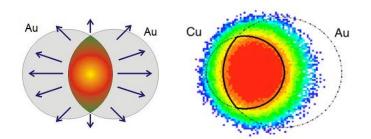


PHENIX results on leading particles and jets measured in Cu+Au collisions at RHIC

Dmitry Kotov for the PHENIX collaboration (NRC KI PNPI & SPbPU, Russia)


New Trends in High-Energy Physics, Becici, Budva, Montenegro, 2-8 October 2016

Outline

- Motivation
- * RHIC collider and PHENIX Detector
- Neutral pion and jet reconstruction methods
- ightharpoonup Results: p_T spectra and R_{AA}
- Model comparison

Motivation

- ❖ Jet quenching is one of the evidences of QGP formation in central heavy ion collisions;
- \clubsuit Experimentally jet-quenching at RHIC and LHC is observed as suppression of leading particles such as π^0 and jets, which are directly associated with partons, formed in the medium;
- ❖ RHIC results from Au+Au & Cu+Cu collisions showed suppression of high p_T particles as expected from parton energy loss in a hot and dense medium;
- ❖ An additional insight into the mechanism of particle production and parton energy loss can be gained from interactions of asymmetric Cu+Au collisions;
- Configuration of two different nuclei (Cu+Au) opens an opportunity to study particle production in different initial collision geometries;

❖ In 2012 RHIC delivered successful Cu+Au run at 200 GeV.

RHIC at Brookhaven National Lab

System	√s _{NN} , GeV
p+p	22.4, 62.4, 200, 500, 510
p+Al	200
p+Au	200
d+Au	20, 39, 62, 200
He ³ +Au	200
Cu+Cu	22, 62, 200
Cu+Au	200
Au+Au	7, 15, 9, 19, 39, 62, 130, 200
U+U	193

- RHIC is a flexible and reliable accelerator complex with an extensive experimental program;
- A lot of operational time is devoted to beam energy scan and switching between colliding nuclei;
- Beam luminosity is being continuously increased;
- During 16 Runs, RHIC provided 11 energies and 9 combination of nuclei.

PHENIX detector

1. Track reconstruction

Drift Chambers (DC): $\delta p/p = 0.7\% + 1.1\% \cdot p$

Pad Chambers (PC): $\sigma = \pm 1.7$ mm in z direction

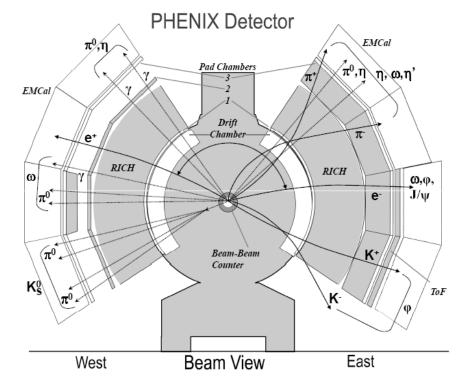
2. Energy and coordinates of electrons and γ

✓ EMCal PbSc: $\delta E/E = 2.1\% + 8.1\%/\sqrt{E}$

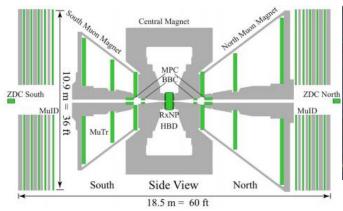
✓ EMCal PbGl: $\delta E/E = 0.8\% + 5.9\%/\sqrt{E}$

3. Particle identification

Time of flight in both arms (TOF.E, TOF.W):


 \checkmark $\sigma_{\tau} \sim 100 \text{ ps};$

 \checkmark π/K up to 2.5 GeV/c, K/p up to 4.0 GeV/c

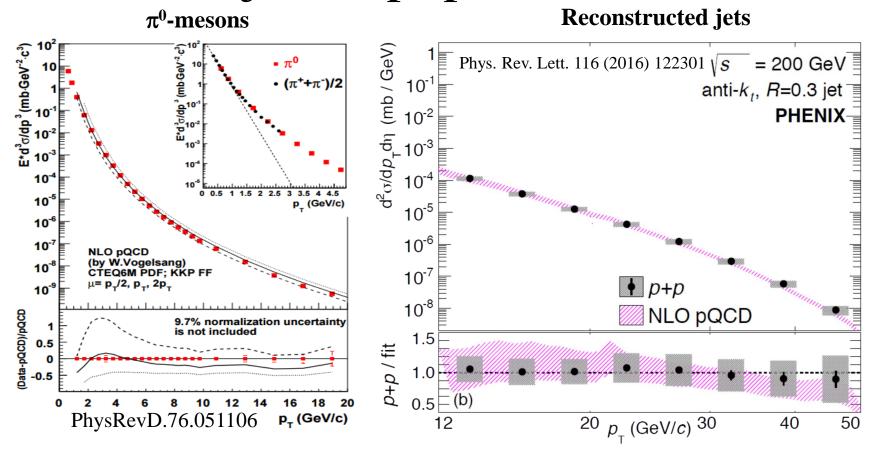

EMCal timing: $\sigma_{\tau} \sim 300 \text{ ps}$

Forward Arms:

- ✓ $1.2 < |\eta| < 2.2$
- ✓ Muon Tracker / Muon ID

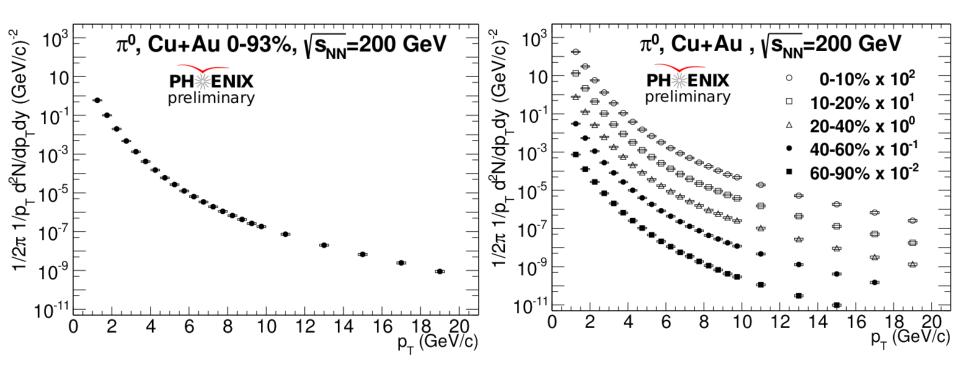
Acceptance: $-0.35 < \eta < 0.35, \Delta \phi - 2 \times 90^{\circ}$

Methods


\bullet $\pi^0 \rightarrow \gamma \gamma$ measurement:

- ✓ EMCal (PbSc / PbGl) for γ clusters measurement;
- \checkmark $\gamma\gamma$ inv. mass distributions to extract π^0 yields in different p_T and centrality bins;
- ✓ Good S/B ratio with lots of statistics: measure yields at high p_T ;

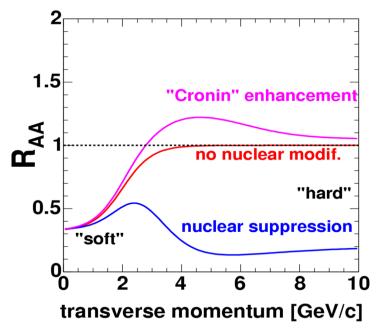
***** Reconstructed jets:

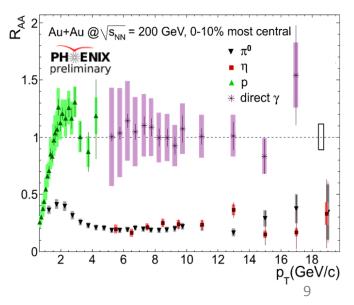

- ✓ DC/PC charged track reconstruction, EMCal (PbSc / PbGl) neutral clusters;
- ✓ anti- k_T algorithm with radius R = 0.3 in p+p and R = 0.2 in Cu+Au due to larger contribution of underlying event.

π^0 and jets in p+p @ 200 GeV

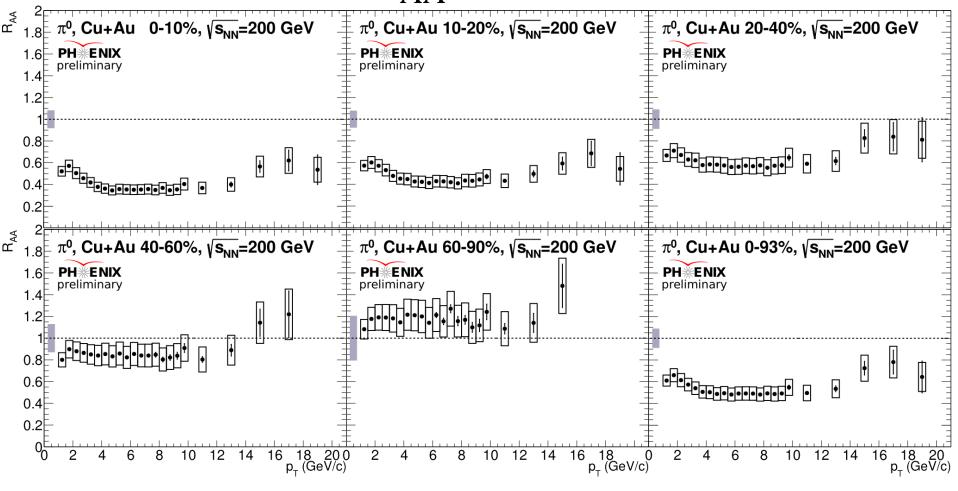
- \bullet π^0 and reconstructed jets spectra in p+p collisions are measured in wide p_T ranges:
 - ✓ agrees with NLO pQCD calculations, which validates π^0 /jet reconstruction procedure in PHENIX & explains π^0 /jet production in elementary collisions;
 - ✓ used as a baseline to compare with more heavy colliding systems such as A+B.

π⁰ spectra in Cu+Au @ 200 GeV

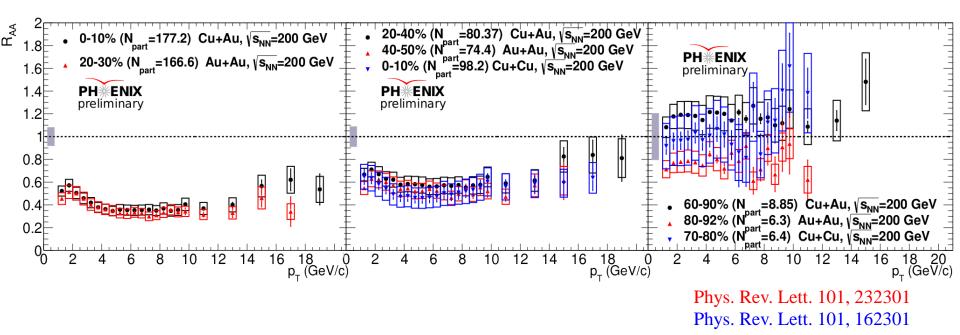

- ❖ Measured in a wide p_T range up to 20 GeV/c in different centrality bins;
- \diamondsuit Used to calculate nuclear modification factors R_{AB} for heavy ion colliding systems;


Hard processes, R_{AB}

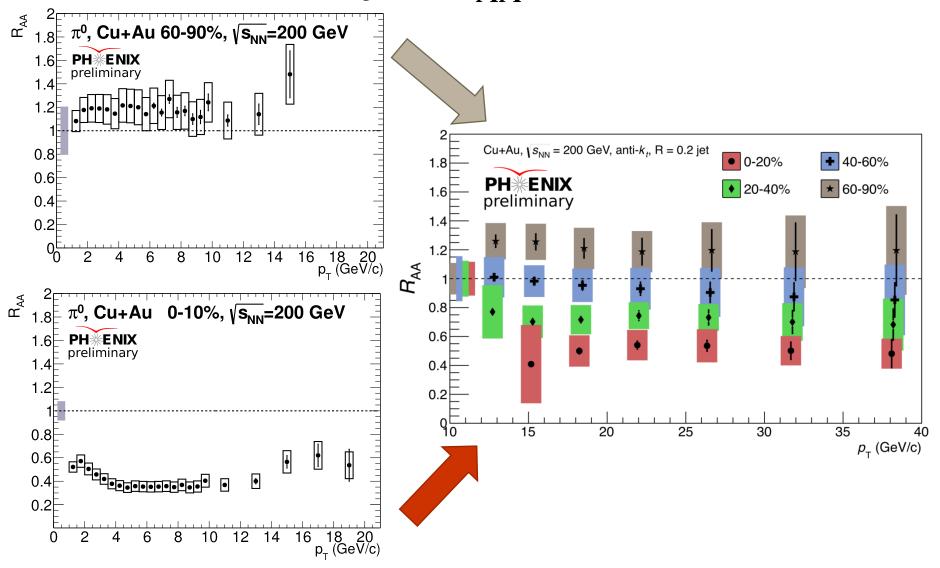
- ❖ Hard processes scale with N_{coll}
 - ✓ Small cross section
 - ✓ Non-correlated superposition
- Nuclear modification factors


$$R_{\rm AB}(p_T) = dN_{\rm AB}/(\langle N_{\rm coll} \rangle \times dN_{pp})$$

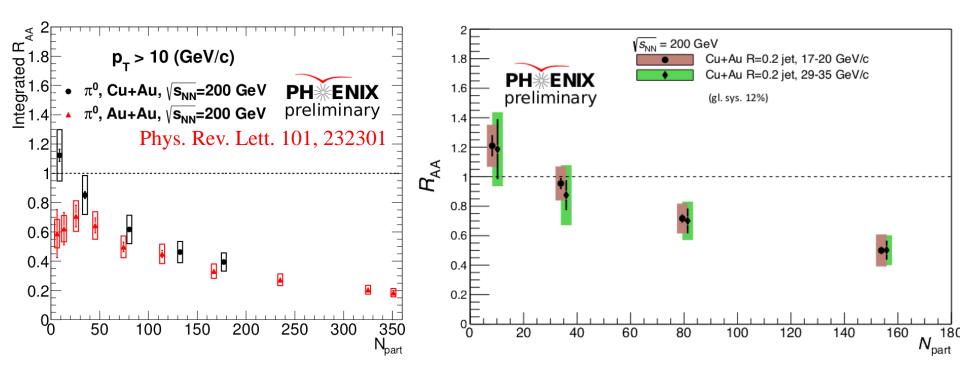
- $R_{AB}=1$ no medium effects
- $R_{AB} \neq 1$ collective effects:
 - $\checkmark R_{AB} < 1 suppression$
 - $\checkmark R_{AB} > 1$ enhancement



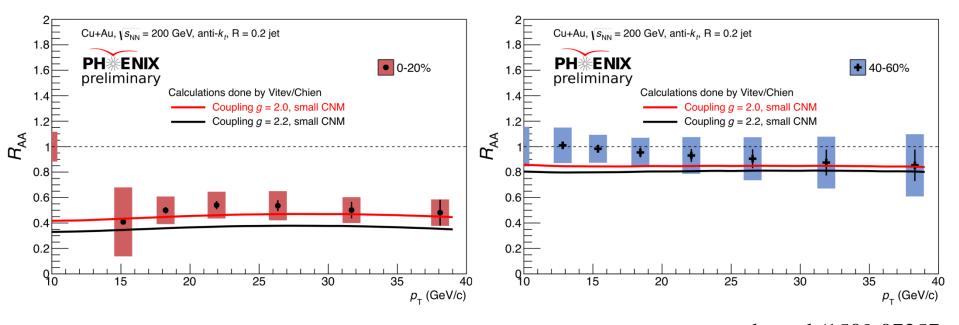
π^0 R_{AA} in Cu+Au


- ❖ Measured up to 20 GeV/c in different centrality bins;
- \clubsuit In central and semi central collisions π^0 production is suppressed;
- In peripheral collisions a hint of enchancement of π^0 production.

π⁰ R_{AA} Cu+Au, Cu+Cu & Au+Au


- ❖ In central and semi central Cu+Au collisions π^0 yields are suppressed similar to Cu+Cu and Au+Au:
 - \checkmark π^0 production depends on the size of the nuclear overlap, but not on it's shape;
- ❖ In peripheral Cu+Au collisions π^0 yields show a hint of enhancement, while suppressed in Au+Au with Cu+Cu lying in the middle.

π^0 and jets R_{AA} in Cu+Au


- \star π^0 suppression pattern is similar to the one observed for reconstructed jets:
 - ✓ suppressed in central collisions and non-zero enhanced in peripheral collisons.

Integrated π^0 and jets R_{AA}

- * π^0 suppression pattern is similar in Cu+Au and Au+Au collisions at $N_{part} > 50$;
- \clubsuit π^0 is less suppressed in Cu+Au than in Au+Au at $N_{part} < 50$;
- \star π^0 and jets show a hint of enhancement in peripheral Cu+Au collisions.

Model predictions for jets R_{AA} in Cu+Au

hep-ph/1509.07257 hep-ph/1509.02936

- **❖** Left: 0-20%; Right: 40-60%;
- ❖ SCET_G model allows to describe jet propagation in matter:
 - ✓ Calculations were done for 2 input parameters g=2.0 and g=2.2 (couplings between the jet and the medium);
 - ✓ Quantitatively agrees with experimental results.

Conclusions

- PHENIX experiment has measured nuclear modification factors R_{AA} for π^0 and jets in Cu+Au collisions at 200 GeV;
- * π^0 production is suppressed in central and semicentral Cu+Au collisions like in Au+Au and Cu+Cu collisions at similar N_{part} :
 - ✓ suppression level depends on overlap size and not on its geometry;
- In peripheral collisions there is a hint of π^0 and jet production enhancement;
- \clubsuit Jet nuclear modification factors are in agreement with $SCET_G$ calculations:
 - ✓ no predictions for $\pi^0 R_{AA}$ available yet.