

A NEW MEASUREMENT OF THE ANOMALOUS MAGNETIC MOMENT OF MUON AT FERMILAB

Ivan Logashenko

50

Budker Institute of Nuclear Physics Novosibirsk State University

New Trends in High Energy Physics 2016

The g-factor

 The magnetic moment of the particle relates to its spin angular momentum via the gyromagnetic factor, g:

$$\vec{\mu}_S = g \frac{e}{2m} \vec{S}$$

- In Dirac theory, point-like, spin $\frac{1}{2}$ particle has g = 2 exactly
- Experimental values:

$$\begin{cases} g_e \approx 2.002 \\ g_\mu \approx 2.002 \end{cases}$$
 point-like particles
$$g_p \approx 5.586 \\ g_n \approx -3.826 \end{cases}$$
 compound particles

Anomalous magnetic moment: a = (g - 2)/2 $a \approx 10^{-3}$ 2

Electron (g-2)

The best precision is achieved for electrons (g-2). The value of a_e is used to get the best determination of fine-structure constant α .

D. Hanneke, S. Fogwell, G. Gabrielse, Phys.Rev.Lett.100:120801,2008

 $a_e = (115965218073\pm28) \times 10^{-14} (0.24 \text{ ppb})$

Muon (g-2) as the probe of vacuum

New Trends 2016

The value of g is modified by quantum field fluctuations, resulting in anomalous magnetic moment:

$$a_{\mu} = \frac{g-2}{2} \approx \frac{\alpha}{2\pi} \approx \frac{1}{800}$$

G-2 probes structure of the vacuum. Higher precision means shorter distances and higher energies. All virtual fields contribute to (g-2).

е

Loop Correction

Muon (g-2) is 40,000 times more sensitive to non-QED fields than electron (g-2), providing more sensitive probe for New Physics.

$$a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{Had} + a_{\mu}^{Weak} + a_{\mu}^{New Physics}$$

1,000,000 : 60 : 1.3 : $\propto (m_{\mu}/m_X)^2$

Taus are even better! But they are too short lived and too difficult to produce...

The SM value of a_{μ} : today

- QED: Kinoshita et al., 2012: up to 5 loops (12672 diagrams). 0.7 ppb
- EW: 2 loops, now Higgs mass is known. 9 ppb
- Hadronic

LBL: model-dependent calculations; improvement is expected from lattice calculations

HVP: the value is based on the hadronic cross-section e^+e^- data; there are effort to get it via lattice calculations.

New experiment at FNAL: 140 ppb

60 years of muon (g-2)

CERN I (1958-1962):

First measurement, (g-2) to 0.4%

CERN II (1962-1968):

First muon storage ring, magnetic focusing,

(g-2) to 270 ppm

CERN III (1969-1976):

Magic γ , electric field focusing, μ^+ and μ^- , (g-2) to 7 ppm

BNL (1990-2003):

Superferric magnet, high intensity beam, muon injection, (g-2) to 0.5 ppm

FNAL (2010-?):

Improvements in all aspects, Q-method, (g-2) to 0.14 ppm

6

Contribution to (g-2)

New Trends 2016

Muon (g-2): BNL era

7

Muon (g-2) today: experiment vs theory

$$a_{\mu}(exp) = 1\ 165\ 920\ 89\ (63) \times 10^{-11}\ (0.54\ ppm)$$

$$a_{\mu}(th) = 1\ 165\ 918\ 02\ (49) \times 10^{-11}\ (0.42\ ppm)$$

$$HLMNT = 1\ 165\ 918\ 02\ (49) \times 10^{-11}\ (0.42\ ppm)$$

$$Aa_{\mu}(exp - th) = (260 \div 287) \pm 80 \times 10^{-11}$$

$$3.3 \div 3.6\ \sigma$$
Fermilab projections:

$$a_{\mu}(exp) \rightarrow \text{to}\ 0.14\ ppm$$
BNL-E821 04
208.9±1.6

 $a_{\mu}(th) \rightarrow \text{to 0.30 ppm}$

 $\Delta a_{\mu}(exp - th) \rightarrow \text{to } \pm 40 \times 10^{-11}$

Is there model to describe Δa_{μ} ? Plenty!

SUSY

 $a_{\mu}(SUSY) \approx (\operatorname{sgn} \mu) 130 \times 10^{-11} \tan \beta \left(\frac{100 \text{ GeV}}{\widetilde{m}}\right)^2$

Complementary to direct searches at the LHC

- Sensitive to sgn μ and tan β
- Contributions to g-2 arise from charginos and sleptons while LHC direct searches are most sensitive to squarks and gluinos

Dark photon

How to measure a_{μ}

- Store polarized muons in the uniform magnetic field B
- Momentum rotates with cyclotron frequency:

$$\omega_c = eB/\gamma mc$$

 Spin rotates with Larmor+Thomas frequency:

$$\omega_s = geB/2mc + (1 - \gamma)eB/\gamma mc$$

• Spin precesses relative to momentum with frequency ω_a :

$$\omega_a = \omega_s - \omega_c = \frac{a_{\mu}eB}{mc}$$

Experimental technique since CERN-II

Make a pion beam, then select highest energy muons from parity violating $\pi \rightarrow \mu + \nu_{\mu}$ decay

Storage ring with ultra-precise dipole B-field. Allow muons to precess through as many g-2 cycles as possible.

In parity violating decay $\mu \to {\rm e} + \nu_e + \nu_\mu$, the positron is preferentially emitted in the muon spin direction

Magic γ (CERN-III)

Anomalous magnetic moment is independent of γ . The larger γ , the longer muon lifetime, the more g-2 circles observed – good! But there is a problem: particles are not stored in the uniform magnetic field.

Solution: introduce gradient with electric field to build a trap.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$= 0 \qquad = 0 \qquad = 0$$

 $\gamma_{\text{magic}} = 29.3$ $p_{\text{magic}} = 3.09 \text{ GeV/c}$ Contribution from potential EDM (more later)

Magic γ completely determines the size of the CERN-type experiment.

Effect of EDM

oscillations

BNL limit: $|d_{\mu}| \le 1.8 \times 10^{-19} \ e \cdot cm \ (95\%)$ EDM at this level corresponds to $\Delta a_{\mu} = 1.6 \ ppm$. But we assume $|d_{\mu}| \le 3.2 \times 10^{-25} \ e \cdot cm$ from $|d_{e}|$ limit. FNAL should improve BNL limit by factor of ~100.

New measurement at FNAL

New CERN-type measurement E989 is in preparation at Fermilab with the goal of 4x improvement over BNL

- 21x more statistics
- 2.8x reduction in systematics

How?

- Better muon beam
- More uniform storage ring, better field measurement
- Improvements in detection of decay electrons and data analysis

New Trends 2016

Ways to improve precision

Conceptually, measurement at Fermilab is similar to measurement at Brookhaven, but there improvements in every department

ω_p systematics (ppb)

 ω_a systematics (ppb)

Contribution	BNL	FNAL	Contribution	BNL	FNAL
Absolute	50	35	Gain changes	120	20
calibration			Pileup	80	40
Trolley	100	50	Lost muons	90	20
			CBO	70	30
Fixed probes	70	30	E and pitch	50	30
Muon	30	10	Total	190	70
distribution				100	70
Total	170	70			

1/1

Muon G-2 collaboration

USA Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- Northern Illinois University
- Northwestern
- Regis
- Virginia
- Washington
- York College

National Labs

- Argonne
- Brookhaven
- Fermilab

- Frascati,
- Roma 2,
- Udine
- Pisa
- Naples
- Trieste

China:

- Shanghai

The Netherlands:

- Groningen
- Germany:
 - Dresden

Russia:

- Dubna
- Novosibirsk

University College London Liverpool Oxford Korea

England

KAIST

Co-Spokespersons: D.W. Hertzog B.L. Roberts

Project Manager: C. Polly

33 institutions 150 members

16

Layout of BNL experiment (1997-2001)

E821 beam line and muon storage ring

V – line FEB transport 24 GeV Protons 6 x 10¹³ protons / spill V - target station π , μ selection slits V1 beam line 3 GeV µ Decay Channel 14 meter diameter superferric muon storage ring P=97% $\sim 10^4 \ \mu$ stored 10 meters

Layout of FNAL experiment

- 8 GeV/c protons from the Booster are rebunched in Recycler Ring
- Transfer line and Delivery Ring (part of old p

 source) make
 ~2 km decay line. No hadron background!

20 times more statistics!

The effective beam power is smaller at FNAL by x4. Need to recover factor ~80:

- more efficient collection and transmission
- longer decay line
- longer running time
- more efficient data analysis

Muon Campus (g-2 + Mu2e): the plan

Muon Campus: today

- g-2 building (MC-1) is fully operational
- Mu2e building is under construction

Moving the ring to Fermilab

In order to save \$, the most expensive piece from the BNL experiment – the storage ring itself, is reused. The steel, pole pieces etc. are disassembled and moved by trucks. But there are three coils inside the cryostats... - 15 m diameter, they cannot be broken in pieces, flexed > 3 mm

Moved in 2013 by truck and the sea

5000 km journey

Arriving at Fermilab

Reassembly of the ring (2014-2015)

Magnet reached the full power in September 2015

To the shimming...

Reaching ultra-uniform field

C-shaped design with 1.45 T dipole field between poles

Many "knobs" to shim the field:

- 72 pole pieces
- 864 wedge shims
- 48 iron top hats
- 144 edge shims
- 8000 surface iron foils
- 100 active surface coils

g-2 Magnet in Cross Section

Rough shimming: Oct.2015-Aug.2016

Rough shimming is performed using shimming cart, before installation of vacuum chambers

Goal: 50 ppm uniformity

Laser tracker

4 corner-cube retroreflectors

4 capacitive gap sensors

25 NMR probes

Shimming history

Surface foils

Rough shimming results

 August 2016: completed addition of surface foils & achieved 50 ppm goal for rough shimming:

	RMS (ppm)	p-p (ppm)
FNAL (Rough shimmed)	10	75
BNL (Typical scan)	30	230

Measuring ω_a (T-method)

High energy electrons in LAB frame correlate to forward decay electrons in CM frame

Number of forward decay electrons in CM frame correlates to spin direction

So: count electrons with $E > E_{thr}$

 $N(t) = N_0 e^{-t/\gamma \tau} [1 + A\cos(\omega t + \varphi)]$

Simple 5-parameter fit! In real life, it is not that simple:

gain changes, pileup, coherent betatron oscillations (CBO), muon losses, ...

Measuring ω_a at BNL

FNAL calorimeters

- 24 calorimeters: each is array of 6 x 9 PbF₂ crystals - 2.5 x 2.5 cm² x 14 cm (15X₀)
- Readout by SiPMs to 800 MHz WFDs (1296 channels)
- Advanced laser calibration system

Calorimeter performance

0.5

10³

10²

10

10⁻¹

10⁻²

Pileup at FNAL

Overlapping of two decay electrons (pileup) introduces significant earlyto-late effect

Was dealt at BNL by statistical reconstruction and subtraction of the integrated pileup effect

Numerous improvements @FNAL:

- 1. Instantaneous rate stays the same the size of the effect does not increase
- 2. Segmented calorimeter allows to reduce pileup
- 3. Continuous digitization without energy threshold is important for accurate reconstruction and subtraction of pileup effect

4. New analysis technique: Q-method

Do not count electrons, but measure total deposited energy vs time. Equivalent to measurement of number of electrons, weighted by energy.

Was not done at BNL – requires extreme gain stability, low "flash", new electronics

Tracker system (traceback)

Low-mass trackers are installed in 3 locations around the ring to measure muon decay position with ~1 mm precision

BNL: one station, outside of vacuum, limited performance FNAL: **3 stations**, inside the vacuum

Each tracker:

- 8 modules
- 4 layers per module, 128 straws per module

Why we need trackers?

- Measurement of the muon distribution
 - to calculate average magnetic field, seen by muons
- Study of the beam dynamics
 - to calculate the pitch correction (effect of betatron motion)
 - to calculate the electric field correction (residual effect due to momentum dispersion around magic γ)
- Measurement of the muon EDM
 - by measuring vertical pitch of decay electrons
- Various systematics studies
 - pileup
 - lost muons
 - effect of coherent betatron oscillations

Project timeline

Alternative (g-2) project @J-PARC

On a theoretical side...

$$\Delta a_{\mu} = a_{\mu}(exp) - a_{\mu}(SM)$$

New experiment at FNAL

Possible new experiment at J-PARC

$$a_{\mu}^{\text{had},\text{LO}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

Two largest uncertainties:

- lowest order hadronic contribution $a_{\mu}(had; LO)$
- light-by-light hadronic contribution
 a_µ(had; LbL)

Extensive world-wide effort, both in experiment and in theory

Calculation of $a_{\mu}(had; LO)$ depends on measurement of $e^+e^- \rightarrow hadrons$ at $\sqrt{s} \leq 2$ GeV – experimental problem!

Expectations for the hadronic contribution

Lattice calculations started

We expect very significant progress on $a_{\mu}(had)$ by the release of the result of the new FNAL measurement.

Lattice calculations are very important – completely independent approach, from the first principles.

VEPP-2000 (BINP, Novosibirsk)

SND

CMD-3

VEPP-2000 - e^+e^- collider at Budker Institute of Nuclear Physics (Novosibirsk). C.m. energy range is 0.32-2.0 GeV; Design $L = 10^{32}1/cm^2s @ \sqrt{s} = 2$ GeV Collected first set of data in the whole energy range in 2011-2013 (few times the VEPP-2M statistics, similar to ISR statistics)

2013-2016 – installation of the new e^+ source, now in commissioning

There is well-known $3 \div 4\sigma$ discrepancy between the values of anomalous magnetic moment of muon, measured at Brookhaven (1997-2001) and predicted within the Standard Model.

The new experiment to measure (g-2) of muon is under preparation at FNAL. The expected uncertainty is 140 ppb - 4 times better compare to BNL.

The construction is nearly finished, the data taking will start by the end of 2017, the BNL-precision statistics by the middle 2018.

There is concurrent world-wide effort to improve the precision of the Standard Model calculation.

Stay tuned...