0 minimization of χ^2/dof yields $A \in \{s/\rho_B, \rho_{\pi}^{th}/\rho_B, \rho_{\pi}^{tot}/\rho_B\}$:

$$\chi^{2}/\text{dof} = \frac{1}{3M-3} \sum_{A} \sum_{i=i_{0}}^{i_{0}+M-1} \left(\frac{A-A_{i}}{\delta A_{i}}\right)^{2} \quad \Rightarrow \quad A = \sum_{i=i_{0}}^{i_{0}+M-1} \frac{A_{i}}{(\delta A_{i})^{2}} / \sum_{i=i_{0}}^{i_{0}+M-1} \frac{1}{(\delta A_{i})^{2}}$$

Other Minima at AGS Energies

